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Abstract: Eliminating all but the s and p diffuse functions
on the non-hydrogenic atoms and all diffuse functions on
the hydrogen atoms from the aug-cc-pV(x+d)Z basis sets
of Dunning and co-workers, where x ) D, T, Q, ...,
yields the previously proposed “minimally augmented”
basis sets, called maug-cc-pV(x+d)Z. Here, we present
extensive and systematic tests of these basis sets for
density functional calculations of chemical reaction barrier
heights, hydrogen bond energies, electron affinities, ion-
ization potentials, and atomization energies. The tests
show that the maug-cc-pV(x+d)Z basis sets are as ac-
curate as the aug-cc-pV(x+d)Z ones for density functional
calculations, but the computational cost savings are a
factor of about two to seven.

1. Introduction
For many quantum mechanical electronic structure calculations
on molecules and chemical reactions, the results are sensitive
to the inclusion of diffuse basis functions. Diffuse basis functions
are spherical harmonics (or powers of Cartesian coordinates)
times Gaussian functions with small exponents. These functions
have long tails that allow the electrons to be farther from the
nuclei. This is especially important for calculations on systems
that require a good description of electrons in weakly bound
orbitals or the outer parts of orbitals, such as many anions,
transition states, and noncovalently bound systems.

Two systematic approaches to adding diffuse functions have
emerged. The first is to add standard diffuse s and p functions
(4 functions altogether) to nonhydrogenic atomssthis is called
a “plus” or “+” basis setsor to add diffuse s and p basis
functions to nonhydrogenic atoms and diffuse s basis functions
to H and Hesis called a “double +” or “++” basis set.1 The
second approach is to add a diffuse function to every atom for
every symmetry already present in the original basis; this is

called the augmented (“aug”) approach.2 For example, if a given
basis set for sulfur atom has s, p, d, and f basis functions, one
adds s, p, d, and f diffuse functions to that atom (a total of 16
functions, where all basis functions in this article use the
spherical harmonic optionsnot the Cartesian one). Thus, as the
underlying basis set becomes more complete, the number of
diffuse functions increases. This makes the aug basis sets both
larger and more rapidly convergent than the plus basis sets as
the highest angular momentum of nondiffuse basis functions
increases. However, in our previous paper,3 we have shown that,
in density functional calculations, the more expensive aug
approach is not necessary; that is, the fixed number of diffuse
functions of the plus sets is sufficient for results of double-,
triple-, and quadruple-� quality. In particular, we showed that
augmentation of the cc-pVxZ (where x ) D, T, Q, ...) basis
sets with the diffuse functions from the basis sets of Pople and
co-workers, which yields cc-pVxZ+ basis sets, accounts for
most of the effect that the full, much more expensive aug basis
set provides. We also mentioned that the aug-cc-pVxZ basis
sets can be truncated to contain only s and p diffuse functions
on the non-hydrogenic atoms. We called this series of basis
sets minimally augmented and abbreviated them as maug-cc-
pVxZ, and we presented some calculations with this kind of
basis set; however, the primary focus of the previous paper was
on the plus strategy.

We have now carried out systematic tests of the performance
of the maug-cc-pVxZ basis sets (where x stands for (D+d),
(T+d), or (Q+d)) for density functional calculations, using both
the popular B3LYP4-7 density functional and also the recent,
highly accurate M06-2X8 density functional. We present the
results of these tests here as a letter. Our tests involve
computation of several commonly calculated and challenging
molecular energetic properties. Barrier heights are the most
important reaction parameters used for mechanism evaluation
and kinetics calculations. Moreover, they are a good challenge
for our purposes, since the accuracy of the description of
transition states sometimes depends strongly on the presence
and quality of the diffuse functions in a basis set. Since diffuse
functions are often crucial in the description of noncovalent
interactions such as hydrogen bonding, we also present tests
on hydrogen bonding. Perhaps the most difficult test of the
adequacy of the diffuse part of the basis set is the prediction of
electron affinity values, because it involves anion calculations.
Ionization potentials and atomization energy are also considered,
because they are key thermochemical quantities.

In order to more specifically investigate the need for the
diffuse basis functions on hydrogen atoms, we calculated
electron affinity values for metal hydride.* Corresponding author e-mail: truhlar@umn.edu.
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To warn readers that all conclusions about the need for diffuse
functions in density functional theory (DFT) calculations cannot
be extended with equal success to wave function theory (WFT)
calculations, we also present results of the electron affinity
calculations at the second-order perturbation theory (MP2)9 level.

Similar truncations as in maug-cc-pV(x+d)Z basis sets were
performed for the maug-cc-pVxZ basis sets. The conclusions
about the diffuse functions are the same as for the (x+d) series,
which contains tight d functions on the elements in the 3p block
of the periodic table. However, the use of (x+d) basis sets is
recommended as they provide better quality results, especially
at the DZ level and for hypervalent molecules. The results for
aug-cc-pVxZ, maug-cc-pVxZ, and cc-pVxZ basis sets are
available in the Supporting Information, and the main body of
this letter will discuss only aug-cc-pV(x+d)Z, maug-cc-
pV(x+d)Z, and cc-pV(x+d)Z basis sets.

2. Methods and Databases
The databases employed for the present study are for barrier
heights, hydrogen-bond interaction energies, electron affinities,
ionization potentials, and bond energies. All energetic results
presented in this communication were obtained using the
Gaussian 0310 program and the MN-GFM11 functional module.
The cost estimates listed in Table 1 were calculated using the
Gaussian 09 program. All results are based on single-point
calculations run at geometries12 optimized with the QCISD/
MG3 method (for the BH24, EA13/3, IP13/3, and AE6
databases) and the MC-QCISD/313 method (for the HB6
database), and vibrational contributions are excluded (that is,
we are testing the methods for Born-Oppenheimer electronic
energies (including nuclear repulsion), not for enthalpies).
QCISD denotes quadratic configuration interaction with single
and double excitations.14 The geometries for all the species in
the five databases considered are available in the databases’
respective references given below.

The results provided by the two density functionals B3LYP and
M06-2X with the fully augmented aug-cc-pV(x+d)Z basis sets,
minimally augmented maug-cc-pV(x+d)Z basis sets, and unaug-
mented cc-pV(x+d)Z basis sets containing no diffuse functions
were compared to the best estimates in the following databases:

• DBH24/0815,16 database of diverse barrier heights, consist-
ing of the best estimates for 24 barrier heights for the heavy-
atom transfer reaction, nucleophilic substitution, hydrogen
transfer, and unimolecular and association reactions

• HB617 database, consisting of hydrogen bond energies
for (NH3)2, (HF)2, (H2O)2, NH3(H2O), (HCONH2)2, and
(HCOOH)2

• EA13/318,19 database, consisting of electron affinities for
C, S, O, Si, P, Cl, OH, PH, SH, PH2, O2, S2, and Cl2

• IP13/318,19 database, consisting of ionization potentials for
the same 13 species as in the EA13/3 database

• AE620 representative atomization energy database, consist-
ing of atomization energies of SiH4, SiO, S2, propyne,
glyoxal, and cyclobutane.

Since the computed values are compared here with experimental
or well converged theoretical values in the databases, all the
computed energetic data had the spin-orbit contributions added
on for F, C, O, Cl, Si, S, OH, and HS,21 and the experimental data
had the zero-point contributions subtracted from them.

In Table 1, we define the diffuse space in the fully augmented,
minimally augmented, and unaugmented basis sets. In order to
compare the approximate cost of the calculations involving the basis
sets used in the tests, we report the sum N of the number of basis
functions used in the calculations, summed over all the test cases
in all five databases used, and the sum raised to the fourth power
(N4), which is how the cost of the hybrid DFT calculations in
popular computer programs scale in the limit of large systems,
when linear-scaling algorithms are not used. For clarity, the N4

values were normalized (denoted by subscript Nor) to the N4 value
for the least expensive basis set cc-pV(D+d)Z. In order to quantify
the cost savings for a given x (x ) D, T, Q) achieved by using
maug basis sets instead of aug ones, we show in the (N4)Rel column
values normalized to the aug-cc-pV(x+d)Z N4 values for each x.
Since the limit of asymptotic scaling is never fully reached in
practice, we also illustrate the timings with a real example; in
particular, we list timings of single-point energy calculations on
the medium-size molecule 1,4-butanedithiol (C4H10S2).

3. Results
Tables 2-7 provide the mean signed errors (MSEs) and the
mean unsigned errors (MUEs, which can also be called mean
absolute errors) for a given level of theory in the calculations
involving species in a given database. We define MSE and MUE
as follows:

In eqs 1 and 2, ei is an error in a single property value (for
example, an ionization potential value for one molecule) in the
database, which contains a total of n such values for different

Table 1. Definitions of the Diffuse Spaces in the Various Basis Sets, Numbers of Basis Functions in the Databases,
Normalized and Relative Numbers of Basis Functions Raised to the Fourth Power, and the Normalized and Relative
Computational Time of a Single-Point Energy Calculation on C4H10S2 Using M06-2X

basis set Li-Ar H-He N (N4)Nor (N4)Rel (C4H10S2)Nor (C4H10S2)Rel

aug-cc-pV(Q+d)Z spdfg spdf 17597 934 1.00 411 1.00
maug-cc-pV(Q+d)Z sp 12665 251 0.27 74 0.18
cc-pV(Q+d)Z 12073 207 0.22 53 0.13
aug-cc-pV(T+d)Z spdf spd 10035 99 1.00 36 1.00
maug-cc-pV(T+d)Z sp 7209 26 0.27 11.5 0.32
cc-pV(T+d)Z 6609 19 0.19 8.6 0.24
aug-cc-pV(D+d)Z spd sp 4989 6 1.00 4.5 1.00
maug-cc-pV(D+d)Z sp 3783 2 0.33 1.5 0.32
cc-pV(D+d)Z 3183 1 0.17 1.0 0.22

MSE ) 1
n ∑

i)1

n

ei (1)

MUE ) 1
n ∑

i)1

n

|ei| (2)
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species. The mean error values for the atomization energies of
the molecules in AE6 are divided by 4.83, which is the average
number of bonds per molecule in this database, so that the results
may be interpreted on a per bond basis.

It may be useful to comment on the meaning of the electron
affinities. It is well known that density functional calculations
with certain kinds of approximate density functionals predict

unbound negative results in the limit of a large basis set.22

Nevertheless, calculations with standard basis sets have been
shown to often give stable and useful results.23,24 The results
presented here are a test of the stability of such standard
calculations to the size of the diffuse subspace of the basis set.

4. Discussion
The tables show that there is essentially complete agreement
between predictions of the fully (aug) and minimally (maug)
augmented basis sets for density functional calculations in the
triple-� and quadruple-� cases. For quadruple-�, the MUE of
the maug results is actually lower than the MUE of the aug
results in six of the ten cases, and in the other four cases, the
maug MUE is never higher than the aug MUE by more than
3%. And yet, the diffuse functions have a very important effect.
For example, in Table 4 for electron affinities, the MUE for
the unaugmented quadruple-� basis is a factor of 2 or 4 times
higher than the error in the maug basis, but no significant
increase in accuracy is attained by proceeding from the maug
basis to the fully augmented basis. At the triple-� level, the
effects of diffuse functions are larger, for example, decreasing
the MUE by factors of 4 and 7 for the electron affinities, but
again the maug MUE is almost the same as the aug MUE. For
triple-�, maug has a lower MUE for five of the ten cases and
never has a MUE higher than the aug one by more than 9%.

The effect of diffuse functions is largest for double-� basis
sets, with the MUE for electron affinities in unaugmented
calculations being 7 or 9 times larger than that for the maug
basis. We believe it is due to the fact that the unaugmented
cc-pVDZ basis set is the least diffuse basis set considered in
the present article. Therefore, the effect of pruning of some of
the diffuse functions on the quality of the results is the most
significant at the double-� level. On average though, the ratio

Table 2. Errors in Predictions of the Barrier Heights
(kcal/mol) in the BH24/08 Database

B3LYP M06-2X

basis set MSE MUE MSE MUE

aug-cc-pV(Q+d)Z -3.99 4.06 0.03 0.93
maug-cc-pV(Q+d)Z -3.97 4.06 0.09 0.92
cc-pV(Q+d)Z -4.79 4.85 -0.50 1.38
aug-cc-pV(T+d)Z -4.08 4.14 -0.06 0.88
maug-cc-pV(T+d)Z -4.02 4.10 0.08 0.91
cc-pV(T+d)Z -5.26 5.42 -0.87 2.06
aug-cc-pV(D+d)Z -4.83 4.90 -0.60 1.20
maug-cc-pV(D+d)Z -4.69 4.72 -0.39 1.33
cc-pV(D+d)Z -7.01 7.54 -2.32 3.75

Table 3. Errors in Predictions of the Hydrogen Bonding
Energies (kcal/mol) in the HB6 Database

B3LYP M06-2X

basis set MSE MUE MSE MUE

aug-cc-pV(Q+d)Z -0.76 0.76 0.11 0.29
maug-cc-pV(Q+d)Z -0.73 0.73 0.10 0.28
cc-pV(Q+d)Z -0.23 0.55 0.42 0.46
aug-cc-pV(T+d)Z -0.73 0.73 0.17 0.31
maug-cc-pV(T+d)Z -0.67 0.67 0.17 0.34
cc-pV(T+d)Z 0.51 0.74 1.02 1.02
aug-cc-pV(D+d)Z -0.39 0.40 0.37 0.37
maug-cc-pV(D+d)Z -0.27 0.64 0.43 0.61
cc-pV(D+d)Z 2.97 2.97 2.91 2.91

Table 4. Errors in Predictions of the Electron Affinities
(kcal/mol) in the EA13/3 Database

EA13/3 B3LYP M06-2X

basis set MSE MUE MSE MUE

aug-cc-pV(Q+d)Z -1.99 2.33 0.78 1.47
maug-cc-pV(Q+d)Z -1.96 2.31 0.82 1.49
cc-pV(Q+d)Z 4.35 5.30 5.30 5.30
aug-cc-pV(T+d)Z -2.07 2.37 0.67 1.46
maug-cc-pV(T+d)Z -2.04 2.36 0.70 1.49
cc-pV(T+d)Z 9.49 10.13 9.99 9.99
aug-cc-pV(D+d)Z -2.45 2.75 0.87 2.21
maug-cc-pV(D+d)Z -2.53 2.92 0.71 2.28
cc-pV(D+d)Z 20.59 20.85 20.37 20.37

Table 5. Errors in Predictions of the Ionization Potentials
(kcal/mol) in the IP13/3 Database

B3LYP M06-2X

basis set MSE MUE MSE MUE

aug-cc-pV(Q+d)Z 3.42 4.62 0.66 2.26
maug-cc-pV(Q+d)Z 3.41 4.61 0.64 2.25
cc-pV(Q+d)Z 3.19 4.42 0.51 2.14
aug-cc-pV(T+d)Z 3.54 4.65 0.99 2.63
maug-cc-pV(T+d)Z 3.53 4.63 0.96 2.62
cc-pV(T+d)Z 2.94 4.14 0.57 2.31
aug-cc-pV(D+d)Z 4.01 4.72 1.08 2.81
maug-cc-pV(D+d)Z 4.14 4.67 1.26 2.99
cc-pV(D+d)Z 1.67 3.15 -0.67 2.84

Table 6. Errors in Predictions of the Atomization Energies
(kcal/mol per bond) in the AE6 Database

B3LYP M06-2X

basis set MSE MUE MSE MUE

aug-cc-pV(Q+d)Z -0.42 0.59 0.01 0.22
maug-cc-pV(Q+d)Z -0.43 0.61 0.01 0.22
cc-pV(Q+d)Z -0.38 0.56 0.03 0.22
aug-cc-pV(T+d)Z -0.68 0.76 -0.19 0.33
maug-cc-pV(T+d)Z -0.70 0.79 -0.23 0.36
cc-pV(T+d)Z -0.59 0.69 -0.16 0.29
aug-cc-pV(D+d)Z -2.31 2.31 -1.65 1.73
maug-cc-pV(D+d)Z -2.67 2.67 -1.94 1.94
cc-pV(D+d)Z -2.29 2.29 -1.59 1.65

Table 7. Electron Affinity (kcal/mol) of Lithium Hydride LiH

basis set B3LYP M06-2X

aug-cc-pV(Q+d)Z 10.12 6.55
jul-cc-pV(Q+d)Z 10.14 6.52
maug-cc-pV(Q+d)Z 10.05 6.42
cc-pV(Q+d)Z 7.82 3.71
aug-cc-pV(T+d)Z 9.97 6.28
jul-cc-pV(T+d)Z 9.96 6.20
maug-cc-pV(T+d)Z 9.84 6.09
cc-pV(T+d)Z 6.24 1.96
aug-cc-pV(D+d)Z 10.33 6.51
jul-cc-pV(D+d)Z 10.20 6.18
maug-cc-pV(D+d)Z 10.05 6.18
cc-pV(D+d)Z 5.75 1.15
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of the maug MUE to the aug one is greater than unity by only
13%, and it is only 2% greater than unity if we omit hydrogen
bonding. The full aug set of the diffuse functions decreases the
double-� MUE for hydrogen bonding by a factor of 7-8,
whereas the maug diffuse functions decrease it by only a factor
of 5.

The cost savings that come from using the maug series of
basis sets instead of aug are very large. Using the N4 asymptotic
scaling factors of Table 1 shows that the minimally augmented
diffuse basis sets maug-cc-pV(x+d)Z offer the same quality
results as their aug analogs at a cost reduced by 73%, 73%,
and 67% for x ) Q, T, and D, respectively. Alternatively if we
use actual costs for specific calculations on 1,4-butanedithiol,
the time savings using maug vs aug basis sets are 82%, 68%,
and 68% for quadruple, triple, and double-� basis sets,
respectively, and for the B3LYP functional (these timings not
shown in the table), they are 86%, 76%, and 52%.

One caveat on the conclusions drawn here is that the databases
used for the tests presented here include no metal atoms, so the
conclusions have been established only for nonmetals, although
it would not be surprising if they were also found to hold for
compounds containing metal atoms.

Another noteworthy point is that maug triple-� is usually very
close to the basis set limit for DFT, at least for the nonmetal
systems in the present study.

To show that the diffuse functions on hydrogen are practically
redundant, we present the dependence on the electron affinity
of lithium hydride (LiH) in Table 7. A metal hydride would be
the case where H would be most likely to need diffuse functions,
and electron affinities provide the toughest test of the need for
diffuse functions, so the particular choice of an electron affinity
of a metal hydride is a serious challenge. Deleting the diffuse
functions on hydrogenic atoms from an “aug-” basis set yields
what we call a “jul-” basis set. From the data shown in Table
7, one can see that even for the electron affinity of metal hydride
the diffuse functions on hydrogen are unnecessary for DFT
calculations of energetic molecular properties. In particular, the
difference in performance of aug and jul basis sets is practically
nonexistent. Results for two other metal hydrides (BeH and
MgH) are available in the Supporting Information; the error
encountered by using jul instead of aug varies from 0.2% to
3.2% and from 1.4% to 9.4% for MgH and BeH, respectively,
and so the results for these systems confirm the unimportance
of diffuse functions on hydrides. For completeness, we note
that the monatomic hydrogen anion is an exception; for this
one-center, two-electron system, it is essential to include diffuse
functions for an accurate description (however, since the energy
of this system has already been calculated accurately to several
significant figures with explicitly correlated basis functions, its
basis set requirements are a not a major concern here).

Table 8 shows that WFT is more slowly convergent than DFT
with respect to the number of the diffuse functions on heavy

atoms in the basis set used. However, the effect of diffuse
functions on H has previously been shown to be negligible for
energetic calculations even in WFT. In particular, an extensive
study of basis set effects on the calculated bond energy and
electron affinity of LiH showed that “diffuse functions on
hydrogen have little importance for thermochemical calcula-
tions.”25

The present study adds to previous work showing that
conclusions about basis sets derived from many years of
experience with WFT calculations do not necessarily hold for
DFT.18,26-31

Although it is not the main point of this paper, we note that
Tables 2-6 contain 45 direct comparisons of mean unsigned
errors for B3LYP to those for M06-2X for a given basis set
and database. In one case, the mean unsigned errors are the
same, and in all other cases, M06-2X has the better performance.

5. Conclusions
The only case in Tables 2-6 where the augmentation of the
cc-pV(x+d)Z basis sets with the full aug set of the diffuse
functions performs significantly better in the density functional
theory calculations than the maug basis set is for two studied
cases of hydrogen bonding at the double-� level. In the other
28 cases considered here, the maug basis actually has a lower
mean unsigned error (MUE) than the aug one in 12 of the cases,
and the average ratio of the maug MUE to the aug one is only
1% greater than unity.

The present tests have been restricted to the main group. We
recommend that, for energetic molecular properties, including
barrier heights, the aug basis sets be truncated to the maug level
for density functional calculations on systems composed of
main-group atoms.
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Abstract: The importance of single electron transfer
energetics in promoting SN2 reactions was probed by a
density functional computational study on substitution
reactions of quaternary ammonium ion complexes with
anionic nucleophiles. Good correlations were found be-
tween the ionization potentials (IP) of the nucleophiles
when plotted against density functional theory (DFT)-
computed reaction activation enthalpies (∆Ηrxn

* ) over a
range of 15 eV. Poor correlations were found between IPs
or proton affinities and central barrier heights (∆Ηcmp

* ).
Examples of inverted values of ∆Ηrxn

* of primary vs
secondary systems were found.

Introduction
Bimolecular nucleophilic substitution reactions at saturated
carbon atoms likely represent the most highly studied organic
mechanism both experimentally and computationally. The
pioneering work of the Ingold school established the bimolecular
nature of the reaction in solution.1 The work of Brauman et
al.2 laid the theoretical groundwork for study of gas phase SN2
reactions in terms of a double minimum potential energy profile
to form ion-molecule complexes that either revert to starting
components or pass over “central” SN2 transition energy barriers.
The reaction products also form a complex that ultimately
dissociates to individual products. Recent work by McMahon
and co-workers has provided direct experimental verification
of these ideas.3 Bento and Bickelhaupt have carried a detailed
analysis of methyl halide/halide reactions, Si, and group 14
elements and have concluded that HOMO/LUMO orbital
interactions are of paramount importance.4 Shaik and others5

have stressed the importance of single electron transfer from
the nucleophile to the substrate as an important feature of the

electronic nature of SN2 transition states. In this context, the
transition state for simple SN2 reactions involving a single
electron transfer can be symbolized as shown below.

This study probes the idea that energies of SN2 transition
structures should correlate with ionization potentials (IPs) of
attacking nucleophiles.

This work evolved from experimental and computational
studies with bis-ammonium alkyl dihalides that were shown to
undergo substitution and elimination reactions in the gas phase
(Scheme 1).6 An unexpected result was the relative insensitivity
of the computed central barrier (∆Ηcmp

* ) to the nature of the
halogen. It was also shown that the second positive center had
little effect on the computed SN2 activation enthalpies compared
to simple tetraalkylammonium ion salts. These results stimulated
a desire to extend the survey of SN2 reactivity to a much broader
range of nucleophiles and in particular to assess the relationship
between nucleophile ionization potential on transition structure
energy and SN2 barriers. Scheme 2 describes this approach that
compares the energetics of reactions of nucleophilies at primary
and secondary carbon centers of ethyltrimethyl (ETMA) and
tetramethyl (TMA) ammonium salts with trimethylamine as the
common leaving group.

The abbreviated enthalpy diagram in Scheme 3 outlines the
computational analysis invoked in this study given the expecta-
tion that complex formation between neutral products trimethyl-
amine and alkylX would not affect the overall objectives. ∆Hpr

represents the sum of the enthalpies of R-X and trimethyl
amine.

Computations and Methodology
All structures were fully optimized by analytical gradient
methods using the Gaussian03 suite7 and DFT calculations at* E-mail: sauers@rutchem.rutgers.edu.

Scheme 1. Nucleophilic Substitution by Halogen on a
bis-Quaternary Ammonium Salt

Scheme 2. Reactions of TMA/ETMA with Nucleophile X-

[-Nu•
•R··X T Nu··R•

•X-]*
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the RB3LYP/6-31+G(d) level,8 the exchange functional of
Becke,9 and the correlation functional of Lee, Yang, and Parr.10

Vibrational analyses established the nature of all stationary
points as either energy minima (no imaginary frequencies) or
first-order transition structures (one imaginary frequency). In
some cases, IRC calculations verified that the TS connected
intitial and product structures. In other cases, we relied on
animations of the vectors associated with the imaginary frequen-
cies as a guide. Reported enthalpies (unscaled) were corrected
for zero-point energy and temperature effects at 298.14 K. In
the first stage of this project, the enthalpies of complex formation
(∆Ηcmp) between the anions and TMA and ETMA were
evaluated. SN2 transition structures (∆Ηcmp

* ) were located for
reactions at methyl groups in the TMA series and at the
methylene groups in the ETMA series, i.e., reactions at primary
and secondary carbons with trimethylamine as a leaving group
(Scheme 2). These data are summarized in Table 1 along with
derived values for the transition structure enthalpies ∆Ηrxn

* .
Because few experimental IPs for many of the ions are

available, they were computed using DFT at the (U)B3LYP/

aug-cc-pVDZ level. Computed values agreed within 2-3 kcal/
mol with available experimental values. Proton affinities were
compiled from the literature or computed. Table 2 displays the
relevant ionization energies and the proton affinities.

Discussion
Figure 1 shows a plot of central barrier heights (∆Ηcmp

* ) for the
SN2 reactions of ETMA vs IPs. The widely scattered data points
reveal no meaningful correlations.11 Similar results were
obtained for reactions of TMA (not shown). In part, these
findings reflect the consequences of the small range of ∆Ηcmp

*

compared to the large variations in IP. Likewise, plots of ∆Ηcmp
*

vs proton affinities (PA) for ETMA (Figure 2; and TMA)

Scheme 3. Enthalpy Diagram for Nucleophilic Substitution
Reactions of the Tetramethylammonium Ion (TMA) and
Ethyltrimethylammonium Ion (ETMA) with Nucleophile X-

Table 1. Computed Data for Complex Energy Formation (∆Hcmp), Transition Structure Barriers (∆H*
cmp), and Reaction

Transition Structure Enthalpy Changes (∆H*
rxn) for ETMA and TMA Systems at 298.15 K: B3LYP/6-31+G(d)

tetramethylammonium systems ethyltrimethylammonium systems

anion ∆Hcmp, kcal mol-1 ∆Hcmp
* , kcal mol-1 ∆Hrxn

* , kcal mol-1 ∆Hcmp, kcal mol-1 ∆Hcmp
* , kcal mol-1 ∆Hrxn

* , kcal mol-1

F- -114.33 22.3 -92.02 -112.75 22.6 -90.15
Cl- -91.98 19.4 -75.59 -90.66 21.5 -69.12
HCO2

- -95.28 27.4 -67.89 -93.44 28.1 -65.34
NO3

- -85.15 21.2 -63.92 -83.70 21.2 -62.50
OH- -117.25 24.1 -93.20 -111.40 19.3 -92.10
CH3O- -107.94 19.5 -88.43 -102.40 17.1 -85.30
CN- -88.69 18.1 -70.60 -83.77 19.3 -64.47
HOO- -109.10 16.7 -92.39 -107.65 17.2 -90.45
N3

- -85.87 16.2 -69.68 -84.56 16.7 -67.86
SH- -89.65 14.8 -74.85 -85.24 14.3 -70.94
HOCO2

- -92.46 19.8 -72.68 -88.83 18.1 -70.73
OCl- -99.58 16.4 -83.16 -95.24 14.3 -80.94
CO3

-2 -192.33 19.2 -173.12 -186.72 12.2 -174.53
H- -142.10 14.0 -128.06 -140.36 15.4 -124.97
CH3CH2O- -104.92 12.6 -92.35 -99.37 16.9 -82.47
HOBO2

-2 -200.64 21.8 -178.82 -203.85 22.9 -180.96
BO3

-3 -314.87 20.0 -294.86 -311.44 14.2 -297.27
(HO)2PO2

- -88.88 23.6 -65.23 -85.87 21.8 -64.05
HOPO3

-2 -178.86 19.3 -159.52 -174.09 13.6 -160.48
PO4

-3 -282.44 22.1 -260.38 -280.22 11.3 -268.95
HSiO4

-3 -289.90 23.5 -266.44 -280.66 11.7 -268.94
SiO4

-4 -419.02 19.4 -399.57 -418.38 15.3 -403.08

Table 2. Ionization Potentialsa and Proton Affinities:b

(U)B3LYP/aug-cc-pVDZc

anion

ionization
potential,

eV

proton
affinity,

kcal mol-1 anion

ionization
potential,

eV

proton
affinity,

kcal mol-1

F- 3.56 371.3 OCl- 2.34 349.4
Cl- 3.72 333.4 CO3

-2 -3.55 476.5
HCO2

- 3.48 345.3 H- 0.89 394.6
NO3

- 3.90 327.5 CH3CH2O- 1.67 378.6
OH- 1.85 390.8 HOBO2

-2 -2.52 486.9
CH3O- 1.53 381.7 BO3

-3 -8.38 592.8
CN- 4.04 351.1 (HO)2PO2

- 4.15 325.4
HOO- 1.03 368.5 HOPO3

-2 -1.84 452.7
N3

- 2.67 337.6 PO4
-3 -7.21 573.1

SH- 2.36 351.1 HSiO4
-3 -7.13 573.5

HOCO2
- 3.56 330.4 SiO4

-4 -11.1 664.7

a DFT methodology has been shown to give good results for
IPs: Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F.,
III. Atomic and Molecular Electron Affinities: Photoelectron
Experiments and Theoretical Computations. Chem. Rev. 2002,
102, 231-282. b Some proton affinity data is taken from tables in
the NIST data bank: Bartmess, J. E. In NIST Standard Reference
Database Number 69; Mallard, W. G., Linstrom, P. J., Eds.; National
Institutes of Standards and Technology (http://webbook.nist.gov):
Gaithersburg, MD, 1999. c See Supporting Information Table S5 for
primary data.
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systems gave rise to widely scattered arrays of data points.
Similarly, attempts to find significant correlations for plots of
-∆Ηcmp

* of monoanions vs IP and plots of -∆Ηcmp
* vs IP for

oxygen-centered nucleophiles failed. On the other hand, plots
of -∆Ηrxn

* vs IP gave good correlations for both methyl and
ethyl substitutions (Figures 3 and 4).

These remarkable trends are consistent with the concept of
single electron transfer as an important electronic factor in
initiating bimolecular nucleophilic substitution reactions at
primary and secondary saturated carbon atoms. In addition, these
correlations validate the concept that it is the stability of the
transition structure relative to the separate reactants that is the
kinetically relevant term as opposed to central barrier heights,
per se.12

Some unexpected results were the findings that ∆Ηcmp
* for

substitution at the methyl carbon was not always more favorable
than that for substitution at the ethyl carbon (Table 1, Figure
5). These unprecedented discrepancies showed up not only with
the polyionic anions but also with simple nucleophiles, e.g.,
hypochlorite ion, hydroxide ion, et al. That these disparities are

not anomalies associated with complex formation is shown by
plots of IP vs ∆Ηcmp (Figures 6 and 7).

Apparently the electronic forces and steric and/or entropic13

factors involved in complex formation vs the transition structures

Figure 1. Plot of IP vs ∆Ηcmp
* for ETMA.

Figure 2. Plot of ∆Ηcmp
* vs PA for ETMA.

Figure 3. Plot of IP of nucleophiles vs -∆Ηrxn
* for tetram-

ethylammonium systems.

Figure 4. Plot of IP of nucleophiles vs -∆Ηrxn
* for ethyltrim-

ethylammonium systems.

Figure 5. Plot of -∆Ηcmp
* : TMA vs ETMA.

Figure 6. Plot of IP of nucleophiles vs -∆Ηcmp for tetram-
ethylammonium ions.

Figure 7. Plot IP of nucleophiles vs -∆Ηcmp for ethyltrim-
ethylammonium ions.
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for certain of these systems can be significantly disparate.
Similarly, comparisons of the enthalpies of the complex
formation did not show any major anomalies as shown by the
data in Figure 8. An excellent correlation was obtained: in almost
all cases, methyl systems give rise to tighter, lower enthalpy
complexes than ethyl analogs. The only exception was HBO3

-2:
the TMA complex was less stable than the ETMA complex by
∼3 kcal mol-1. It would appear that irregularities in binding
energies/structures do not give rise to anomalous methyl/ethyl
reversals.12,13 Comparisons of the TMA vs ETMA transition
structures in general showed that the TMA transition structures
were somewhat “earlier” in that average X · · ·C and C · · ·N bond
lengths were shorter (1.774 and 2.254 Å, respectively) than those
in the corresponding ETMA TSs (1.875 and 2.305 Å, respec-
tively). No trends were noted that resolved the reactivity
reversals, however (see Supporting Information Table S6).

Detailed studies by Bento and Bickelhaupt4 with combinations
of SN2 reactions of methyl halide/halide ions support our results
in that these workers describe nucleophilic character in terms
of charge transfer and HOMO/LUMO interactions.

In related studies, Uggerud14 recently estimated potential
energy profiles for 18 identity SN2 reactions using G2 quantum
methods and found a linear correlation between nucleophile
ionization potential (1-4 eV range) and barrier heights. It is
interesting to note that the slope of the plot of IP vs ∆Ηcmp

* was
much steeper than the ones we found in Figures 3 and 4. This
is probably due to the fact that identity reactions do not involve
an overall energy change, whereas the systems studied herein
are all strongly exothermic (Supporting Information Tables S4
and S5).

The alkyl ammonium systems examined in this study
represent one extreme of structure-reactivity behavior in that
the reactant bears a positive charge that is partially neutralized
in the transition structure unlike most of the previous studies.
For example, Brauman and Olmstead found that the cyanide
ion is virtually unreactive toward methyl chloride.15 In this
study, ∆Ηrxn

* for CN- is not atypical compared to other
unicharged nucleophiles, and the transition structure has a
“typical” geometry.

In many cases, the high degree of exothermicity of these
reactions, -61 to -400 kcal mol-1 (see Supporting Information
Tables S4 and S5), may serve to compress the range of
activation enthalpies because the geometry of the transition
structures resides close to that of the starting components (vide
infra) in contrast to “identity SN2 reactions” in which the
transition structure involves equal bonding of the nucleophile

and leaving group. Still, there are some exceptions and
inconsistencies with this argument. The TSs for attack of the
nitrate ion on both methyl and ethyl centers are nearly
symmetrical, and the ∆Ηcmp

* ’s are essentially the same. Yet, in
both cases, the overall reactions are highly exothermic: 88.8 vs
91.1 kcal mol-1, respectively.

In a recent computational study of reactions of substituted
p-X-phenoxides with methyl halides, Li and Xue16 found good
correlations of both barrier heights and central barriers with the
phenoxide substituent (σ) constants. These workers did not
examine correlations with ionization potential, but it is likely
that IPs would parallel nucleophilicity of the phenoxides.

Conclusions
The reported correlations of IP with transition structure energy
serve as a useful predictor of ∆Ηrxn

* .17 Clearly, there are
subtleties, e.g., entropy, steric effects, and orbital shapes, that
modulate the behavior of the complexes and that are not
understood at this time. It is clear that barrier heights ∆Ηcmp

*

are not useful predictors of relative reactivity in these systems.
The generality of these correlations and exceptions remains to
be explored in other systems.4
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Abstract: We present the three-dimensional molecular theory of solvation (also known as 3D-
RISM) coupled with molecular dynamics (MD) simulation by contracting solvent degrees of
freedom, accelerated by extrapolating solvent-induced forces and applying them in large multiple
time steps (up to 20 fs) to enable simulation of large biomolecules. The method has been
implemented in the Amber molecular modeling package and is illustrated here on alanine-
dipeptide and protein-G.

1. Introduction

Molecular dynamics (MD) simulation with explicit solvent,
in particular, available in the Amber molecular dynamics
package,1 yields accurate and detailed modeling of biomol-
ecules (e.g., proteins and DNA) in solution, provided the
processes to be described are within accessible time scales,

typically up to tens of nanoseconds. A major computational
burden comes from the treatment of solvent molecules
(usually water, sometimes cosolvent, and counterions/buffer
or salt for electrolyte solutions), which typically constitute
a large part of the system. Moreover, solvent enters pockets
and inner cavities of the proteins through their conformational
changes, which is a very slow process and nearly as difficult
to model as protein folding.

Of no surprise, then, is the considerable interest in MD
simulation with solvent degrees of freedom contracted by
using implicit solvation approaches. In particular, of interest
is the generalized Born (GB) model,2 in which the solvent
polarization effects are represented by a cavity in dielectric
continuum (optionally, with Debye screening by the charge
distribution of structureless ions in the form of the Yukawa
screened potential), whereas the nonelectrostatic contributions
are phenomenologically parametrized against the solvent-
accessible area and excluded volume of the biomolecule. The
cavity shape is formed by rolling a spherical probe, of a size
to be parametrized for each solvent, over the surface of the
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biomolecule. The polarization energy follows from the
solution to the Poisson equation, which is computationally
expensive, and is approximated in the GB model for fast
calculation by algebraic expressions interpolating between
the simple cases of two point charges in a spherical cavity.
Conceptually transparent and computationally simple, the GB
model has long been popular, including its implementations
in the Amber molecular dynamics package.1 However, it
bears the fundamental drawbacks of implicit solvation
methods: the energy contribution from solvation shell
features such as hydrogen bonding can be parametrized but
not represented in a transferable manner; the three-
dimensional variations of the solvation structure, in particular,
the second solvation shell, are lost; the volumetric properties
of the solute are not well-defined; the nonelectrostatic
solvation energy terms are empirically parametrized, and,
therefore, effective interactions like hydrophobic interaction
and hydrophobic attraction are not described from the first
principles and thus are not transferable to new systems with
complex compositions (e.g., with cosolvent and/or different
buffer ions); and the entropic term is absent in continuum
solvation, thus excluding from consideration the whole range
of effects, such as the energy-entropy balance for the
temperature control over supramolecular self-assembly in
solution. To this end, the notion of a solvent-accessible
surface, defined as that delineated by the center of the probe
“rolled” over the surface, becomes meaningless for inner
cavities of biomolecules hosting just a few solvent molecules.

An attractive alternative to continuum solvation is the
three-dimensional molecular theory of solvation, also known
as the 3D reference interaction site model (3D-RISM).3-10

Starting from an explicit solvent model, it operates with
solvent distributions rather than individual molecules, but
yields the solvation structure and thermodynamics from the
first principles of statistical mechanics. It properly accounts
for chemical specificities of both solute and solvent mol-
ecules, such as hydrogen bonding or other association and
hydrophobic forces, by yielding the 3D site density distribu-
tions of solvent, similar to explicit solvent simulations.
Moreover, it readily provides via analytical expressions all
of the solvation thermodynamics, including the solvation free
energy potential, its energetic and entropic decomposition,
and partial molar volume and compressibility. The expression
for the solvation free energy (and its derivatives) in terms
of integrals of the correlation functions follows from a
particular approximation for the so-called closure relation
used to complete the integral equation for the direct and total
correlation functions.11 The 3D-RISM theory in the so-called
hypernetted chain (HNC) closure approximation was sketched
by Chandler and co-workers in their derivation of density
functional theory for classical site distributions of molecular
liquids.3,4 Beglov and Roux for the first time used the 3D-
HNC closure to calculate the distribution of a monatomic
Lennard-Jones (LJ) solvent in the neighborhood of solid
substrates of arbitrary shape constructed from LJ centers12

and introduced the 3D-RISM-HNC theory in the above way
for polar molecules in liquid water.5 Kovalenko and Hirata
derived the 3D-RISM integral equation from the six-
dimensional, molecular Ornstein-Zernike integral equation11

for the solute-solvent correlation functions by averaging out
the orientation degrees of freedom of solvent molecules while
keeping the orientation of the solute macromolecule de-
scribed at the three-dimensional level.6,7,10 They also de-
veloped an analytical treatment of the electrostatic long-range
asymptotics of both the 3D site direct correlation functions
(Coulomb tails) and the total correlation functions (screened
Coulomb tails and constant shifts), including analytical
corrections to the 3D site correlation functions for the
periodicity of the supercell used in solving the 3D-RISM
integral equation.8-10 This enabled 3D-RISM calculation of
the solvation structure and thermodynamics of different ionic
and polar macromolecules/supramolecules, for which distor-
tion or loss of the long-range asymptotics for either of the
correlation functions leads to huge errors in the 3D-RISM
results for the solvation free energy (even for simple ions
and ion pairs in water), while the analytical corrections/
treatment of the asymptotics restores it to an accuracy of a
small fraction of kcal/mol. Furthermore, Kovalenko and
Hirata proposed the closure approximation (3D-KH closure)
that couples the 3D-HNC treatment automatically applied
to repulsive cores and other regions of density depletion due
to repulsive interaction and steric constraints, and the 3D
mean-spherical approximation (3D-MSA) applied to distribu-
tion peaks due to associative forces and other density
enhancements, including long-range distribution tails for
structural and phase transitions in fluids and mixtures.7,10

The 3D-KH approximation yields solutions to the 3D-RISM
equations for polyionic macromolecules, solid-liquid inter-
faces, and fluid systems near structural and phase transitions,
for which the 3D-HNC approximation is divergent and the
3D-MSA produces nonphysical areas of negative density
distributions. (For the site-site OZ, or conventional RISM
theory,11 the corresponding radial 1D-KH version is available
and capable of predicting phase and structural transitions in
both simple and complex associating liquids and mixtures.10)
The 3D-RISM-KH theory has been successful in analyzing
a number of chemical and biological systems in solution,10

including structure of solid-liquid interfaces,7 structural
transitions and thermodynamics of micromicelles in alcohol-
water mixtures,13,14 structure and thermochemistry of various
inorganic and (bio)organic molecules in different solvents,15,16

conformational equilibria, tautomerization energies, and
activation barriers of chemical reactions in solution,16

solvation of carbon nanotubes,15 structure and thermodynam-
ics of self-assembly, stability and conformational transitions
of synthetic organic supramolecules (e.g., organic rosette
nanotubes in different solvents)17-20 as well as peptides and
proteins in aqueous solution,21-23 and molecular recognition
and ligand-protein docking in solution.23,24 It constitutes a
promising method to contract solvent degrees of freedom in
MD simulation.

Miyata and Hirata25 have introduced a coupling of 3D-
RISM with MD in a multiple time step (MTS) algorithm,
which can be formulated in terms of the RESPA26,27 method.
It converges the 3D-RISM equations for the solvent cor-
relations at the current snapshot of the solute conformation
by using the accelerated iterative MDIIS solver, then
performs several MD steps, and solves the 3D-RISM
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equations over again. The MDIIS (modified direct inversion
in the iterative subspace) procedure10 is a Krylov subspace
type iterative solver for integral equations of liquid state
theory, closely related to the DIIS approach of Pulay28 for
quantum chemistry equations and other similar algorithms,
in particular, the GMRES solver.29 The MTS approach was
necessary to bring down the relatively large computational
expenses of solving the 3D-RISM equations. Their imple-
mentation achieved stable simulation with the 3D-RISM
equations solved at each fifth step of MD at most, which is
not sufficient for realistic simulation of macromolecules and
biomolecular structures of interest.

In this work, we couple the 3D-RISM solvation theory
with MD in the Amber molecular dynamics package in an
efficient way that includes a number of accelerating schemes.
This includes several cutoffs for the interaction potentials
and correlation functions, an iterative guess for the 3D-RISM
solutions, and an MTS procedure with solvation forces at
each MD step, which are extrapolated from the previous 3D-
RISM evaluations. This coupled method makes modeling
of biomolecular structures of practical interest, for example,
proteins with water in inner pockets, feasible. As a prelimi-
nary illustration, we apply the method to alanine-dipeptide
and protein-G in ambient water.

2. Theory and Implementation

2.1. Molecular Solvation. Solvation free energies, and
their associated forces, are obtained for the solute from the
3D reference interaction site model (3D-RISM) for molecular
solvation,coupledwiththe3Dversionof theKovalenko-Hirata
(3D-KH) closure.10 3D-RISM provides the solvent structure
in the form of a 3D site distribution function, gγ

UV(r), for
each solvent site, γ. With gγ(r) f 1, the solvent density
distribution Fγ(r) ) Fγgγ(r) approaches the solvent bulk
density Fγ. The 3D-RISM integral equation has the form:

where superscripts “U” and “V” denote the solute and solvent
species, respectively; h(r) ) g(r) - 1 is the site-site total
correlation function; cRUV(r) is the 3D direct correlation
function for solvent site R having asymptotics of the
interaction potential between the solute and solvent site:
cRUV(r) ∝ -uR

UV(r)/(kBT); and �Rγ
VV(r) is the site-site suscep-

tibility of the solvent, given by

Here, ωRγ
VV(r) is the intramolecular correlation function,

representing the internal geometry of the solvent molecules,
while hRγ

VV(r) is the site-site radial total correlation function
of the pure solvent calculated from the dielectrically con-
sistent version of the 1D-RISM theory (DRISM).30,31 Equa-
tion 1 is complemented with the 3D-KH closure:

where

and uγ
UV(r) is the 3D interaction potential of the solute acting

on solvent site γ, given by the sum of the pairwise site-site
potentials from all of the solute interaction sites i located at
frozen positions Ri:

As with the 3D-HNC closure approximation, the 3D-RISM
eq 1 with 3D-KH closure 3 possesses an exact differential
of the free energy and thus has a closed analytical expression
for the excess chemical potential of solvation:10

where Θ(x) is the Heaviside function, which results in
(hR(r))2 being applied only in areas of site density deple-
tion.

2.2. Analytical Solvent Forces for 3D-RISM. The sol-
vation free energy ∆µ is generally determined by the
Kirkwood “charging” formula with thermodynamic integra-
tion over the parameter λ gradually “switching on” the
solute-solvent interaction potential ũ(r; λ) along some path
from no interaction at λ ) 0 to the full interaction potential
u(r) at λ ) 1. In the case of the interaction site model, it has
the form:

The solvation free energy ∆µ({Ri}) dependent on protein
conformation {Ri}, determined by eq 6 and obtained as eq
5, is actually the potential of mean force. The expression
for the mean solvent force acting on each atom i of the solute
is defined as a derivative of the solvation free energy with
respect to the atom coordinates Ri. The mean solvent force
can by obtained in the general form by differentiating the
expression (6) modified in such a way that the thermody-
namic integration is extended over the end point λ ) 1 to
the full interaction potential further changed by duR

UV(r) due
to infinitesimal shift dRi of solute atom i:

For the 3D site interaction potential (4), differentiation of
this expression with respect to Ri immediately gives the mean
solvent force acting on solute site i as

hγ
UV(r) ) ∑

R
∫ dr′ cR

UV(r - r′)�Rγ
VV(r') (1)

�Rγ
VV(r) ) ωRγ

VV(r) + FRhRγ
VV(r) (2)

gγ
UV(r) ) {exp(dγ

UV(r)) for dγ
UV(r) e 0

1 + dγ
UV(r) for dγ

UV(r) > 0
(3)

dγ
UV(r) ) -

uγ
UV(r)

kBT
+ hγ

UV(r) - cγ
UV(r)

uγ
UV(r) ) ∑

i

uiγ
UV(|r - Ri|) (4)

∆µ ) kBT ∑
R
FR∫ dr{1

2
(hR

UV(r))2Θ(-hR
UV(r)) - cR

UV(r) -

1
2

hR
UV(r)cR

UV(r)} (5)

∆µ ) kBT ∑
R
FR∫0

1
dλ∫ dr gR

UV(r;λ)
∂ũR

UV(r;λ)

∂λ
(6)

∆µ(Ri + dRi) )

kBT ∑
R
FR(∫0

1
dλ∫ dr gR

UV(r;λ)
∂ũR

UV(r;λ)

∂λ
+

∫ dr gR
UV(r;λ)

∂uR
UV(r)

∂Ri
dRi)
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where uiR
UV(r - Ri) is the pairwise interaction potential

between solute site i located at Ri and solvent site γ at r. It
is obvious that the form (7) is valid for any closure
approximation that yields the solvation free energy (at a
frozen solute conformation {Ri}) independent of a thermo-
dynamic integration path, that is, that possesses an exact free
energy differential. These are, in particular, the 3D-HNC and
3D-KH closures.10 The expression (7) has also been obtained,
by directly differentiating a closure to the 3D-RISM equation,
for the 3D-KH closure15 and for the 3D-HNC closure.15,25

The mean solvent force in the general form (7) still holds
for any closure, subject to performing the thermodynamic
integration along the path described above.

2.3. Computational Methods for Accelerating
Dynamics. Modifications to the SANDER molecular
dynamics module of Amber were minor. Other than calling
the RISM3D subroutine, the only modifications were to
add in calls for memory allocation and file input/output.
A single 3D-RISM calculation is roughly 3 orders of
magnitude slower than a single time step for a system
solvated with the same solvent model at the same volume
and density. This is not unexpected as 3D-RISM calculates
the complete equilibrium distribution of solvent about the
solute. To obtain meaningful sampling of solute confor-
mations, it is necessary to reduce the computational
expense of 3D-RISM calculations. To achieve this goal,
three different optimization strategies were employed: (1)
high-quality initial guesses to the direct correlation
function were created from multiple previous solutions;
(2) the pre- and postprocessing of the solute-solvent
potentials, long-range asymptotics, and forces was ac-
celerated using a cutoff scheme and minimal solvation
box; and (3) direct calculation of the 3D-RISM solvation
forces was avoided altogether by interpolating current
force based off of atom positions from previous time steps.

2.3.1. Solution Propagation. Rapid convergence of an
individual 3D-RISM calculation is facilitated by a high-
quality initial guess. Given the nature of molecular
dynamics simulations, it is possible to use solutions from
previous time steps as the initial guess for current time
step tk. The simplest case is to use the solution from the
previous time step. It is possible to improve on this by
including numerically calculated derivatives:

Derivatives may be calculated for each point on the grid
using finite difference techniques. In this Article, we have
used up to the fourth-order derivative to calculate an initial
guess:

The order at which the propagation is terminated can be
indicated by the number of previous solutions used, NcUV.

2.3.2. AdaptiVe SolVation Box. The number of floating
point entries that must be stored in memory for a 3D-RISM
calculation is approximately where NFP is the total number

of floating point entries, Nbox ) Nx × Ny × Nz is the total
number of grid points, Nsolv is the number of solvent atom
species, and NMDIIS is the number of MDIIS vectors used to
accelerate convergence. A full grid for g and h is required
for each solvent species, and four grids are required to
compute the long-range asymptotics. Memory, therefore,
scales linearly with Nbox, while computation time scales as
O(Nbox log(Nbox)) due to the requirements of calculating the
3D fast Fourier transform (3D-FFT).

For independent 3D-RISM calculations, solvation box
dimensions can be selected to accommodate the particular
shape of the solute. For MD, however, a solvation box of
fixed size throughout the simulation must be cubic to
accommodate rotations and large enough to handle changes
in size and shape of the solute. Alternatively, the solvation
box may be determined dynamically throughout the simula-
tion. In this case, a linear grid spacing and minimal buffer
distance between any atom of the solute and the edge of the
solvent box is specified. The actual dimensions of the solvent
box must satisfy the constraints of maintaining specified
buffer distance and linear grid spacing. To calculate the
required 3D-FFT and long-range asymptotics, each grid
dimension must also be divisible by 2 and have factors of
only 2, 3, or 5. Previous solutions may still be propagated
by transferring the past solutions to the new grid. Past
solutions are truncated or padded with zeroes as required
by larger or small grid dimension.

2.3.3. Potential and Force Cutoffs. Both solute-solvent
potential interactions and force calculations require interac-
tions of every solute atom with every grid point for each
solvent atom species. These calculations then scale as
O(NboxMUMV), where MU and MV are the number of solute
atoms and solvent species respectively. As each grid point
must still be assigned a value, the use of cutoffs will not
change how these calculations scale. However, computa-
tionally expensive distance-based potential calculations can
be replaced with cheaper calculations outside the cutoff,
reducing the computational cost by a constant factor.

As Lennard-Jones and Coulomb potentials have different
long-range asymptotic behavior, the two potentials are treated

fUV(Ri) ≡ -∂∆µ
∂Ri

) ∑
R
FR∫ dr gR

UV(r)
∂uiR

UV(r - Ri)

∂Ri

(7)

cR
UV(r;tk+1) ) cR

UV(r;tk) + (cR
UV(r;tk))

′ + (cR
UV(r;tk))

′′ + ...
(8)

cR
UV,(k+1) ) cR

UV,(k) (9)

cR
UV,(k+1) ) 2cR

UV,(k) - cR
UV,(k-1) (10)

cR
UV,(k+1) ) 3(cR

UV,(k) - cR
UV,(k-1)) + cR

UV,(k-2) (11)

cR
UV,(k+1) ) 4cR

UV,(k) - 6cR
UV,(k-1) + 4cR

UV,(k-2) - cR
UV,(k-3)

(12)

cR
UV,(k+1) ) 5cR

UV,(k) - 10(cR
UV,(k-1) - cR

UV,(k-2)) -

5cR
UV,(k-3) + cR

UV,(k-4) (13)

610 J. Chem. Theory Comput., Vol. 6, No. 3, 2010 Luchko et al.



differently outside the cutoff radius. Lennard-Jones calcula-
tions use a hard cutoff for each solute atom. For both
potential and force calculations, each solute atom only
interacts with grid points within the cutoff distance, as is
depicted in Figure 1a. In contrast, the long tail of the
Coulomb interaction does not allow hard cutoffs to be used.
Rather, within the union of the entire volume within the
cutoff distance of all atoms, the entire interaction for all
solute atoms is calculated at each grid point (see Figure 1b).
Outside of this volume, where the interaction varies smoothly,
only even grid points have the full potential calculated; that
is, only one-eighth of the grid is visited. Values are then
interpolated for grid points that have not been visited using
a fast interpolation scheme.32

Contributions to atomic forces from grid points outside
the cutoff volume are calculated in an analogous treatment
for both Lennard-Jones and Coulomb interactions. For
Lennard-Jones forces on each solute atom, only the volume
within the cutoff distance from that atom is included in the
integration. Coulomb forces achieve the same low density
sampling used in the potential calculation by doubling the
integration step size outside of the cutoff volume, effectively
visiting only one-eighth of the points in this region. However,
for simplicity, the cutoff volume is taken as a rectangular
prism rather than a sphere for Coulomb forces alone.

An alternate method for the electrostatic potential is Ewald
summation,33 which scales as O(Nbox ln(Nbox)MV). This
scaling is generally better than the cutoff method with
interpolation described as ln(Nbox) < MU for most systems.
However, the scaling coefficients for the two methods are
not equal, and the cutoff method significantly outperformed
Ewald summation for systems in this study. Furthermore,
Ewald summation necessarily provides a periodic potential,
and a correction to this must be computed to maintain the
assumption of infinite dilution,34 adding to the overhead of
the Ewald method. Of course, for a large enough solute, the
Ewald method with periodic correction will be more efficient
than the cutoff method.

2.3.4. Force Extrapolation. A variety of multiple time step
(MTS) methods have been developed to limit the number
of expensive force calculations required for MD. Specifically
for 3D-RISM-HNC calculations, Miyata and Hirata25 used
RESPA MTS26,27 where slowly varying forces are only
applied at an integer multiple of the base time step,
effectively introducing large, periodic impulses to the
dynamics. RESPA MTS has desirable properties, such as
energy conservation; however, it is well-known that reso-
nance artifacts limit the MTS step size to 5 fs for atomistic
biomolecular simulations, after which the method becomes
catastrophically unstable.35-37 An alternate approach, ex-
trapolative MTS, applies a constant force over all intermedi-
ate time steps. There are no impulses in this method to cause
resonance artifacts, but it does not conserve energy as the
forces at intermediate time steps do not correspond to a
conservative potential. LN MTS couples extrapolative MTS
with Langevin dynamics to produce stable trajectories for
MTS time steps up to tens or hundreds of femtoseconds,
provided the forces being extrapolated are slow varying on
these time scales.37-39 Unfortunately, the microscopic detail
present in 3D-RISM calculations gives rise to forces that
vary on too short a time scale to make use of LN MTS.

Inspired by LN MTS, we introduce force-coordinate
extrapolation (FCE) MTS. Rather than applying a constant
force, based on the last force calculations, we use previous
atom configurations and forces to extrapolate what the forces
should be at intermediate time steps. In this method, the
forces on each of the MU solute atoms for a current
intermediate time step tk given by the 3 × MU matrix of
forces {F}(k) are approximated as a linear combination of
forces {F}(l) at N previous time steps obtained in 3D-RISM
calculations:

The weight coefficients akl are obtained as the best repre-
sentation of the arrangement of solute atoms at the current

Figure 1. Cutoff schemes for grid-based (a) Lennard-Jones and (b) Coulomb potential and force calculations. Lennard-Jones
calculations are performed for each solute atom only at grid sites within the cutoff distance of that atom. Grid sites within the
cutoff distance of multiple solute sites take on the sum of these interactions. Coulomb interactions are calculated for every
solute atom at grid sites in the union of all cutoff volumes. Grid sites outside the cutoff use explicit calculations or interpolation
from surrounding values.

{F}(k) ) ∑
l)1

N

akl{F}(l), l ∈ 3D-RISM steps (15)
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time step k in terms of its projections onto the “basis” of N
previous solute arrangements obtained from 3D-RISM, by
minimizing the norm of the difference between the current
3 × MU matrix of coordinates {R}(k) and the corresponding
linear combination of the previous ones {R}(l):

This is achieved by calculating the scalar products of the
current coordinates matrix {R}(k) and each basis coordinates
matrix {R}(l) and between all of the basis matrices:

where i is the solute atom index, and then solving the set of
N linear equations for the weight coefficients akl:

Coefficients akl′ are then used in eq 15 to extrapolate forces
at the current intermediate time step. Similarly, the known
coordinates for the current time step can be approximated
from previous time steps as

These forces are approximate and do not correspond to a
conservative potential; thus, MD simulations using these
forces will not conserve energy. However, they provide a
“smooth” transition between explicitly calculated forces. As
in the LN MTS method, the resulting energy gains can be
damped out with the use of Langevin dynamics to provide
stable, constant temperature trajectories and enhance con-
formational sampling through increased efficiency.38,39

With this method, one chooses a base time step, δt, and
then calculates 3D-RISM at an integer number of base time
steps, giving ∆t between 3D-RISM calculations. Further-
more, RESPA MTS can also be applied to the intermediate,
extrapolated forces, reducing the number of extrapolations
required. As a concrete example, one can choose δt ) 2 fs;
after the specified number of previous coordinate sets with
3D-RISM forces has been calculated, extrapolated forces can
be applied every 5 fs with new 3D-RISM solutions calculated
every ∆t ) 20 fs.

Because the solvation forces on any particular solute atom
typically correlate only with nearest neighbors, it is possible
to use a cutoff for {R} and {F}. Given the size of the systems
in this Article, this was not used, although this capability is
in our implementation.

2.3.5. Distributed Memory Parallelization. 3D-RISM cal-
culations typically require large amounts of both computer
time and memory. A distributed memory parallel implemen-
tation allows computation time to be decreased but also
allows the aggregate memory of a distributed cluster to be
utilized. The use of 3D-FFTs in calculating 3D-RISM
solutions dictates that the memory model of the 3D-FFT

library must be adopted by 3D-RISM. As we use the FFTW
2.1.5 library,40 memory decomposition is performed along
the Z-axis for all 3D arrays (uUV, gUV, hUV, cUV, etc.).
Communication between processes only occurs in the
MDIIS, 3D-FFT routines and for the final summation of
forces.

The force extrapolation method may also be parallelized.
In anticipation of the use of cutoffs, coefficients for each
solute atom in eq 19 are found independently. This is trivially
distributed between processes.

2.4. Solvent Model. 1D- and 3D-RISM calculate the
equilibrium distribution of an explicit solvent model. Two
of the most popular models for water, SPC/E41 and TIP3P,42

do not include van der Waals terms for the hydrogens. The
incomplete intramolecular correlation in RISM theory allows
a catastrophic overlap between oxygen and hydrogen sties,
preventing 1D-RISM from converging on a solution. The
standard approach to this problem has been to apply a small
Lennard-Jones potential to the hydrogen atoms:

Common parameters used in the literature include those of
Pettitt and Rossky, σ ) 0.4 Å and ε ) 0.046 kcal/mol,43

which we will refer to as PR-SPC/E and PR-TIP3P, and those
often used by Hirata and co-workers, σ ) 1.0 Å and ε )
0.05455 kcal/mol.44 As noted by Sato and Hirata,45 van der
Waals parameters are required to solve the RISM equations
but also perturb the thermodynamics of the solution.

Alternative approaches to this problem do exist and involve
corrective bridge functions46-48 or new formalisms that go
beyond RISM theory to include orientational correlations and
use proper diagrams.49-52 The major drawback of the
corrective bridge function approach is that a new expression
for the excess chemical potential must be derived, a nontrivial
task. By including our correction in the potential, the standard
closures and related thermodynamic expressions still hold.
Including orientational correlations obviates the need for any
“protective” Lennard-Jones potential and holds considerable
promise. However, the computational complexity of these
methods is even greater than that of RISM. Applying them
to relatively simple systems presented here will require
considerable further development of these methods.

To overcome shortcomings in previous Lennard-Jones
parameters while maintaining an analytic expression for the
excess chemical potential and mean solvation force, we
introduce a general and transferable rule that can be applied
to any model with embedded sites. Specifically, we choose

where σe is the radius of the embedded site, σh is the radius of
the host site, and bhe is the bond length between the two. As
the embedded radius is now coincident with the host radius
along the bond vector, unphysical overlap between sites is
prevented. The size of εe relative to εh balances deforming the

minimize|{R}(k) - ∑
l)1

N

al{R}(l)|2 (16)
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(Ri
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∑
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potential of the host while proving a “stiff” enough potential
to the embedded site to prevent overlaps. When applied to
SPC/E and TIP3P, we refer to these models as coincident SPC/E
(cSPC/E) and coincident TIP3P (cTIP3P). This is illustrated
for SPC/E water in Figure 2a, and parameters for SPC/E and
TIP3P water are given in Table 1.

Unlike the Pettitt and Rossky parameters, the large
hydrogen site suggested here does slightly perturb the
Lennard-Jones potential of the explicit model (Figure 2b and
c). In particular, the well depth is increased in an orienta-
tionally dependent manner with hydrogen-hydrogen (solid
line, Figure 2b) and hydrogen-bond (long dashed line)
orientations becoming more favorable by 0.1 and 0.05 kcal/
mol, respectively. Given the improvement in thermodynam-
ics, this small perturbation is justified.

3. Computational Details

All simulations were carried out in a modified version of
Amber 101 with the Langevin integrator53 and SHAKE54

on all bonds involving hydrogen. All 3D-RISM-KH, GB,
and GBSA (GBNeck,55 igb ) 7, parameters in Amber 10)
simulations for alanine-dipeptide and protein-G used free
boundary conditions, no cutoff for long-range interactions,
and a δt ) 2 fs base time step. Explicit solvent calculations
used periodic boundary conditions (PBC) with particle-mesh
Ewald (PME) summation.56

For all alanine-dipeptide simulations, the Amber03 force
field57 was used with neutral acetyl and N-methal caps.
Protein-G simulations used the Amber99SB force field58 with
an initial conformation from PDB ID: 1P7E.59

3.1. Alanine-Dipeptide - Single Point. Grid resolution
and residual tolerance effects on numerical artifacts and
integration of forces, including net force, were characterized
with single point SPC/E 3D-RISM-KH calculations on
alanine-dipeptide. A fixed solvation box of 32 Å × 32 Å ×
32 Å with grid spacings of 0.5, 0.25, 0.125, and 0.0625 Å
was used to perform calculations with residual error toler-
ances of 10-2, 10-3, 10-4, 10-5, and 10-6. Because equilibra-
tion does not have an impact on these calculations, the default
structure for alanine-dipeptide from TLEAP was used. For
technical reasons, we used the Numerical Recipes FFT60

rather than FFTW for these calculations only.
3.2. Alanine-Dipeptide - Constant Energy. Constant

energy simulations were performed on alanine-dipeptide
using 3D-RISM-KH and GB solvation models with the
standard leapfrog-Verlet integrator. Four 3D-RISM parameter
spaces were explored with 8 ns MD simulations: (1) impulse
MTS 3D-RISM for a fixed box size (32 Å × 32 Å × 32 Å),
using three previous solutions, with variable grid spacing
(0.5 Å, 0.25 Å) and residual tolerance (10-3, 10-4, 10-5);
(2) impulse MTS 3D-RISM for a fixed box size (32 Å × 32
Å × 32 Å), 0.5 Å grid spacing and variable tolerance (10-3,

Figure 2. Modified water potential. (a) Schematic illustration of Lennard-Jones parameters for SPC/E water. Lennard-Jones
radii, σ/2, are illustrated by white circles. The radius on the right-hand hydrogen corresponds to that of Pettitt and Rossky,42

while the left-hand hydrogen radius is from eqs 21 and 22. (b) Perturbation of water-water Lennard-Jones potential due to the
hydrogen potential. The maximum perturbation (solid line) is for two waters with hydrogens aligned. The case of hydrogen
bonding is given by the long-dashed line, while the original potential is given by the short dashed line. HH (dot-dashed line) and
OH (dotted line) interactions are a result of the new parameters. (c) Angle-dependent water-water interaction. The second
water is oriented such that a hydrogen is always pointing toward the central water. The solid and long dashed arrows correspond
to the solid and long-dashed lines in (b). Contour lines are spaced 0.02 kcal/mol apart.

Table 1. Parameters for Standard and Modified SPC/E and TIP3P Water Models

model name σO, Å εO, kcal/mol σH, Å εH, kcal/mol qO, e qH, e r(OH), Å

SPC/E 3.1658 0.15530 -0.8476 0.4238 1.0000
cSPC/E 3.1658 0.15530 1.1658 0.01553 -0.8476 0.4238 1.0000
PR-SPC/E 3.1658 0.15530 0.4000 0.04600 -0.8476 0.4238 1.0000
TIP3P 3.1507 0.15200 -0.8340 0.4170 0.9572
cTIP3P 3.1507 0.15200 1.2363 0.01520 -0.8340 0.4170 0.9572
PR-TIP3P 3.1507 0.15200 0.4000 0.04600 -0.8340 0.4170 0.9572
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10-4, 10-5), and zero to five previous solutions (NcUV ) 0...5);
(3) dynamic solvation box impulse MTS 3D-RISM calcula-
tions with buffers and cutoffs of 4, 6, 8, 10, 12, 14, 16, and
18 Å, NcUV ) 5; and (4) force extrapolation impulse MTS
3D-RISM for a fixed box size (32 Å × 32 Å × 32 Å), 0.5
Å grid spacing, 10-5 tolerance, and full 3D-RISM solutions
every ∆t ) 2, 4, 6, 10, and 20 fs.

3.3. Alanine-Dipeptide - Constant Temperature. Long
sampling runs were carried out on alanine-dipeptide at
constant temperature (300 K) with explicit (SPC/E and
TIP3P), implicit (GBNeck), and cSPC/E 3D-RISM-KH
solvents. The Langevin integrator53 was used in all cases
with γ ) 1 ps-1 for explicit solvents, γ ) 5 ps-1 for implicit
solvents, and γ ) 5, 10, and 20 ps-1 for 3D-RISM-KH.
3D-RISM-KH simulations were performed with and without
extrapolated forces. Simulations without extrapolated forces
had tolerances of 10-5 and 10-3 with NcUV ) 3, and one run
with a tolerance of 10-3 and NcUV ) 5. Simulations with
force extrapolation were performed with 1 and 2 fs time
steps. δt ) 1 fs time step runs were performed at γ ) 5,
10, and 20 ps-1, used 10 previous force/coordinate pairs,
and ∆t ) 10 or 20 fs. δt ) 2 fs time step runs were
performed at γ ) 5, 10, and 20 ps-1, used 10 previous force/
coordinate pairs, and performed full 3D-RISM calculations
every ∆t ) 4, 6, 8, or 10 fs.

For all 3D-RISM simulations, a 14 Å cutoff was used for
solvent-solute potential and force calculations. Explicit
solvent simulations were carried out with both 8 and 14 Å
cutoffs for direct nonbond calculations. There was a negli-
gible difference in the results, and only the 14 Å results are
presented here.

All simulations were at least 3 ns. Explicit solvent
simulations were extended to 21 ns to obtain better sampling.
Several other simulations were extended to test convergence
of sampling quality. This included GBNeck, 3D-RISM-KH
with a tolerance of 10-3, NcUV ) 5, and ∆t ) 0, and 3D-
RISM-KH with δt ) 1 fs, ∆t ) 20 fs, and γ ) 20 ps-1.

3.4. Sodium-Chloride. A Na+Cl- pair in an SPC/E
solvent was simulated with 3D-RISM-KH-MD, and the
distribution was compared to that expected from the potential
of mean force (PMF). To prevent complete dissociation of
the ion pair, a distance-based restraint was used:

where k ) 1 kcal/mol and r0 ) 4 Å. Simulations were carried
out with both RESPA and FCE MTS. RESPA MTS
simulations used ∆t ) 5 ps and γ ) 5 ps-1. FCE MTS
simulations used ∆t ) 10 ps and γ ) 5, 10, or 20 ps-1. An
integration time step of δt ) 1 fs was used in all cases for
a total of 500 ps simulation time.

The PMF was calculated using single point calculations
of a Na+Cl- pair with radial separations from 2 to 8 Å in
0.02 Å steps. The expected Boltzmann probability distribu-
tion is calculated as

where ω(r) is the PMF as a function of r.

3.5. Protein-G. Explicit solvent (SPC/E and TIP3P),
GBSA, and cSPC/E 3D-RISM-KH simulations were carried
out on protein-G (PDB ID: 1P7E).59 SPC/E and TIP3P
simulations were both solvated with 16 895 water molecules
and used a 8 Å cutoff for direct, nonbonded interactions.
MBondi radii were applied for the GBSA (GBNeck) system.
All systems were minimized for 1000 steps. Explicit solvent
systems were heated to 300 K over 10 ps before production
runs. Equilibrium NPT dynamics for the explicit solvent
systems was run for 3 ns. GBSA and 3D-RISM-KH were
each run for 600 ps. γ ) 1 ps-1 was used for the explicit
simulations, while γ ) 5 ps-1 was used for GBSA.
3D-RISM-KH simulations used time steps of δt ) 1 fs and
∆t ) 10 fs. A 10 Å cutoff was used for solute-solvent
calculations.

3.6. Deca-Alanine. MD, thermodynamic integration (TI),
and implicit solvent free energy calculations for deca-alanine
are described by Roe et al.61 As with the implicit solvent
calculations, cTIP3P 3D-RISM-KH calculations were per-
formed on each of 1000 frames for each conformation of
the 5 ns TI calculation. To accelerate the convergence of
3D-RISM solutions for each frame, the structures in each
individual frame were rotated such that the first principal
axis was on the z-axis using PTRAJ. A 36 Å × 36 Å × 60
Å solvation box with a 0.5 Å grid spacing was used for all
calculations.

4. Results and Discussion

4.1. Decoy Analysis. Comparison of 3D-RISM-KH MD
simulations to explicit and implicit solvent calculations
necessarily includes the quality of the pair potential used in
the 3D-RISM-KH calculation. Thus, we begin by determin-
ing our ability to reproduce the SPC/E and TIP3P model
with 1D- and 3D-RISM-KH.

As all thermodynamic properties of the solvent are
ultimately calculated from the 1D radial distribution function
(RDF), the RDFs of our cTIP3P model with PR-TIP3P,
TIP3P MD, and experimental values62 are compared in
Figure 3 (analogous SPC/E calculations show similar results).
The cTIP3P parameters do not improve gOO(r) relative to
PR-TIP3P (Figure 3a). Rather, we see that first peak has
moved to a slightly larger radius, while the second peak,
the so-called fingerprint of the tetrahedral hydrogen bonding
of water,43,45 is qualitatively present in PR-TIP3P but
completely lost for cTIP3P. gOH(r) and gHH(r), on the other
hand, are noticeably improved. The first peak of gOH(r)
(Figure 3b) is now at the correct separation (although the
magnitude is slightly too low), while the second peak is
relatively unchanged. For gHH(r) (Figure 3c), the first peak
has moved to a slightly larger separation, but the magnitude,
both absolute and relative to the second peak, is much
improved.

The improved structure of liquid water seen in Figure 3
should also provide improved thermodynamics, as the
ultimate goal of 3D-RISM (the accurate prediction of
experimental solvation free energies) is achieved through
accurately reproducing the results of the explicit pair potential
used as input. For the purposes of such a comparison, it is

Urest ) k(r - r0)
2 (23)

P(r) dr ) 4πr2 exp(-	ω(r)) dr

∫0

∞
4π exp(-	ω(r))r2 dr

(24)
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useful to decompose the total solvation free energy into polar
and nonpolar parts, following the standard definitions of the
corresponding components in the literature:63-65

where Gcav, GvdW, and Gpol are the free energies of cavity
formation, van der Waals dispersion, and solvent polarization,
respectively, and are all path-dependent quantities. 3D-RISM
calculates Gsol directly, so to obtain each component for
comparison with TI of explicit solvent it is necessary to
follow the same path as used in the benchmark calculation.
The free energy of solvent polarization with 3D-RISM-KH
is then

where Gsol
uncharged is the solvation free energy of the solute with

all partial charges removed. Using this method, we can
compare values for deca-alanine calculated by Roe et al.61

(Table 2). Absolute values of solvent polarization free energy
are qualitatively correct for PR-TIP3P, with alpha > left >
hairpin > PP2. Both absolute values for and relative
difference between the different conformations are quanti-
tatively poor. cTIP3P greatly improves on this with relative
errors of 3% or less for each conformation and less than 1
kcal/mol rmsd in relative difference between conformations.
Although this does not include nonpolar contributions, it does
show a good agreement with the input model.

4.2. Net Force Drift Error. A necessary property of mean
solvation forces, such as those calculated by 3D-RISM, is

the lack of a net force on the solute. As 3D-RISM is a grid-
based method with an iterative solution, a zero net force is
not guaranteed and is a function of the quality of the solution,
in particular, the density of the grid and the residual tolerance
of the solution. To quantify the net force error, we calculate
the absolute force and root-mean-squared error (RMSE) in
the force for a single point alanine-dipeptide 3D-RISM-KH
solution (see Table 3).

The absolute force drift is the total force in each direction
applied to the solute and should be zero for the mean
solvation force. For convenience, we report the magnitude
of this vector:

Ideally, all components should be zero, although in numerical
force calculations this is often not the case (for example,
particle-mesh Ewald summation56). In practice, artifacts
associated with a nonzero net force can be minimized by
subtracting the mass weighted average force from each atom:

where mi is the mass of the ith solute particle and M is the
total mass of the solute. However, the error in the net force
is also an indicator of inaccuracies in other components not
as easily corrected, such as the net torque. Table 3a suggests
that the residual tolerance used for the calculation should
be no higher than 10-3. Values lower than this have little
impact unless the grid spacing is sufficiently small.

Figure 3. Water radial distribution functions from experiment, MD simulation, and 1D-RISM for (a) oxygen-oxygen,(b)
oxygen-hydrogen, and (c) hydrogen-hydrogen.

∆Gsol ) ∆Gcav + ∆GvdW + ∆Gpol (25)

∆Gpol ) ∆Gsol - ∆Gsol
uncharged (26)

|Eabs(f)| ) |( ∑ fx, ∑ fy, ∑ fz)| (27)

f i′ ) fi -
mi

M
fnet (28)
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Another method to quantify the numerical error in the
forces is the RMSE.56 For a set of “correct” forces, f̃, we
have

Because there is no analytic calculation of the forces available
for comparison, we use the solution with the smallest grid
spacing (0.0625 Å) and lowest tolerance (10-6) as our
benchmark. As with the net force calculations, the maximum
tolerance permissible is dependent on the grid spacing used.
While results do improve as finer grid spacings and smaller
tolerances are used, results similar to other methods, for
example, particle mesh Ewald,56 are obtained for a residual
tolerance of 10-4 and grid spacings of 0.5 or 0.25 Å.

This observation is also evident in the solvation free
energies calculated. A minimum resolution of 0.5 Å provides
agreement with high grid densities within 1%. Decreasing

the spacing to 0.25 Å improves this to four significant digits,
but little is gained beyond this. In particular, a residual
tolerance of 10-4 appears to be sufficient, although 10-3 can
also be considered acceptable.

4.3. Energy Conservation. Numerical artifacts, such as
those seen in the net force, typically have a large impact on
energy conservation during simulation. Even after removal
of the net force, all NVE simulations displayed small
amplitude oscillations in the total energy about a linear decay.
To quantify the linear decay, the equation

was fit to each data set with t representing the time in
picoseconds and a corresponding to the rate of decay in kcal/
mol/ps (Table 4). All calculations employed RESPA MTS,
as the method is known to conserve energy for 3D-RISM
time steps < ) 5 fs. A comparable calculation using GBNeck
yields a decay rate of -6.37 ( 6 × 10-3 kcal/mol/ps.

Table 2. Comparison of Explicit TIP3P ∆Gpol for Deca-Alanine with 3D-RISM-KH, Poisson Equation (PE), and Generalized
Born (GB)a

3D-RISMc

TIP3Pb cTIP3P PR-TIP3P PEb GBHCTb GBOBCb GBNeckb

(a) ∆Gpol
alpha -44.08 ( 0.04 -44.91 ( 1.27 -55.79 ( 0.93 -47.97 ( 0.77 -51.69 ( 1.21 -49.38 ( 1.21 -43.26 ( 0.90
PP2 -76.39 ( 0.15 -76.82 ( 1.31 -93.60 ( 1.07 -78.05 ( 0.91 -77.35 ( 1.05 -78.07 ( 1.09 -77.59 ( 1.02
left -51.30 ( 0.12 -51.60 ( 1.22 -61.81 ( 1.03 -54.85 ( 0.90 -55.05 ( 1.08 -52.67 ( 1.10 -48.19 ( 0.91
hairpin -54.16 ( 0.25 -56.00 ( 1.17 -69.36 ( 1.31 -57.28 ( 1.13 -57.48 ( 1.45 -56.03 ( 1.47 -52.85 ( 1.29

(b) ∆∆Gpol
PP2-alpha -32.31 -31.91 -37.81 -30.07 -25.67 -28.69 -34.33
PP2-left -25.09 -25.22 -31.79 -23.19 -22.31 -25.40 -29.40
PP2-hairpin -22.23 -20.82 -24.24 -20.77 -19.87 -22.03 -24.73
alpha-left 7.22 6.69 6.02 6.88 3.36 3.29 4.93
alpha-hairpin 10.08 11.09 13.57 9.31 5.80 6.66 9.60
left-hairpin 2.86 4.40 7.55 2.43 2.43 3.37 4.67

(c) ∆∆Gpol Root-Mean-Square Deviations
overall 0.99 4.37 1.39 3.89 2.60 2.51
PP2 0.85 5.14 1.89 4.37 2.10 3.11
non-PP2 1.11 3.45 0.55 3.34 3.02 1.71
hairpin 1.34 3.57 1.53 2.83 2.00 1.80
nonhairpin 0.39 5.05 1.58 4.72 3.09 3.05

a Conformations are as in Roe et al.60 (alpha, R-helix; PP2, polyproline II; left, left-hand helix; and hairpin, 	-hairpin). Units are in kcal/
mol, and errors are one standard deviation from the mean. b From Roe et al.61 c This work.

Table 3. (a) Net Force (kcal/mol/Å), (b) Root-Mean-Squared Error in the Force, and (c) Solvation Free Energy (kcal/mol) for
Single Point 3D-RISM-KH Calculations of Alanine-Dipeptide

grid spacing

tolerance 0.5 Å 0.25 Å 0.125 Å 0.0625 Å

(a) Net Force
10-2 3.2 2.4 2.7 3.3
10-3 1.6 0.35 0.093 0.30
10-4 1.5 0.36 0.061 0.044
10-5 1.5 0.37 0.041 0.0047
10-6 1.5 0.37 0.042 0.0016

(b) Force rms Error
10-2 7.1 × 10+0 6.3 × 10+0 6.3 × 10+0 8.3 × 10+0

10-3 3.4 × 10-1 1.0 × 10-1 1.2 × 10-1 6.2 × 10-2

10-4 1.8 × 10-1 7.5 × 10-3 7.6 × 10-4 8.7 × 10-4

10-5 1.8 × 10-1 7.4 × 10-3 5.1 × 10-5 9.2 × 10-6

10-6 1.8 × 10-1 7.6 × 10-3 5.0 × 10-5

(c) Solvation Free Energy
10-2 7.5794 7.3873 7.4024 8.4253
10-3 14.5614 14.4441 14.4574 14.3924
10-4 14.6366 14.5097 14.5090 14.5092
10-5 14.6382 14.5123 14.5121 14.5117
10-6 14.6382 14.5125 14.5120 14.5116

rmsef ) �∑(f - f̃)2

Nsol
(29)

Etot ) a · t + b (30)
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The impact of grid density and residual tolerance on energy
conservation is shown in Table 4a for practical grid densities.
Despite differences in the net force and force RMSE
produced by these two different spacings, there is negligible
difference in the conservation of energy for the same residual
tolerance. Considering Tables 3 and 4a suggests that the net
force on the solute is primarily an artifact of the grid. The
grid is part of the potential, and the tolerance determines
the accuracy of the solution for this potential.

The issue is complicated by the fact that the 3D-RISM
solution at each time step is not independent but is influenced
by the previous solution(s) calculated and retained to seed
the initial guess. Table 4b shows the effect on both energy
conservation and the number of iterations required to
converge on a solution for various truncations of eq 8 and
residual tolerances of the 3D-RISM solution. Using zero
previous solutions means that the solution at each time step
is independent, cUV ) 0. A strong memory effect is observed
when only one or two previous solutions are used. Increasing
the number of solutions or decreasing the tolerance ef-
fectively erases this effect. Increasing the number of terms
used from eq 8 increases the memory required and the
number of iterations required to converge.

Two other time-saving methods introduced were cutoffs
and a dynamic solvation box. In testing these methods, the
cutoff was set equal to the buffer distance, effectively cutting

off the corners of the solvation box. Table 4c shows that
once a minimal distance of 8 Å is used, energy conservation
is not affected by these methods. It should be noted that the
solvation free energy calculated will vary with buffer size.

In contrast to the methods already discussed, FCE RESPA
MTS (Table 4d) is not expected to conserve energy. The
ability of Langevin dynamics to compensate for this depends
on the rate of energy gain. For example, if the time step
between 3D-RISM solutions is limited to 20 fs, energy drifts
comparable to 10-3 tolerance are obtained. Given that
dynamics are necessarily perturbed by mean-field methods
like 3D-RISM and by Langevin dynamics, some energy drift
may be permissible as long as the temperature and sampling
are not adversely effected. Figure 4 shows the average
temperature for several solvent models and parameters. Note
that the values for SCP/E and TIP3P include the solute and
solvent. The combination of averaging over a larger system
and longer simulation time results in smaller standard errors
in the mean. Combined with a sufficiently large friction
coefficient, γ, a number of different parameters for FCE
RESPA MTS provide stable simulations at the target
temperature.

The numerical quality of the 3D-RISM solution is
controlled by two parameters: (a) the residual error tolerance
in the 3D-RISM calculation and (b) the linear grid spacing
of the grid that the solution is found on. To a large extent,

Table 4. Rate of Decay (kcal/mol/ps) of Constant Energy Simulations of Alanine-Dipeptide for (a) Variable Grid Spacing and
Solution Tolerance, (b) Variable Solution Propagation and Solution Tolerance, (c) Variable Cutoff and Solvent Box Buffer,
and (d) Variable Time Step for FCE RESPA MTSa

(a)

grid spacing

tolerance 0.5 Å 0.25 Å

10-4 -0.4372(9) -0.2207(6)
10-5 -0.0828(6) -0.0824(6)
10-6 -0.0234(6) -0.0122(5)

(b)

NcUV

tolerance 0 1 2 3 4 5

Energy Conservation
1 × 10-3 0.292(3) 22.62(6) 38.6(1) 9.89(1) 0.0686(4) 0.1127(9)
1 × 10-4 0.0063(1) 0.651(1) 0.992(4) 0.0684(2) -0.00321(6) 0.00282(9)
1 × 10-5 -0.00196(7) 0.01918(6) 0.01526(7) 0.00306(7) -0.00590(6) -0.00089(6)

Average Number of 3D-RISM Iterations per Solution
1 × 10-3 47.5 18.3 21.4 28.9 29.4 35.3
1 × 10-4 73.2 27.5 30.5 28.0 32.6 35.8
1 × 10-5 95.7 47.1 42.8 40.4 40.1 44.1

(c) (d)

δt

cutoff and buffer energy conservation ∆t 1 fs 2 fs

4 Å 0.623(4) 4 fs -0.048(2)
6 Å 0.0706(4) 8 fs 0.132(1)
8 Å -0.00218(9) 10 fs 0.139(4)
10 Å -0.00188(6) 12 fs 1.15(1)
12 Å -0.00033(5) 15 fs 1.50(1)
14 Å -0.00198(6) 20 fs 2.26(4) 2.37(3)
16 Å -0.00112(6) 40 fs 75(3)
18 Å -0.00139(7)

a Error in the least-squares fit for the last significant digit is given in parentheses.
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these two parameters independently control the conservation
of energy and the net force error, respectively.

The 3D-RISM parameters used for MD/3D-RISM-KH
depend on the objective of the simulation. If rigorous,
constant energy simulations are desired, a residual tolerance
of 10-5 or lower should be used with NcUV ) 5 and a buffer
and cutoff of 8 Å or more. A larger buffer and cutoff,
together with a finer grid spacing, provide better solvation
accuracy. However, if the objective is efficient conforma-
tional sampling with solvation effects, FCE RESPA MTS
can be introduced with ∆t ) 20 fs and a Langevin friction
coefficient of γ ) 20 ps-1.

4.4. Sodium-Chloride. MD sampling of a Na+Cl- pair
in solution with a weak restraint provides a simple test of
the ability of FCE MTS to correctly sample a known
distribution. The small size of the system (the smallest for
which solvation effects will perturb the distribution) and the
distance restraint near the largest potential barrier in the PMF
(Figure 5a) ensure that the solvation forces play the largest
possible role in the dynamics.

As expected for such a system, the FCE MTS method does
cause heating that is effectively controlled by the Langevin
damping coefficient. In particular, the distribution for γ )
20 ps-1 ((Figure 5b) is only slightly skewed from the
expected distribution. Here, the distribution is shifted toward
larger separations, although this is only clear by the small
under sampling around global minimum.

4.5. Conformational Sampling. As 3D-RISM-KH uses
an explicit solvent model as input, the conformational
sampling should, ideally, be comparable to the underlying
explicit solvent model used, in this case, SPC/E. Figure 6
shows free energy differences calculated from sampling
distribution between SPC/E and TIP3P, GB, 3D-RISM-KH,
and no model (vacuo). Figure 6a-c shows differences
between other solvent models and SPC/E, providing context
for comparisons with 3D-RISM-KH. Clearly, solvation
effects are important, as demonstrated by Figure 6c. Even
between very similar explicit models (Figure 6a), the impact
can be observed with the TIP3P simulation sampling
relatively more in regions of extended (-150°, 155°) and
polyproline II conformations (-70°, 150°) than SPC/E. 3D-
RISM-KH does see some minor deviations from the SPC/E
model, with slightly more sampling of extended regions and
slightly less R-helical (-58°,-47°) (Figure 6d-f). Overall,
differences between 3D-RISM-KH with the cSPC/E water

model and SPC/E are similar to, if slightly less than,
differences between TIP3P and SPC/E. Using FCE RESPA
MTS with 3D-RISM-KH also provides good results, although
some softening of the potential barriers appears to occur
(Figure 6f and g). This is evidenced by slightly increased
sampling particularly between R-helical and polyproline II
regions.

Both the quality of the sampling used for Figure 6 and
the rate of convergence are shown in Figure 7. Following
Lui et al.,66 convergence of the Ramachandran sampling was
calculated by dividing each trajectory into thirds and
computing for each pair of trajectories, A and B:

where the Ramachandran plot at time t is discretized into an
m × n grid. The average �2(t) of the three trajectory
combinations for each solvent model is then shown in Figure
7. As mentioned in the methods section, some trajectories
were extended to obtain better sampling (explicit SPC/E and
TIP3P) or to confirm that convergence was not artificial or
coincidental (3D-RISM-KH with 10-3 tolerance and ∆t )
20 fs). As expected, the convergence rate of GBSA and 3D-
RISM-KH calculations was faster than explicit solvent as
friction from the solvent is removed. By this measure, 3D-
RISM and GBSA sample 3-4 times more efficiently per
simulation time than explicit solvent.

Electrostatic properties of the solute are strongly coupled
to conformational sampling and influenced by the solvent.
In particular, dielectric properties of the solvent can modify
the dipole moment distribution of the solvent. The dipole
moment distribution of various solvent models is shown in
Figure 8 and tends to echo the results of the Ramachandran
distributions. As Kwac et al.67 have noted, peaks at 2.5, 4.5,
and 7 D for alanine-dipeptide tend to correspond to extended,
polyproline II, and R-helical conformations. As compared
to SPC/E, all other solvent models show enhancement in
extended regions and reductions in R-helical regions. Only
TIP3P shows enhancement in polyproline II.

4.6. Speedup. As 3D-RISM computes the complete
equilibrium solvent distribution for each solute structure it
is applied to, its cost is relatively high per time step as
compared to explicit solvent. To offset this, we have
introduced a number of methods to reduce the number of
computations required and distribute the work over multiple
processors.

Serial optimizations for MD/3D-RISM-KH consist of
multiple time step methods, solution propagation, cutoffs,
and a dynamic solvation box. Two of these methods, MTS
and solution propagation, have been previously introduced
by Miyata and Hirata25 but have been further extended here.
By extending our solution propagation (eq 8) to higher
derivatives, using additional previous time steps, computa-
tional efficiency has actually been slightly reduced from using
only a single previous solution (Figure 9a: RESPA NcUV )
1 and RESPA NcUV ) 5). However, as shown in Table 4b,
this additional work greatly enhances energy conservation
by eliminating memory effects. A moderate speedup is still

Figure 4. Average temperature for Langevin dynamics
simulations of alanine-dipeptide. Error bars represent the
standard error in the mean.

(�AB)2(t) ) 1
mn ∑

i)1,j)1

m,n

(Ri,j
A(t) - Ri,j

B(t))2 (31)
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achieved over no solution propagation (Figure 9a: SHAKE
and SHAKE NcUV ) 5).

Additional computational savings can be achieved for grid-
based solute-solvent potential and force calculations. While
similar to the use of cutoffs for explicit simulations, cutoffs
here can take advantage of the fixed grid spacing (no need
for cutoff lists), and points outside of the cutoff can still be
accounted for through simple interpolation. However, cutoff

methods only offer computational reductions by a constant
factor as all grid points must still be visited. The computa-
tional savings are due to the number of grid points requiring
expensive calculations, involving all of the solute atoms,
being considerably reduced. As the grid density and number
of solute atoms increase, the cutoff optimizations become
more valuable.

Figure 5. Na+Cl- pair in cSPC/E with a weak distance restraint. (a) PMF for the unrestrained pair (dash line) and restrained
pair (solid line). (b) Site-site distance distribution for Na+Cl- with a weak harmonic restraint. The expected distribution from the
potential of mean force is the thick black line; RESPA MTS is the thin black line; FCE MTS with Langevin damping coefficients
of γ ) 5, 10, and 20 ps-1 are colored gray, blue, and red, respectively.

Figure 6. Ramachandran free energy differences of (a)-(f) of select solvation methods from explicit SPC/E water for alanine-
dipeptide. (g) Difference of 3D-RISM-KH with a residual tolerance of 10-5 and 3D-RISM-KH with a FCE RESPA MTS time step
of ∆t ) 20 fs. Energy units are in kcal/mol.

Figure 7. Convergence (�2) of Ramachandran plots over
simulation time for select solvation methods.

Figure 8. Dipole moment magnitude distributions of alanine-
dipeptide for select solvation methods.
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A natural extension to cutoffs is the dynamic resizing of
the solvation box. For globular solutes, this has little cost-
saving effect and is mostly useful as a convenience; the user
only needs to input the buffer distance from the solute and
the grid spacing. As solutes become less spherical or undergo
large conformational changes, the benefits of the adaptive
box size grow by ensuring only the minimum number of
grids points is used. Together, adaptive box sizes and cutoffs
offer a small overall improvement for alanine-dipeptide
(Figure 9a, RESPA NcUV ) 5 and cutoff ) 12 Å).

The greatest computational savings can be achieved by
avoiding 3D-RISM calculations altogether by using MTS
methods. The nature of biomolecular systems does not allow
RESPA MTS time steps to be larger than 5 fs as resonance
artifacts are introduced.37 It is possible to overcome this
resonance barrier, however, by introducing a nonconservative
force approximation at intermediate time steps and using
Langevin dynamics to compensate. In the case of FCE
RESPA MTS, 3D-RISM-KH solutions can be calculated
once every 20 fs (Figure 4). Combined with the other cost-
saving measures, a speedup over a basic implementation of
3D-RISM-KH of approximately 10 times is achieved (Figure
9a, SHAKE and ∆t ) 10, 20 fs). While it is true that
increasing the friction coefficient has a negative impact on
the accuracy of dynamics, the use of a mean-field method,
3D-RISM, means that the observed dynamics are not true
dynamics in any case. Our goal is to increase sampling
efficiency, and using a large friction coefficient is justified
in this context.

While parallelization does not decrease the computational
workload, it does decrease the wall time for calculations.
Furthermore, the spatial decomposition, distributed memory
model used here allows the calculation to be run on a network
of computers and make use of the total aggregate memory
available. Relative speedups as compared to single CPU are
shown in Figure 9b. Parallel speedups used protein-G
simulations with a total of 50 time steps. Of these, there were
eight full 3D-RISM-KH calculations, and three were inter-
polated 3D-RISM-KH forces. Calculations were performed
on a four CPU AMD Opteron machine with four cores per
CPU. Grid-based potential and force calculations that were
already accelerated with cutoffs and a dynamic solvation box
show linear speedups with the number of cores. The force
extrapolation method has increasing efficiencies comparable

to the overall speedup of 3D-RISM. Overall parallel perfor-
mance is heavily influenced by the scaling of the 3D-FFT
and MDIIS routines, which also dominate the overall
computation time. As we use FFTW 2.1.5 library for our
3D-FFT calculations, our speedup for the 3D-FFT part of
the calculation is limited to scaling of the library.

4.7. Protein-G. Even with our decreased calculation costs,
exhaustive conformational sampling of small proteins is still
not accessible with 3D-RISM-KH-MD at this time. It is
possible to compare different solvation models on the
subnanosecond time scale for errors that may be introduced.
In particular, differences in secondary and tertiary structure
that are indicative of errors may be apparent in subnano-
second trajectories in 3D-RISM-KH due to the enhanced
sampling that the method provides.

Figure 10 gives the root-mean-squared deviation (rmsd)
of the CR atoms from the crystal structure of protein-G as a
function of simulation time. Both 3D-RISM-KH and GBSA
quickly approach rmsd values of 1 Å or greater, with 3D-
RISM-KH generally being higher. While these values are
higher than those observed with either of the explicit models,
they are comparable to previous works.68-70 Furthermore,
the RMSD of longer explicit simulations continues to grow
throughout, suggesting that the equilibrium value may be
close to that of 3D-RISM-KH.

Radius of gyration (Figure 11) also shows quickly equilibrat-
ing, stable trajectories for 3D-RISM-KH and GBSA with similar
values and distributions. Explicit solvent simulations show a
smaller and steadily increasing radius of gyration. While it is
not clear if the radius of gyration has equilibrated by the end

Figure 9. 3D-RISM execution speedup. (a) Serial calculations are shown with optimizations incrementally added. “SHAKE”
refers to calculations where δt ) ∆t. “NCUV” indicates the number of previous solutions used for the initial guess. A cutoff of 12
Å was used for all other calculations. (b) The total parallel speedup is indicated by “3D-RISM”, while the relative speedups of
critical subroutines are indicated by the colored lines.

Figure 10. CR RMSD of protein-G for explicit, implicit, and
3D-RISM-KH solvent models.
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of the simulation (3 ns), it has approached values comparable
to both 3D-RISM-KH and GBSA.

As well as providing stable dynamics, solvation methods
should preserve both the secondary and the tertiary structures
of the solute. Hydrogen-bond calculations were performed with
PTRAJ using the default criteria: a distance cutoff of 3.5 Å
and an angle cutoff of 120°. Secondary structure involves
hydrogen bonding within the backbone of the protein. Figure
12a shows backbone NH groups occupied by hydrogen bonds
from backbone CO groups over the entire trajectory. While all
solvent models are generally in good agreement, six residues
show differences in the occupancies between models (Figure
12b): LYS4, GLY9, LEU12, ALA20, THR25, and GLU56. We
examine these case by case.

Hydrogen bonding between residues LYS4 and LYS50 is
primarily an issue for GBSA. As this is at the end of a
	-sheet, it may indicate some additional flexibility, even
unzipping, of the sheet. If the hydrogen-bond cutoff criteria
is extended to 4.0 Å from 3.5 Å, the occupancy exceeds
80%. Enhanced flexibility also appears to be the cause for
reduced hydrogen bonding between THR25 (NH) and ASP22
(CO) for nonexplicit models with 14% and 28% occupancy
for GBSA and 3D-RISM-KH as compared to 40% and 50%
for SPC/E and TIP3P.

The loop consisting of residues 9-12 is a site of qualitative
difference in structure (Figure 12b) and behavior (Figure 13)

of the 3D-RISM-KH simulation from other solvation models.
While a stable hydrogen bond is seen for GBSA (81%),
SPC/E (80%), and TIP3P (94%), 3D-RISM-KH shows an
occupancy of only 12% for a GLY9 (NH) to LEU12 (CO).
In contrast, 3D-RISM-KH also shows an occupancy of 17%
for a LEU12 (NH) to GLY9 (CO), while the three other
methods only show a 1-2% occupancy. This suggests that
there is a oscillation between two weak hydrogen bonds.
Indeed, in Figure 13b and c, the GLY9 (NH) to LEU12 (CO)
hydrogen bond is disrupted by solvent. The overall effect is
to bend this loop out from the protein core into the solvent
(Figure 12b).

Residue ALA20 is another site where it would appear that
GBSA has failed to capture the correct hydrogen bonding;
however, the situation is somewhat more complex. The
ALA20 (NH) site is 60% occupied in hydrogen bonding,
but this bonding is strictly with THR18 (CO). For SPC/E
and TIP3P, ALA20 (NH) has no hydrogen bonding with
THR18, but 99% and 100%, respectively, with MET1. 3D-
RISM-KH, however, has ALA20 (NH) binding to both
THR18 and MET1, 54% and 33%, respectively. The correct
behavior in this case is not clear. Clore and Gronenborn,73

on the basis of nuclear magnetic resonance (NMR) data,
proposed a three-site bifurcated hydrogen bond between
ALA20 (NH), MET1 (CO), and a bound water molecule with
residence time >1 ns. In an explicit solvent MD simulation,
Sheinerman and Brooks68 observed a long residence time
water in this location, but, in this case, there was no direct
hydrogen bond between ALA20 (NH) and MET1 (CO), and
the water served as an intermediary between the two residues.
No such long residence time water is observed in our explicit
solvent simulations, although the residues are highly solvated
(Figure 14a). For our 3D-RISM-KH simulation, however,
the hydrogen bond is broken by the solvent (Figure 14c),
reformed (Figure 14b), and broken again in the course of
the 600 ps simulation.

As well, Clore and Gronenborn also proposed that a similar
long residence time water would stabilize a hydrogen bond
between TYR33 (NH) and ALA29 (CO). Neither the explicit
simulations nor the 3D-RISM-KH simulation showed any
water situated to do this, although the site was well hydrated.
This is in agreement with the observations of Sheinerman
and Brooks.

Both GBSA and 3D-RISM-KH have 50% occupancy for the
hydrogen bond between GLU56 (NH) and ASN8 (CO) as
compared to 75% and 79% for SPC/E and TIP3P. However,
the reason for the low occupancy for 3D-RISM-KH is due to
a larger systematic problem. As shown in Figure 15, a large,
solvated cleft opens into the hydrophobic interior of the protein
in the 3D-RISM-KH simulation. This allows the GLU56 (NH)
and ASN8 (CO) pair to be solvated such that the hydrogen bond
is disrupted. As pointed out by Kovalenko and Hirata,48 this is
likely due to the overestimation of solvent ordering around the
hydrophobic side chains at the core of the protein. This is a
shortcoming of the KH closure, although the same deficiency
was originally identified in the HNC closure equation. As such,
it is not a shortcoming of 3D-RISM and can be overcome with
an improved closure, although such a development is not a
trivial task.

Figure 11. Radius of gyration of protein-G for explicit, implicit,
and 3D-RISM-KH solvent models.

Figure 12. (a) Occupancies for internal backbone hydrogen
bonding of protein-G for explicit, implicit, and 3D-RISM-KH
solvent models. Occupancies >100% indicate bifurcated
hydrogen bonds. (b) 3D trace of CR atoms for NMR structure
(PDB ID: 1P7E) in white and final 3D-RISM-KH structure in
cyan. Backbone atoms are shown for residues with hydrogen
bonding that differs from explicit solvent simulation. Images
are made with VMD.71,72
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5. Conclusions

We have presented an efficient coupling of molecular
dynamics simulation with the three-dimensional molecular
theory of solvation (3D-RISM-KH), contracting the solvent
degrees of freedom, and have implemented this multiscale
method in the Amber molecular dynamics package.

The 3D-RISM-KH theory uses the first principles of
statistical mechanics to provide a proper account of molecular
specificity of both the solute biomolecule and the solvent.
This includes such effects as hydrogen bonding both between
solvent molecules and between the solute and solvent,
hydrophobic hydration, and hydrophobic interaction. The 3D-

Figure 13. Backbone hydrogen bonding between residues 9 and 12 for representative structures of (a) explicit SPC/E, (b)
3D-RISM-KH with hydrogen bonding, and (c) 3D-RISM-KH without hydrogen bonding. Protein backbone drawn is as a white
tube, backbone atoms for residues 9 and 12 as spheres, and side chains as sticks. Carbons are cyan, oxygens red, hydrogens
black, and nitrogens blue. Solvent density isosurfaces are shown at gO

UV ) gH
UV ) 3 for both oxygen (red) and hydrogen (gray).

Images made with VMD.71,72

Figure 14. Backbone hydrogen bonding between residues 1 and 20 for representative structures of (a) explicit SPC/E, (b)
3D-RISM-KH with hydrogen bonding, and (c) 3D-RISM-KH without hydrogen bonding. Coloring as in Figure 13. Images made
with VMD.71,72

Figure 15. Solvent-accessible surface area for protein-G simulated with (a) explicit SPC/E and (b) 3D-RISM-KH. Surface is
colored by residue type: acid (red), base (blue), polar (green), and nonpolar (white). Images made with VMD.71,72,74
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RISM-KH theory readily addresses electrolyte solutions and
mixtures of liquids of given composition and thermodynamic
conditions. As the solvation theory works in a full statistical-
mechanical ensemble, the coupled method yields solvent
distributions without statistical noise, and further gives access
to slow processes like hydration of inner spaces and pockets
of biomolecules.

The use of 3D-RISM, a mean-field method contracting the
solvent degrees of freedom in a statistical-mechanical average,
means that the solvent dynamics are lost and the observed
trajectories in any case are not true dynamics of MD simulation
with explicit solvent. They are driven largely by a solvent-
mediated potential of mean force, that is, by the probability of
finding the biomolecule in a particular conformation, sampled
over an ensemble of solvation shell arrangements, which
frequently require extremely long time to realize (e.g., opening
of protein parts to let solvent molecules or ions in to the inner
spaces or pockets, multiply repeated to reach proper statistics).
However, such trajectories in a solvent potential of mean force
preserve the thermodynamic properties such as conformational
distribution of the biomolecule and efficiently sample the
conformational space regions of interest in a number of
molecular biology problems such as functioning of biomolecular
structures (e.g., biological channels and chaperones), protein
folding, aggregation, and ligand binding.

Arrangements of solution species in the solvation shells
of the biomolecule, sampled by the 3D-RISM-KH theory,
can include structural solvent and/or cosolvent molecules and
other associating structures like salt bridges, buffer ions, and
associated ligand molecules. In the latter case, ligand
molecules (or their relatively small fragments) at a given
concentration in solution are described as a component of
solvent at the level of site-site RISM theory and then
mapped onto the biomolecule surface by the 3D-RISM
method identifying the most probable binding modes of
ligand molecules.24 Together with MD sampling of biomo-
lecular conformations, this opens up a new computational
method for fragment-based drug design, which provides a
proper, statistical-mechanical account of solvation forces with
self-consistent coupling of both nonpolar and polar compo-
nents and which gives access to binding events accompanied
by rearrangements of the biomolecule and solvent on a long-
time scale.

The implementation includes several procedures to maxi-
mally speed up the calculation: (i) cutoff procedures for the
Lennard-Jones and electrostatic potentials and the forces
acting on the solute, (ii) cutoffs and approximations for the
asymptotics of the 3D site correlation functions of solvent,
(iii) an iterative guess for the solution to the 3D-RISM-KH
equations by extrapolating the past solutions, and (iv)
multiple time step (MTS) interpolation of solvation forces
between the successive 3D-RISM-KH evaluations of the
forces, which are then extrapolated forward at the MD steps
until the next 3D-RISM evaluation.

As a preliminary validation, we have applied the method
to alanine-dipeptide and protein-G in ambient water. Analysis
of the accuracy of forces, energy, and temperature, including
such known artifacts as net force drift, has been performed;
factors affecting the accuracy have been quantified, and the

range of grid resolution and tolerance parameters ensuring
reliable results has been outlined. The performance of the
coupled method has been characterized and compared to MD
with explicit and implicit solvent. This work is a preliminary
but significant step toward the full-scale characterization and
analysis of the new method and is a further improvement of
its performance to address slow processes of large biomol-
ecules in solution.
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Abstract: We use molecular dynamics to compute the pair distribution function of liquid TIP4P
water as a function of the intermolecular distance and of the five angles that are needed to
specify the relative position and orientation of two water molecules. We also calculate the
translational and orientational contributions to the two-body term in the multiparticle correlation
expansion of the configurational entropy at three selected thermodynamic states, where we
also test various approximations for the angular dependence of the pair distribution function.
We finally compare the results obtained for the pair entropy of TIP4P water with the experimental
values of the excess entropy of ordinary water.

I. Introduction

It is superfluous to motivate the persisting interest in a deeper
understanding and more effective modeling of the equilib-
rium structure of water.1 The paradigmatic status of this
molecular liquid in the realms of natural and life sciences,
at the interface between a variety of disciplines such as
physics, chemistry, and biology, justifies the continuing
efforts that are being made to refine experimental tools and
theoretical approximations so as to achieve more and more
reliable predictions of the microscopic and macroscopic
properties of this substance as well as of the many anomalous
aspects that mark its thermodynamical, structural, and
dynamical behavior in a unique way.2

The main object of the present study is the calculation of
the pair entropy of liquid water, i.e., the contribution of two-
body density correlations to the configurational entropy. The
statistical-mechanical framework is that provided by the
multiparticle correlation expansion of the excess entropy,
originally derived for a classical atomic fluid in the canonical
ensemble3,4 and later extended to the grand-canonical

ensemble,5,6 the two expressions having in fact been shown
to be formally equivalent.7 Many other authors have dis-
cussed this topic; we refer the reader to ref 8 for a short
commented list of some relevant contributions to the subject.
To our knowledge, the first calculation of the pair entropy
of a pure molecular fluid dates back to the seminal paper
authored by Lazaridis and Karplus,9 who investigated the
interplay between orientational correlations and entropy in
the TIP4P model of liquid water.10 The TIP4P potential is
an effective pairwise four-site potential: a Lennard-Jones
interaction site is located on the oxygen, two positive charges
on the hydrogens, and an extra negative charge is located
away from the oxygen along the hydrogen-hydrogen bisec-
tor. Intramolecular degrees of freedom are neglected in the
TIP4P model, but nonetheless, this potential turns out to be
a good transferable potential in that it ultimately provides a
qualitatively correct representation of the phase diagram of
water, also in comparison with other interaction models,
except at very high pressure.11,12

The calculation of the pair entropy for a given model
potential requires the knowledge of the pair distribution
function (PDF) of the molecular liquid, a quantity that, in
the case of TIP4P water, depends on six variables, viz., the
distance between the centers of mass of the two molecules
and five angles that are needed to specify their relative
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orientation. Such a function cannot be easily obtained from
numerical simulation since a statistically reliable result
requires a massive numerical sampling to be carried out over
a discrete six-dimensional grid whose spacing is consequently
the outcome of a delicate compromise between the available
computer power and the desired quantitative accuracy of the
calculation. This is precisely the reason why Lazaridis and
Karplus evaluated the pair entropy of liquid TIP4P water
using a variety of approximations for the five-dimensional
orientational distribution function (ODF) which, computed
at a given intermolecular separation and then multiplied by
the ordinary radial distribution function (RDF), eventually
yields the full six-dimensional PDF. Such approximations
implemented partial representations of the ODF on the basis
of combinations of the monovariate and bivariate angular
distribution functions as obtained from numerical simulation.

A few other attempts have as yet followed the route traced
by Lazaridis and Karplus for the calculation of the pair
entropy of water. Giaquinta and co-workers exploited one
of the approximate schemes illustrated in ref 9, the so-called
“adjusted gas-phase” (AGP) approximation, to highlight
different ordering regimes in liquid TIP4P water13 and to
“measure” the relative amounts of positional and angular
order through the translational and orientational pair entro-
pies, used for the first time together as unbiased, self-
consistent, and independent “order parameters” to map the
phase diagram of water.14 The first “exact” calculationsi.e.,
one performed without resorting to any approximate partial
representation of the ODFsof the pair entropy was carried
out by Zielkiewcz in four different models of computer water
at ambient conditions.15,16 A temperature analysis of the
results for the single-point charge (SPC) model was later
presented by the same author.17 More recently, Wang and
co-workers suggested a novel nonparametric approach to
computing the pair entropy, alternative to the histogram-
based method, and further based on a generalized Kirkwood
superposition approximation (GKSA) for the ODF.18 This
approach was tested in five water models at ambient
conditions.

In this paper, we present the results of a numeric
calculation of the full PDF of liquid TIP4P water, carried
out with the method of molecular dynamics (MD), at ambient
conditions as well as in two other thermodynamic states, at
lower temperature and higher pressure, respectively. The
general theoretical framework is introduced and discussed
in section II, together with the approximations that were
implemented for the ODF in addition to the direct MD
calculations, whose technical details are summarized in
section III. The resulting translational and orientational pair
entropies are presented in section IV and therein compared
with the experimental data for the excess entropy of ordinary
water. Section V is finally devoted to concluding remarks.

II. Theoretical Framework

A. Pair Entropy of a Molecular Liquid. Statistical
mechanics provides a general expression for the entropy of
a classical, atomic or molecular, fluid which, in general, can

be written as an infinite sum of contributions associated with
spatially integrated n-point density correlations:

where Sex is the excess (with respect to the corresponding
ideal gas) entropy. In the absence of external fields, the two-
body termsthat, in the following, we shall refer to as the
“pair entropy”sordinarily delivers the dominant contribution
to the excess entropy of a liquid.13,19,20 As such, S2 has been
often used as an approximate “local” (in thermodynamic
space) estimate of Sex in that the calculation of the pair
entropy does not require a thermodynamic potential to be
integrated along an extended path connecting the state whose
entropy one is interested in with another (reference) state
where the thermodynamic properties of the fluid are known
by independent means, as in the high-temperature ideal-gas
asymptoticregime,orcanbecomputedwithothertechniques.12,21

The pair entropy of molecular fluids reads:9,22

where kB is the Boltzmann constant, F is the particle number
density, and g(r1, r2, �1, �2) is the PDF which, in general,
depends on the vector radii (r1, r2) of the molecular centers
of mass and on the pair of Euler angles sets (�1, �2), where
�R ≡ {θR, φR, �R} specifies the absolute orientation of the
Rth molecule in the laboratory reference frame {x̂, ŷ, ẑ}. The
three Euler angles are respectively defined in the ranges 0
e θR e π, 0 e φR < 2π, and 0 e �R < 2π, with angular
elements d�R ) sin(θR) dθR dφR d�R. Correspondingly, Ω ≡
∫ d�R ) 8π2. We note that the set of variables introduced
above is in fact redundant for a homogeneous and isotropic
molecular fluid since, in the absence of external fields, the
PDF depends on the relatiVe position and orientation of the
two molecules. For water molecules, this information can
be encoded into six variables only, viz., the radial separation
r between the centers of mass plus five angles. In fact, let
us label the oxygen and hydrogen atoms of the Rth molecule
as OR, H1R, and H2R, respectively; let us further identify the
mean point of the segment H1RH2R, joining the two hydrogen
atoms, as DR. In terms of the unit vectors

one has for the angle θR formed by the dipole moment of
the Rth molecule, lying in the direction ẑR, and the
intermolecular axis ẑ:

In order to define the other Euler angles, we need to
specify a reference system {x̂R, ŷR, ẑR} sticking out of each
molecule. This can be done by defining, for instance, the x̂R

and ŷR axes as

Sex ) ∑
n)2

∞

Sn (1)

S2 ) -1
2

kB( FΩ)2 ∫ [g(r1, r2, �1, �2) ln g(r1, r2, �1, �2) -

g(r1, r2, �1, �2) + 1] dr1 dr2 d�1 d�2 (2)

ẑ )
O1O2
f

|O1O2
f|

, ẑR )
ORDR
f

|ORDR
f|

(3)

θR ) arccos(ẑR · ẑ) (0 e θR e π) (4)
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Hence, in terms of the auxiliary unit vector

specifying the line of nodes that is associated with the Rth
molecule, we obtain

and

where arg(u, V) is the polar argument of the vector (u, V).
The angle �R describes the rotation of the Rth water molecule
around its own dipole vector. One can readily see that one
of the above six angles is superfluous; in fact, upon choosing,
say, x̂ ≡ N̂1, the angle φ1 identically vanishes. In the
following, we shall refer to this set of angular coordinates
as the A set. Actually, one may further take advantage of a
symmetry of the PDF that follows from the observation that
the pointing directions of the unit vectors x̂1 and x̂2 depend
on the (arbitrary) way one has labeled the two hydrogen
atoms within each water molecule. In turn, this choice
uniquely determines the pointing directions of ŷ1 and ŷ2. This
residual freedom reflects on the behavior of the (exact) PDF
that is in fact invariant under �R rotations moving this angle
to [�R + π(mod 2π)]. Hence, it should suffice to consider
the dependence of the PDF on �R within the interval [0, π].
We shall refer to this modifiedsby effect of symmetrysset
of variables as the As set.

The above choice of variables closely recalls the one made
by Lazaridis and Karplus.9 However, in addition to the pairs
(θ1, θ2) and (�1, �2), they used the angle φ ≡ φ1 - φ2

describing the relative rotation of a pair of molecules (more
specifically, of their respective line-of-nodes unit vectors,
N̂1 and N̂2) around the intermolecular axis. Moreover, their
conventions on how to measure the two pairs of angles
mentioned above differ from those specified for the set A.
In particular, H11 was explicitly taken to be the hydrogen
atom of molecule 1 that is closest to the oxygen atom of
molecule 2, and similarly for H21 (see Figure 1 of ref 9 and
the relative caption). Lazaridis and Karplus further exploited
a number of symmetries of the PDF involving all five angles.
In fact, in addition to those introduced above which concern
the pair (�1, �2), they also considered two residual symmetries
of the PDF: they noted that the two water molecules are
interchangeable, which allows one to integrate the angle θ2

from θ1 to π, and also observed that the angle φ can be
integrated from 0 to π only. We shall refer to this set of
angular coordinates as the Bs set which, however, we shall
implement without resorting to the additional symmetry
concerning the angle θ2.

A still different choice (C) was made by Zielkiewicz,15,16

who assumed {x̂, ŷ, ẑ} ≡ {x̂1, ŷ1, ẑ1}, the orthonormal triad
attached to molecule 1 being specified as above by eqs 3

and 5. He then considered the spherical coordinates of O2

in the reference frame centered on O1:

where r ≡ O1O2
f and r⊥ ) r -(r · ẑ1) ẑ1, with 0 e Θ e π

and 0 e Φ < 2π, in addition to the three Euler angles
(θ2, φ2, �2) that specify the global orientation of the second
molecule with respect to the central one, according to eqs 4,
7, and 8. As observed before, the alternative for x̂R is 2-fold,
allowing one to restrict the range of φ2 and �2 to the interval
[0, π]. The set of variables where this latter symmetry
property is employed will be referred to as the Cs set.

It is important to realize that different choices of the angles
that specify the relative orientation of two water molecules,
as well as of the associated intervals within which the PDF
is then being sampled, lead to different histograms and,
consequently, to potentially different numerical estimates of
the pair entropy. This is obviously due to the finite integration
meshes as well as to the number of symmetries that are
implemented in each angular set. In fact, we should expect
that the best results will be achieved when one makes full
use of the symmetries of the PDF, which is actually the case
of the Bs set. In this respect, we note that, for an assigned
number of configurations over which the PDF histogram is
being sampled, the information contents of the histograms
built by using the As and Cs sets should be four times larger
than that of the corresponding histograms in the A and C
sets. On the other hand, the statistical quality achieved with
the Bs set should be twice as good as that achieved with the
As and Cs sets.

Now, let Ψ be any 5-fold set of independent angular
variables. Upon observing that ∫ d�1 d�2 ) 2π ∫ dΨ, we
can rewrite eq 2 as

where s2 is the pair entropy per particle. Following Lazaridis
and Karplus,9 we factorize the PDF as

where g(r) is the RDF and g(Ψ|r) is the conditional
distribution for the relative orientation of two molecules
separated by a distance r, i.e., the quantity that we shall refer
to in the following as the ODF. The following normalization
condition holds:

Correspondingly, the pair entropy can be resolved into the
sum of two terms:

where

x̂R )
H2RH1R
f

|H2RH1R
f|

, ŷR ) ẑR ∧ x̂R (5)

N̂R ≡
ẑ ∧ ẑR
|ẑ ∧ ẑR|

(6)

φR ) arg(x̂ · N̂R, ŷ · N̂R) (0 e φR < 2π) (7)

�R ) arg(x̂R · N̂R,-ŷR · N̂R) (0 e �R < 2π) (8)

Θ ) arccos(r̂ · ẑ1), Φ ) arg(x̂1 · r̂⊥, ŷ1 · r̂⊥) (9)

s2 ) -kB(2π
Ω )2

F∫ [g(r, Ψ) ln g(r, Ψ) -

g(r, Ψ) + 1]r2 dr dΨ (10)

g(r, Ψ) ) g(r)g(Ψ|r) (11)

2π
Ω2 ∫ g(r, Ψ) dΨ ) g(r) (12)

s2 ) s2
(tr) + s2

(or) (13)

s2
(tr) ) -kB(2π)F∫0

∞
[g(r) ln g(r) - g(r) + 1]r2 dr

(14)
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is the translational pair entropy and

is the orientational pair entropy that is defined in terms of
the orientational local entropy (OLE):

B. Approximations for the Pair Distribution Func-
tion. At variance with the RDF, the numerical evaluation of
the ODF is a formidable computational task because of the
number of variables this function depends on. Approximating
the ODF may be in many cases the only viable route to the
calculation of the orientational contribution to the thermo-
dynamic properties of liquid water. In this respect, Lazaridis
and Karplus proposed a number of approximate schemes for
the full PDF, essentially based on the assumption that the
ODFs of gaseous and liquid water have similar short-range
structures.9 The first “family” of such approximations was
generated by factorizing the ODF into a product of one-
dimensional (1d) and two-dimensional (2d) marginals,
defined as the probability distributions of one angle, or the
joint probability distributions of two angles, regardless of
the values attained by the remaining angles:

and

Lazaridis and Karplus (LK) introduced and discussed
various factorizations that were tested against the thermo-
dynamic properties (energy, entropy) of the gas phase of
TIP4P water.9 They eventually concluded that, overall, the
most balanced scheme was the one which they referred to
as the F7 factorization:

where the parametric dependence on the radial separation r
is implicit in both the full and marginal ODFs that appear
on the left- and right-hand sides of eq 19, respectively. This
approximation exploits the “flatness” of the ODF with respect
to the angle φ and the ensuing absence, in the liquid phase,
of significant correlations between φ and the other angles.9

In addition to the factorization scheme illustrated above,
Lazaridis and Karplus described a different approach based
on the low-density limit of the ODF, modified by a subset
of the marginal ODFs that were obtained from the numerical
simulations of liquid TIP4P water. The resulting AGP
approximation for the ODF can be written as follows:

where

and where we have again suppressed the dependence on the
intermolecular distance r. In eq 21, g(θ1, θ2), g(�1, �2), and
g(φ) are the “exact” marginals, which can be calculated by
numerical simulation, while the function gs and the associated
marginals follow from

where

with u(r, Ψ) being the interaction potential and

In eq 24, UMD(r) is the angularly averaged interaction energy
evaluated at a specified distance r through the MD simula-
tion, Ugas(r) is the corresponding quantity calculated in the
gas phase, and U(r) is the unweighted average of u(r, Ψ)
over orientations. The ODF that follows from eq 20 must
be eventually normalized so as to satisfy eq 12. The
smoothing function S (r) is such that the angularly averaged
energy evaluated through the function gs reproduces the
quantity UMD(r).

As seen from eqs 20 and 21, the naive gas-phase
approximationsformulated in eqs 22, 23, and 24sis adjusted
so as to enforce, through the CLK factor, a reasonable degree
of consistency between the resulting ODF and a subset of
liquid-phase marginal distributions. Wang and co-workers18

recently noted that a non-negligible correlation exists between
the angles θ and � of each water molecule which cannot be
accounted for by the mere product of the corresponding 1d
marginals, i.e., g(θ) and g(�). Hence, they proposed a GKSA
factorization of the ODF that differs from the F7 scheme
set up by Lazaridis and Karplus in that the modified ODF
includes an extra pair of 2d “intramolecular” marginals, viz.,
g(θ1, �1) and g(θ2, �2). Motivated by this observation, we also
report in this paper on three variants of the original AGP
approximation where the coupling factor CLK, which appears
in eq 20, has been replaced, in turn, by the following
expressions:

s2
(or) ) ∫0

∞
F g(r)S(or)(r)r2dr (15)

S(or)(r) ) -kB(2π
Ω )2 ∫ g(Ψ|r) ln g(Ψ|r) dΨ (16)

g(Ψi|r) ≡
∫ g(Ψ|r) d4 Ψj*i

∫ d4 Ψj*i

(17)

g(Ψi, Ψj|r) ≡
∫ g(Ψ|r) d3 Ψk*i,j

∫ d3 Ψk*i,j

(18)

gLK
(F7)(θ1, θ2, φ, �1, �2) ≡

[g(θ1, θ2) g(�1, �2) g(θ1, �2) g(θ2, �1)

g(θ1) g(θ2) g(�1) g(�2) ]g(φ) (19)

gLK
(AGP)(θ1, θ2, φ, �1, �2) )

gs(θ1, θ2, φ, �1, �2) · CLK(θ1, θ2, φ, �1, �2) (20)

CLK(θ1, θ2, φ, �1, �2) )
g(θ1, θ2)

gs(θ1, θ2)
·

g(�1, �2)

gs(�1, �2)
· g(φ)

gs(φ)
(21)

gs(Ψ|r) ≡ ggas(Ψ|r) + S (r)[1 - ggas(Ψ|r)] (22)

ggas(Ψ|r) ) (Ω2

2π) exp[-�u(r, Ψ)]

∫ exp[-�u(r, Ψ)] dΨ
(23)

S (r) )
UMD(r) - Ugas(r)

U(r) - Ugas(r)
(24)

C1(θ1, θ2, φ, �1, �2) )

CLK(θ1, θ2, φ, �1, �2)[ g(θ1, �1)

gs(θ1, �1)
·

g(θ2, �2)

gs(θ2, �2)] (25)
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We shall refer to the three modified AGP schemes reported
in eqs 25, 26, and 27 as the AGP1, AGP2, and AGP3
approximations, respectively. We observe that the AGP2
approximation includes the same 2d marginals that also
appear in the F7 approximation originally proposed by
Lazaridis and Karplus,9 while the AGP3 coupling factor
reproduces the factorization of 2d marginals adopted by
Wang and co-workers.18

In order to simplify the calculation of the pair entropy,
Lazaridis and Karplus further resorted to an approximate
computational strategy. In fact, they averaged the liquid-
phase angular distributions that appear in both the F7 and
AGP schemes over three distinct spatial regions (“shells”)
whose boundaries were chosen so as to coincide with the
positions of the first peak and of the first two troughs in the
oxygen-oxygen RDF of TIP4P water at 25 °C and 1 atm.
Their choice leads to the following intervals: 0 e r e 0.28
nm, 0.28 nm < r e 0.34 nm, and 0.34 nm < r e 0.56 nm.
As for the three gas-phase marginals that also contribute to
the AGP approximation, they were apparently calculated at
three “representative” distances corresponding to the three
regions over which the same marginals were calculated in
the liquid by simulation, i.e, 0.28 nm, 0.32 nm, and 0.45
nm. We note that a similar computational strategy was
adopted by Wang and co-workers18 who also computed the
OLE over three consecutive shells that closely correspond
to the analogous choice made by Lazaridis and Karplus.
However, they used a different approach to estimate the pair
entropy, viz., the so-called kth nearest-neighbor method.

The AGP approximation clearly depends on the preknowl-
edge of the RDF spatial profile of the model in a given
thermodynamic state. We propose a generalization of this
method by averaging the liquid-phase marginals over a
variable number of shells, Nshell ) Rmax/∆Rshell, where Rmax

is the chosen distance cutoff and ∆Rshell is the width of each
shell. Obviously, the maximum number of shells over which
the marginals can be computed corresponds to a discretiza-
tion of the interval such that ∆Rshell ) ∆r, where ∆r is the
spatial resolution of the calculation. In addition, the gas-
phase marginals are computed at the midpoint of each
interval. We shall refer to this modified implementation of
the AGP approximation as the multishell AGP (MSAGP)
approximation.

III. Simulation Method and Technical Details

We carried out constant-pressure constant-temperature MD
simulations of the TIP4P model, implemented through the
PINY code.23 The system contained 512 molecules in a cubic
cell with periodic boundary conditions. The spherical cutoff
of the Lennard-Jones interactions was 0.8 nm. Electrostatic

interactions were modeled with the particle-mesh Ewald
method. A time step of 2.5 fs turned out to be sufficient for
a proper dynamical evolution since the TIP4P model is based
on a rigid-molecule description. Typical simulation times
were in the 50 ns range, corresponding to runs 2 × 107 steps
long. The MD configurations were stored every 0.5 ps in
such a way that the PDF was calculated over as many as
105 system snapshots. Under ambient conditions, the mo-
lecular density was initially 1 g cm-3, corresponding to a
width of the simulation cell of 2.48 nm.

As already emphasized, the evaluation of the pair entropy
from eq 10 is far from being a trivial task, it being the
outcome of a six-dimensional integration. In practice, many
aspects of the calculation may seriously influence the final
numerical accuracy such as (i) the number, Nconf, of
configurations contributing to the thermal averages, a pa-
rameter that affects the “quality” of the integrand, i.e., its
regularity as a function of the independent variables; (ii) the
integration mesh sizes (∆r, ∆Ψ); (iii) the numerical integra-
tion method, whose impact on the result is not a priori
obvious, especially when the integrand happens to be noisy.

The RDF and the full PDF were respectively estimated
through the following formulas:

where I(r; ∆r) and I(r, Ψ; ∆r, ∆Ψ) are the corresponding
histograms and

We also took advantage of the symmetry properties of I(r,
Ψ; ∆r, ∆Ψ), with the effect of doubling the statistics
whenever the range of a given angle is halved from 2π to
π. We assumed ∆r ) 0.01 nm and ∆Ψi ) 10° for each of
the five angles that were involved in the calculation. This
latter value turned out to be a reasonable compromise
between histogram resolution and statistics, and moreover,
it is the value that has been commonly used in the past
literature on the subject.9,15,18 All the integrations were
performed using the standard Simpson method. In order to
get a quantitative feeling on the numerical error associated
with the choices made for ∆r and ∆Ψi, we compared the
RDF obtained directly from the simulation with the output
from the normalization condition reported in eq 12 in all
the thermodynamic states investigated. We found that the
relative deviation was about 3% at very short distances, in
the region corresponding to the initial rise of the RDF from
zero up to its highest maximum, and rapidly dropped to zero

C2(θ1, θ2, φ, �1, �2) ) CLK(θ1, θ2, φ, �1, �2) ×

[ g(θ1, �2)

gs(θ1, �2)
·

g(θ2, �1)

gs(θ2, �1)] (26)

C3(θ1, θ2, φ, �1, �2) ) C2(θ1, θ2, φ, �1, �2) ×

[ g(θ1, �1)

gs(θ1, �1)
·

g(θ2, �2)

gs(θ2, �2)] (27)

g(r) ) I(r;∆r){4π
3
F[(r + ∆r

2 )3
- (r - ∆r

2 )3]}-1

(28)

g(r, Ψ) ) I(r, Ψ;∆r, ∆Ψ){4π
3
F[(r + ∆r

2 )3
-

(r - ∆r
2 )3]}-1(2π

Ω2
∆Ψ)-1

(29)

∆Ψ ) [-cos(θ1 +
∆θ1

2 ) + cos(θ1 -
∆θ1

2 )] ×

[-cos(θ2 +
∆θ2

2 ) + cos(θ2 -
∆θ2

2 )] ×

∆�1∆�2∆φ2

(30)
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with increasing distances, already being less than 0.1% for
r g 0.3 nm.

IV. Results

We investigated the properties of TIP4P water in three
thermodynamic states located in the stable liquid-phase
region, i.e., (T ) 260 K, P ) 1 bar), (T ) 300 K, P ) 1
bar), and (T ) 300 K, P ) 4 kbar). We shall first present
the results obtained at ambient conditions, which we shall
compare with those obtained by other authors using the
Monte Carlo or the molecular dynamics method, either
resorting to approximate representations of the ODF9,18 or
carrying out a full direct calculation.15,16 We shall then
illustrate how the pair entropy changes upon lowering the
temperature down to 260 K or increasing the pressure up to
4 kbar.

A. TIP4P Water at Ambient Conditions. We computed
equilibrium averages at ambient conditions (T ) 300 K, P
) 1 bar) over sets of up to 105 MD configurations. The
resulting average values of the specific density Fm and of
the excess internal energy Uex were 0.986 g cm-3 and -
10.01 kcal mol-1, respectively. Under such thermodynamic
conditions, the cumulative ideal-gas contribution to the
entropy of TIP4P water, modeled as a gas of noninteracting
rigid molecules, amounts to 30.74 entropy units (e.u.; 1 e.u.
) 4.184 J K-1 mol-1),24 about one-third of which (10.44
e.u.) is to be ascribed to the rotational degrees of freedom.
We report in Table 1 the currently available estimates of
the translational, orientational, and cumulative pair entropies
of TIP4P water at ambient conditions for a comparison with
the present results.

The translational pair entropy can be computed in a
straightforward way since it requires the RDF only as an
input (see Figure 1). Upon using eq 14, we obtained -3.05
e.u. for this quantity.

1. MD Results for the Orientational Pair Entropy. The
OLE computed directly from simulationsi.e., using no
approximate partial representationsis shown in Figure 2
for all the angular sets introduced in section II.B. The
discrepancies observed between some of the five estimates
are almost entirely due to their different statistical qualities,
as already discussed in section IIB. This aspect is clarified
in Figure 3 where we reported the OLEs obtained using the

(A, C), (As, Cs), and Bs angular sets, the corresponding
histograms now being averaged over sets of configurations
whose numbers lie in the ratio 8:2:1, respectively, as
suggested by the number of symmetries employed in each
angular set. As a result, the five estimates are manifestly
seen to collapse onto the same curve. This comparison
confirms that the Bs set provides the most accurate estimate
that can be generated with an assigned number of configurations.

Figure 4 shows the function IS
(or)(r) ) F g(r) S(or)(r) r2, that

yields upon integration the orientational pair entropy (see
eq 15), depicted for increasing values of Nconf. The most
relevant feature of this function is the profound minimum
located at r ) 2.75 nm, i.e., where the RDF attains its
maximum value corresponding to the first coordination shell.
We observe that the shape of the minimum, aside from its
depth, does not appreciably change with the number of
configurations; on the other hand, the longer-range part of
the function shifts almost rigidly toward zero as Nconf

increases. We found that, even upon sampling the IS
(or)(r)

Table 1. Translational and Orientational Pair Entropies
(e.u.) of TIP4P Water at 298 Ka

source s2
(tr) s2

(or) s2

Lazaridis and Karplus9 -3.14 -9.1b -12.2
Lazaridis and Karplus9 -3.14 -11.7c -14.8
Wang et al.18 -3.15 -10.52 -13.67
Zielkiewicz15,16 -2.97d -11.9e -14.9f

a Data from refs 9 and 18 refer to constant-pressure simulations
carried out at 1 atm, while data from refs 15 and 16 refer to
constant-volume simulations corresponding to a density Fm )
0.999 g cm-3. b Estimate obtained using the F7 approximation.
c Estimate obtained using the AGP approximation. d The estimate
originally provided in ref 15 has been corrected by adding the
missing contribution reported in ref 16. e Estimate inferred upon
subtracting the translational pair entropy from the cumulative pair
entropy. f Estimate inferred upon subtracting the ideal-gas entropy
from the absolute entropy reported in ref 16. Figure 1. Radial distribution function of TIP4P water aver-

aged over 105 configurations: (T ) 260 K, P ) 1 bar), black
continuous curve; (T ) 300 K, P ) 1 bar), red dotted curve;
(T ) 300 K, P ) 4 kbar), green dashed curve.

Figure 2. Orientational local entropy (e.u.) of TIP4P water
at ambient conditions averaged over 105 MD configurations:
A set, blue solid curve (further marked with triangles in the
inset); C set, green dotted curve (further marked with circles
in the inset); As set, black solid curve (further marked with
squares in the inset); Cs set, orange dotted curve (further
marked with circles in the inset); Bs set, red solid curve (further
marked with asterisks in the inset).
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histogram over 105 configurations, the function has not
decayed yet to zero over distances corresponding to half the
width of the simulation cell. This behavior suggests that, over
such intermolecular separations, the decorrelation time of
the angular degrees of freedom is on the order of the time
(∼50 ns) spanned by the longest MD trajectory generated
in the present calculations. The concurring effect of the finite
mesh size cannot be excluded as well. Upon integrating the
most refined histogram produced for IS

(or)(r), we obtained
-14.7 e.u. for the orientational pair entropy, a value that is
certainly underestimated because of the arguments illustrated
before. Hence, in order to obtain a more reliable estimate,
we resorted to an extrapolation of the quantity σ(r; Nconf) ≡
g(r; Nconf) S(or)(r; Nconf), that was modeled, as a function of
Nconf, according to the following inverse-power law:

where σ̃(r), A(r), and R(r) are r-dependent parameters that
were determined through a least-squares fit of the MD data.

This procedure differs in a significant way from the one used
in ref 15, where, instead, a series of estimates of the absolute
entropy, obtained over MD trajectories of increasing length,
was extrapolated as a function of the simulation time.
However, as noted above, such estimates are likely affected
by a truncation error arising from the nonvanishing tail of
the OLE. This is the reason why we extrapolated this
function, and only afterward performed the integration in
eq 15.

The current fit was carried out over seven sets of data
corresponding to values of Nconf ranging between 4 × 104

and 10 × 104, with sequential increments of 104 configura-
tions. Moreover, every set was assigned a weight proportional
to the number of configurations used to calculate the function
σ(r; Nconf). The resulting best-fit values of the parameters A(r)
and R(r) are plotted in Figure 5 as a function of r.
Notwithstanding their apparently noisy aspect, the quality
of the fit was good everywhere: in fact, the minimum root-
mean-square deviation from the MD data turned out to be
less than 10-5 e.u. in the region of the first minimumswhere,
as noted before, the OLE does not exhibit a marked
dependence on Nconf sdecreasing further with distance by
more than 2 orders of magnitude for r > 0.6 nm. The long-
range trend of R(r) indicates that the tail of σ(r; Nconf) deviates
from σ̃(r) approximately as Nconf

-1 . The asymptotic estimate
of the integrand function, ĨS

(or)(r), that we obtained for the Bs

set is depicted in Figure 6. Upon comparing this result with
the present largest Nconf estimate of the same quantity, one
notices that the first deep minimum was not significantly
affected by the extrapolation, whereas the medium- and long-
range behavior actually was to an appreciable extent. In fact,
at variance with the Nconf ) 105 estimate which flattens off
over the largest sampled distances at a value of about -0.4
entropy units, the extrapolated function has already decayed
to zero over distances beyond the third coordination shell.
As for the resulting orientational pair entropy, we obtaineds
upon integrating ĨS

(or)(r)sthe value -11.5 e.u., an estimate
that is fairly close to the one (-11.9 e.u.) that we inferred
from the results reported in refs 15 and 16 at T ) 298 K,
which also were obtained without resorting to any ap-
proximate partial representation of the ODF. In any case, a

Figure 3. Orientational local entropy (e.u.) of TIP4P water
at ambient conditions averaged over 8 × 104 configurations
for the A and C sets, over 2 × 104 configurations for the As

and Cs sets, and over 1 × 104 configurations for the Bs set.

Figure 4. The function IS(or)(r) ) F g(r) S(or)(r) r2, computed for
the Bs angular set at ambient conditions, plotted as a function
of the distance for increasing values of the number of
configurations Nconf ) {1, 3, 5, 7, 10} × 104. The inset shows
the long-range behavior of the function, decreasing in absolute
terms with increasing Nconf at fixed r.

σ(r;Nconf) ) σ̃(r) + A(r)

Nconf
R(r)

(31)

Figure 5. Space dependent amplitude (continuous black
curve, left axis) and exponent (broken red curve, right axis)
of the extrapolating function used for σ(r; Nconf) in the Bs set
at ambient conditions.
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modest increase of the orientational pair entropy such as the
one we registered (∼0.4 e.u.) might be consistent with the 2
K temperature gap between the two calculations.

2. Approximate Results for the Orientational Pair
Entropy. Figure 7 shows the outcome of our asymptotic
extrapolation of S(or)(r) that is compared with the correspond-
ing approximate estimate obtained by Lazaridis and Karplus
using the AGP approximation.9 We also included the OLE
values (-56.77, -24.58, -0.34) that were obtained, in
entropy units, from the orientational Shannon entropies of
TIP4P water as calculated by Wang and co-workers (see
Table 1 of ref 18) over three “representative” shells, i.e.,
0e r e 0.27, 0.27 < r e 0.33, and 0.33 < r e 0.56, all
distances being expressed in nanometers. We observe that
both approximations miss the weakly modulated medium
range tail of S(or)(r). Indeed, the modest global shift toward
larger distances observed in the Lazaridis and Karplus
estimate, as compared with the present calculation, clearly
compensates for the faster and abrupt decay to zero of the
function which, upon integration, does in fact lead to a result

for the orientational pair entropy that is very close to the
current estimate (see Table 1). A similar performance of the
three-shell AGP approximation, with a partial yet fortuitous
error compensation, was also observed in the other two
thermodynamic states that we shall discuss in the following
sections. On the other hand, the estimate reported by Wang
and co-workers is one entropy unit larger than the present
one, a discrepancy that is less obvious to explain since the
method used by these latter authors was not based on a partial
or full calculation of the ODF histogram, as done in ref 9 as
well as in the present work.

The OLEs generated by the highest resolution (∆Rmax )
∆r) multishell variants of the AGP approximation introduced
in section II.B are shown in Figure 8 for a reduced set of
configurations (Nconf ) 104). We first note that the multishell
implementation of the original AGP approximation definitely
improves over the original three-shell AGP approximation
at short distances. In fact, this more spatially refined estimate
closely reproduces the rise of the function for increasing r:
the curve neither shows the rigid shift that we commented
on above nor the kink at r ) 0.34 nm, which is actually an
artifact of using marginals averaged over discrete regions.
Note, however, that the MSAGP approximation still fails to
reproduce the tail of the function. Somewhat paradoxically,
notwithstanding the improvement observed in the OLE at
short distances, the multishell implementation of the AGP
approximation leads to a lower estimate (in absolute value)
of the orientational pair entropy (see Table 2) as compared
with that obtained from the corresponding three-shell version
(see Table 1). The worsened agreement is the consequence
of the no longer fortuitously compensating failures which
affected the short-range and long-range parts of S(or)(r) as
estimated by Lazaridis and Karplus.

Better results on the long-range decay can be obtained by
suitably modifying the AGP approximation so as to take into
account missing angular correlations that plausibly play a

Figure 6. Integrand function, IS(or)(r), computed in the Bs set
at ambient conditions: continuous (black) curve, asymptotic
(Nconff ∞) estimate; dotted (red) curve, Nconf ) 105 estimate.

Figure 7. Orientational local entropy at ambient conditions:
continuous (black) curve, present asymptotic estimate ob-
tained in the Bs set; dot-dashed (red) curve, approximate
three-shell AGP estimate (reproduced from Figure 4 of ref 9);
horizontal (blue) bars, approximate three-shell GKSA esti-
mates from ref 18.

Figure 8. Orientational local entropy at ambient conditions:
black curve, present asymptotic estimate obtained in the Bs

set; red curve marked with circles, MSAGP estimate; blue
curve marked with squares, MSAGP1 estimate; orange curve
marked with diamonds, MSAGP2 estimate; green curve
marked with triangles, MSAGP3 estimate. The inset shows
the corresponding integrand functions I S

(or)(r) and the radial
distribution function sampled over 105 configurations (right
axis).
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role at larger distances. As discussed in section II.B, we tested
three differently augmented AGP schemes. The results are
shown in Figure 8. It clearly emerges that the MSAGP1
approximation is closer to the asymptotic MD estimate, from
which it significantly deviates at very short distances only.
The deeper minimum in IS

(or)(r) substantially accounts for the
10% discrepancy between the MSAGP1 and simulation
estimates of s2

(or) (see Table 2). We recall that this particular
scheme includes the intramolecular correlation between the
angles θ and � through the marginal distributions g(θ1, �1)
and g(θ2, �2) whose role and importance have been recently
highlighted by Wang and co-workers.18 However, their
approximation as well as the F7 factorization scheme also
include cross-intermolecular correlations between the same
angular pairs, a combination that we also exploited in the
MSAGP3 approximation. As seen from Figure 8, the
inclusion of the marginal distributions g(θ1, �2) and g(θ2, �1)
worsens the agreement with the simulation data in that these
additional correlations do actually overemphasize the struc-
ture of S(or)(r) both at small and large distances, producing
an even more profound minimum in IS

(or)(r) as well as a more
prominent long-range tail. Correspondingly, the estimated
orientational pair entropy drops by more than four entropy
units. The major responsibility of intermolecular (θ, �)
correlations in hollowing out a deeper minimum in the
integrand function is also confirmed by the outcome of the
MSAGP2 approximation where intramolecular (θ, �) cor-
relations have been neglected.

A significative property shared by all the multishell AGP
approximations discussed above is their fast convergence rate
as a function of the number of configurations. As seen from
Table 3, the estimates of s2

(or) obtained after averaging the
marginals over 5 × 103 configurations do in fact coincide

with those produced with 104 configurations to the first
decimal place.

B. TIP4P Water Close to the Temperature of Maxi-
mum Density. Upon lowering the temperature while keeping
the pressure fixed at 1 bar, TIP4P water first exhibits the
well-known maximum density anomaly at TTMD ) 253 ( 5
K before congealing into ice Ih at Tf ) 232 ( 5 K, i.e., about
40 K below the experimental freezing point.25 At 260 K,
the average values of the specific density and excess internal
energy were found to be 1.001 g cm-3 and - 10.67 kcal
mol-1, respectively. At lower temperatures, both the posi-
tional and angular order are more enhanced and longer-
ranged. The RDF of the liquid is definitely more structured
than at ambient conditions (see Figure 1), and we consistently
found a value for the translational pair entropy (- 3.59 e.u.)
that is about 18% lower than that obtained at 300 K. As for
the calculation of the orientational pair entropy, we verified
that the fit of σ(r; Nconf) was of comparable accuracy to that
achieved at higher temperatures. Also in this case, the tail
of σ(r; Nconf) turned out to scale as Nconf

-1 at large distances.
Figure 9 shows the extrapolated OLE and the corresponding
integrand function. The comparison with the approximate
estimates obtained from the four AGP schemes that we have
already illustrated in the preceding sections confirms that
even at this lower temperature the MSAGP1 approximation
more faithfully reproduces the profile of S(or)(r), both at short
and large distances. Correspondingly, the MSAGP1 estimate
of the orientational pair entropy was again found to be closer
than the other three approximate estimates to the asymptotic
simulation value, the relative discrepancy being about 7%
(see Table 2). We observe that s2

(or)sand, correspondingly,
the amount of angular order in watersis more significantly
affected than s2

(tr) by the 40 K temperature drop. In fact, the
value of the orientational pair entropy at 260 K was found
to be about 29% lower than that at 300 K.

Table 2. Multishell AGP Estimates of the Orientational Pair
Entropy (e.u.) of TIP4P Water Obtained, at Different
Temperatures and Pressures, upon Sampling 1d and 2d
Marginals over 104 Configurations, Using the Largest
Number of Shells Compatible with the Spatial Resolution of
the Calculation (∆Rmax ) ∆r ) 0.01 nm)a

approximation Ib IIc IIId

MSAGP -11.7 -9.6 -9.0
MSAGP1 -15.8 -12.6 -12.7
MSAGP2 -16.6 -13.6 -13.0
MSAGP3 -21.2 -17.0 -17.4
Simulation -14.8 -11.5 -11.3

a The asymptotic estimates generated by the extrapolated
simulation data are also included for comparison. b T ) 260 K, P
) 1 bar (Rmax ) 1.20 nm). c T ) 300 K, P ) 1 bar (Rmax ) 1.20
nm). d T ) 300 K, P ) 4 kbar (Rmax ) 1.15 nm).

Table 3. Convergence of the Multishell AGP
Approximations with Increasing Numbers of Configurations
at T ) 300 K and P ) 1 bar

number of configurations

approximation 1 × 103 5 × 103 10 × 103

MSAGP -9.74 -9.64 -9.62
MSAGP1 -12.91 -12.69 -12.63
MSAGP2 -13.82 -13.63 -13.60
MSAGP3 -17.44 -17.09 -17.02

Figure 9. Orientational local entropy at P ) 1 bar and T )
260 K: black curve, present asymptotic estimate obtained in
the Bs set; red curve marked with circles, MSAGP estimate;
blue curve marked with squares, MSAGP1 estimate; orange
curve marked with diamonds, MSAGP2 estimate; green curve
marked with triangles, MSAGP3 estimate. The inset shows
the corresponding integrand functions I S

(or)(r) and the radial
distribution function sampled over 105 configurations (right
axis).
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C. TIP4P Water at Higher Pressure. We finally inves-
tigated the properties of ambient temperature TIP4P water
compressed at a higher pressure (P ) 4 kbar), falling in the
range where crystalline ice II and ice III phases become
stable at lower temperatures.11,12 We found 1.134 g cm-3

and - 10.18 kcal mol-1 for the average values of the specific
density and excess internal energy, respectively. At variance
with the behavior ordinarily observed in simple atomic fluids,
the compression largely disrupts the local order observed in
water at lower pressures. The effect on positional correlations
is manifest in Figure 1. Notwithstanding this “antagonist”
role played by the pressure, we found that, upon increasing
P from 1 bar to 4 kbar at 300 K, the translational pair entropy
dropped from -3.05 e.u. to -3.35 e.u.; the disruption of a
relatively ordered network, which would imply a higher
entropy, is more than compensated in this case by the
reduction of available positional states produced by the 15%
increase of the specific density. The decorrelating effect
produced by compression is even stronger on angular order,
as witnessed by the moderate increase that was registered
instead in the orientational pair entropy (see Table 2),
notwithstanding the increase of the density.14

The fit of σ(r; Nconf) turned out to be as accurate as that
accomplished in the other two thermodynamic states. The
scaling of the function as Nconf

-1 at large distances was also
confirmed. Figure 10 shows the extrapolated OLE and the
corresponding integrand function. The comparison between
the results obtained from the four AGP schemes confirms
once more that even at higher pressures the MSAGP1
approximation is the most reliable approximation at short
as well as large distances and also provides the most accurate
estimate of the orientational pair entropy.

D. Comparison with Experimental Data. Table 4 pre-
sents a comparison between the cumulative pair entropies
obtained from the current MD simulations without resorting
to any approximation and the excess entropies of both TIP4P

and ordinary water. The TIP4P values26 of Sex were obtained
using thermodynamic integration methods for the calculation
of the free energy, as extensively discussed in ref 12, while
the experimental values follow from the data for the absolute
entropy tabulated in ref 27, after subtracting the ideal-gas
entropy. This latter contribution was calculated from eq (6.5)
of ref 27, which parametrizes the ideal Helmholtz free
energy. Note that the experimental estimate of the excess
entropy at 260 K obviously refers to metastable undercooled
water and was obtained upon extrapolating the values of the
specific density and of the absolute entropy below the
freezing temperature. We first observe that the pair entropy
decreases upon lowering the temperature. The effect pro-
duced by an increase of the pressure on the local order of
the liquid is more subtle, as already discussed above and
more systematically analyzed in ref 14. In this specific
instance, the effect is almost null, since the difference of
0.1 e.u. is presumably within the numerical uncertainty of
the calculation. It should further be noted that the almost
equal values found for S2 at 300 K across the 4 kbar pressure
gap is the outcome of differing relative weights of the
translational and orientational pair entropies.

As shown in Table 4, at 260 K, the pair entropy actually
overcomes the excess entropy: this implies a positiVe value
of the so-called “residual multiparticle entropy” (RMPE), a
quantity defined as the difference between Sex and S2.

19 As
diffusely documented in the literature, a positive RMPE is
evidence of a highly structured liquid.13,28 On the other hand,
at 300 K, the RMPE of TIP4P water almost vanishes at
ambient pressure conditions, while being negative at 4 kbar
but less than 3% of the total excess entropy. We remark that,
as previously noted by Lazaridis and Karplus,9 a small value
of the RMPE does not necessarily imply that triplet or higher-
order correlations do not play a role in determining the
microscopic structure of the liquid. In fact, their overall
contribution to the configurational entropy of a given
substance may well be small or may even sum up to zero in
some thermodynamic points or regions of the phase diagram,
despite the fact that distribution functions beyond the pair
one do not trivially reduce to the mere product of lower-
order distribution functions.

It appears from Table 4 that at 300 K the pair entropy of
TIP4P water provides fairly good estimates of the excess
entropy of ordinary water. However, we are also aware that
the agreement between the model and experimental data
might be partially biased by the 40 K “shift” toward lower
temperatures of the phase diagram predicted by the TIP4P
model of water relatively to that of ordinary water.

Figure 10. Orientational local entropy at P ) 4 kbar and T )
300 K: black curve, present asymptotic estimate obtained in
the Bs set; red curve marked with circles, MSAGP estimate;
blue curve marked with squares, MSAGP1 estimate; orange
curve marked with diamonds, MSAGP2 estimate; green curve
marked with triangles, MSAGP3 estimate. The inset shows
the corresponding integrand functions I S

(or)(r) and the radial
distribution function sampled over 105 configurations (right
axis).

Table 4. Pair and Excess Entropies

entropies (e.u.)

T (K) P (bar) S2 [TIP4P] Sex [TIP4P]a Sex [expt.]b

260 1 × 100 -18.39 -17.00 -15.73c

300 1 × 100 -14.57 -14.61 -13.99
300 4 × 103 -14.68 -15.14 -14.38

a Data from ref 26, reported with an estimated uncertainty of
0.06 e.u. b Estimates obtained from the data available in ref 27.
c Estimate obtained upon extrapolating the properties of liquid
water below the freezing point.
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V. Concluding Remarks

In this paper, we have presented a molecular dynamics
calculation of the pair entropy of liquid water, modeled
with the four-point transferable intermolecular potential
(TIP4P) at three distinct thermodynamic states, corre-
sponding to different values of temperature and pressure.
The pair entropy is an integrated measure of two-body
density correlations and represents the predominant con-
tribution to the configurational entropy of a liquid. As
such, it can be confidently used as a local structural
estimate of the total configurational entropy: local, in that
it does not call for an integration of the properties of the
liquid along a thermodynamic path; structural, since it
provides a direct connection between entropy and spatial
order as monitored by the pair distribution function. This
is the first aspect that we have put under scrutiny in this
paper by extending preexisting analyses carried out for
TIP4P water to thermodynamic states other than ambient
conditions. Our new results for the orientational pair
entropy follow from the calculation of the five-dimensional
histogram that we obtained upon sampling, at given
temperature and pressure, the configurations corresponding
to different relative orientations of a generic water
molecule with respect to a reference one, while keeping
their centers of mass at a fixed distance. An intrinsic bias
on the present results comes from the histogram bin width,
with particular regard to the angular resolution. Our choice
(10°), while being that commonly made in previous works
on this subject, arises from a compromise between
resolution and statistical quality of the calculations, a
compromise that is unavoidably forced by the need for
maintaining the overall size of the computation at a
feasible level.

A secondary goal of this paper was that of discussing and
testing some approximate schemes for the orientational
distribution function that are based on the calculation of
lower-order marginals, given the heavy computational task
one has to face in a full-size calculation. In this respect, we
have analyzed the performance of a number of factorizations
that partially modify the “adjusted gas phase approximation”
originally proposed by Lazaridis and Karplus.9 We found
that the best results, as far as both the orientational local
entropy and its integrated value are concerned, were obtained
at all of the three sampled thermodynamic states when using
the so-called MSAGP1 approximation, which includes in-
tramolecular correlations between the angle formed by the
dipole vector of a water molecule and the intermolecular axis,
and the angle describing the rotation of the same molecule
about its own dipole vector. We emphasize that the MSAGP1
estimates were obtained upon sampling the marginal distri-
bution functions over 104 configurations only and appear to
underestimate the corresponding “exact” molecular dynamics
valuesswhich were obtained with a sampling carried out
over a 10 times larger number of configurationssby 12% at
the most.

On the other hand, we have also verified that including
the intermolecular contribution which arises from cross
correlations between the same angles mentioned above but
measured on different molecules does actually worsen the

agreement with the molecular dynamics results in that the
ensuing modified scheme (MSAGP3) manifestly overesti-
mates the degree of orientational order present in the liquid
in a systematic way.
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Stress Analysis at the Molecular Level: A Forced
Cucurbituril-Guest Dissociation Pathway

Michael K. Gilson*

Center for AdVanced Research in Biotechnology, UniVersity of Maryland
Biotechnology Institute, 9600 Gudelsky DriVe, RockVille, Maryland 20850

Received December 14, 2009

Abstract: Changes in mechanical stresses in a tight-binding host-guest system were computed
and visualized as the cation was computationally pulled out of the cucurbituril host in a series
of steps. A sharp conformational transition was observed as one of the guest’s ammonium groups
jumped through the center of the host to the opposite portal. The conformation immediately
prior to this transition was found to possess high levels of Lennard-Jones and electrostatic stress.
This observation, along with the specific distribution of Lennard-Jones stress around the portals,
suggested that the conformational transition resulted from steric constriction, which had been
expected, and electrostatics, which was not expected. An important role for electrostatics, at
least at the level of these calculations, was confirmed by a comparative computational pulling
study of another guest molecule lacking the critical ammonium group. These calculations suggest
that the binding kinetics of diammonium guests that position an ammonium at each cucurbituril
portal will be found to be slower than the kinetics of monoammonium guests. More generally,
the results suggest that computational stress analysis can provide mechanistic insight into
supramolecular systems. It will be of considerable interest to extend such applications to
biomolecules, for which the mechanisms of conformational change are of great scientific and
practical interest.

Introduction

The concepts of mechanical stress and strain are widely used.
For example, engineers rely on them when designing
structures, and geophysicists study stress waves propagating
through the earth. Materials scientists have, furthermore,
developed computational methods of extracting measures of
stress from atomistic simulations,1-6 and such approaches
have recently begun to find application at the level of single
molecules. Thus, Rafii-Tabar has discussed stress and strain
in carbon nanotubes,7 and Yamato and co-workers used
simulations to observe the propagation of stress in photo-
active yellow protein during the “protein quake” generated
by photoisomerization of the chromophore.8 In related earlier
work, Yamato and co-workers computed molecular strain

in proteins under hydrostatic pressure,9 and Beuhler and co-
workers have recently computed stress in connective tissue
proteins.10 Such applications suggest that atomistic stress
theory can contribute to our understanding of molecular
mechanisms and perhaps even guide molecular design.
However, stress calculations have not, so far, been applied
in the context of supramolecular chemistry.

The cucurbiturils,11,12 chemical hosts constructed as rings
of glycouril monomers (Figure 1), have been the subject of
increasing interest in recent years, as they are relatively easy
to synthesize and display distinctive molecular recognition
properties, including the ability to bind dicationic guests from
aqueous solutions,13 sometimes with affinities rivaling the
tightest protein-ligand systems.14-16 The cucurbiturils have
a rich range of properties and potential applications, as
recently reviewed.17-19 Examples include the formation of
polyrotaxanes,20,21 modulation of the fluorescence of guest
dye molecules,22 chemical catalysis,23 and, for specialized
variants, two-site allosteric binding.24 The mechanisms and
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kinetics of cucurbituril-guest binding are thus of consider-
able interest. It is already known that the size of the guest
molecule can strongly influence binding kinetics for
cucurbit[6]uril (CB6) in a manner that is essentially inde-
pendent of binding thermodynamics.25,26 This is presumably
because its portals are of smaller diameter than its internal
cavity. Such constrictive binding27,28 highlights the impor-
tance of steric interactions as determinants of binding kinetics
for these systems, but the pH dependence of binding kinetics
for titratable guests with CB6 indicates that electrostatic
interactions also can influence the stability of the transition
state.29,26

Here, we use computer modeling to study the causes and
distributions of atomistic stress in a host and guest when
they are forced apart, as if in an atomic force microscopy
(AFM) single-molecule experiment. The system consists of
cucurbit[7]uril (CB7)11,12 with a dicationic compound (B5)
predicted30 and proven (Inoue et al., to be published) to bind
CB7 with an ultrahigh affinity similar to that previously
observed for a dicationic ferrocene derivative.15 We also
carry out comparative calculations for a monocationic guest
(B4) predicted30 to bind CB7 less tightly by 3 kcal/mol than
B5 (see Figure 1.) Novel methods of computing and
visualizing changes in atomistic stress are used to evaluate
the relative roles of steric constriction and electrostatics as
kinetic determinants in these systems and reveal informative

and unexpected distributions of molecular stress as the
complexes dissociate.

Methods and Concepts

Molecular Modeling of a Forced Host-Guest
Dissociation. The calculations started with the most stable
conformation of the host-guest complex identified with the
M2 free energy method,31,32 based on previously described
force-field and implicit solvation parameters.30 We judged
a nitrogen of the guest and an equatorial carbon of the host
to be chemically plausible points for added linkages to an
AFM tip and a fixed substrate and assigned pulling forces
to these atoms in a computationally simple fashion by adding
an artificial harmonic bond between them, as illustrated in
Figure 2. The N-C distance was about 5.5 Å in the initial
conformation of the complex. The equilibrium length Bo of
the artificial bond, with force constant 100 kcal/mol/Å2, was
increased in increments, and gradient-based energy minimi-
zation was carried out so that the artificial bond would drive
the guest molecule partly or fully through and out of the
host cavity. The length of the artificial bond after minimiza-
tion, B, was recorded and was also used to compute the
magnitude of the force, F, exerted by the artificial bond at
its N and C attachment points, where F ) 100(B - B0).
This procedure was repeated for various equilibrium lengths
of the artificial bond, and stresses were calculated for the

Figure 1. Host cucurbit[7]uril host (CB7) and guests B4 (monoammonium) and B5 (diammonium).
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resulting conformations. These stresses were compared with
the stresses computed for the most stable conformations of
the free host and guest with the M2 method. The stress
calculations are described below. Hydration effects were
treated approximately by a generalized Born model.33-35

Because the present calculations do not account for thermal
motion, barrier-crossing results only from the conformational
forcing of the artificial bond, rather than from random
thermal motion, and the calculations model only one dis-
sociation pathway. They thus model a fast pulling process,
and the forces and stresses are expected to be larger than
those seen at the lower pulling speeds of typical AFM
experiments. A similar forcing process has been used in a
prior computational examination of cucurbituril-guest dis-
sociation.26

Mechanical Stress and Its Calculation and Visua-
lization at the Atomistic Level. The stress as a function of
position within an object is a tensor field that describes the
action of local forces. Tensile stress occurs when a volume
element of material is pulled in opposite directions from
opposite sides, compressive stress when it is pressed on from
opposite sides, and shear stress when opposite sides are
subjected to oppositely directed tangential forces. A volume
element can be under stress yet experience zero net force.
Accordingly, an object can be in mechanical equilibrium,
yet internally stressed. For example, the cables of a suspen-
sion bridge are under tensile stress, and its towers are under
compressive stress. Furthermore, a local force on a body can
place the whole under stress, with long-ranged consequences.
The transmission of torsional stress and its consequences for
global DNA supercoiling provides an example at the mo-
lecular level. The stress on a volume element generates a
deformation, i.e., to strain, which is also a tensor field. For
elastic materials, stress and strain are linearly related to each
other, and the energy of elastic deformation is directly related
to the product of stress and strain. Such a linear relationship
is not expected to hold in general for molecules, although it
may be a good approximation for ones that are relatively
stiff. Note that strain in this mechanical sense is not identical
with “chemical strain”: mechanical strain is defined as a
spatial deformation induced by stress,36 as just described,
whereas chemical strain is the enthalpy of a molecule relative
to an unstrained reference structure.37

Here, we computed atomistic stresses for individual
energy-minimized conformers of the host, the guests, and

their complexes. Following Zimmerman and co-workers,6

we use Hardy’s expression for the local stress tensor.38 The
stress tensor σi at each atom i was thus computed as

where j indexes atoms within a spherical region of volume
Vloc local to atom i, rij is the vector from atom i to atom j,
and fij is the force exerted by atom j on atom i. This formula
is most straightforwardly applied to center-to-center forces,
so attention here is limited to bonded, Lennard-Jones,
Coulombic, and Generalized Born (GB) forces, the latter
excluding the force contributions from variation in the
effective Born radii. We found it informative to compute
and visualize the stresses associated with each separate force
term, combining the Coulombic and GB stresses to determine
net electrostatic stress. The radius of the spherical region
was set to 5 Å, and all noncovalent force calculations were
cut off at this range. Covalent bond stresses accounted for
only atoms j bonded directly to atom i. Here negative and
positive values of σi imply tensile and compressive stresses,
respectively. For constrictive host-guest binding, one may
anticipate that forcing a bulky guest out through a narrow
portal will generate compressive Lennard-Jones stresses
between the guest and the portal, along with tensile bond
stresses around the portal itself.

Initial calculations indicated that the free molecules
possessed significant baseline stress. We were interested in
stress changes on binding and therefore wished to subtract
the stresses of the free molecules from the stresses of their
complexes. However, a naı̈ve initial approach to evaluating
these differencesssimply subtracting the stress tensorsswas
unhelpful because changes in the lab-frame orientation of
the molecules caused matching tensors in the bound and free
states not to cancel. We therefore subtract the stress tensors
in local molecular coordinate systems, as follows. We
transform each atom’s lab-frame principal stresses before and
after binding into local Cartesian coordinates, subtract free
from bound stresses in these local coordinates, then convert
back to lab coordinates for analysis and display. Separate
local Cartesian coordinates were set up for each atom i by
choosing two atoms j and k, such that i is bonded to j and j
to k. Then the local x axis was aligned with the ij vector,
the local y axis was placed in the ijk plane and orthogonal
to the x axis, and the z axis was oriented along the cross-
product of the x and y unit vectors. The same atom triplets
were used for the free and bound states, in order to establish
consistent local coordinates.

Stresses, or stress differences, at each atom i were
visualized by diagonalizing the tensor σi to provide the
magnitudes and directions of its 3 principal stresses. The
program VMD39 was then used to render each principal stress
as a spindle-shaped glyph made of two thin cones based at
atom i, extending in the positive and negative directions along
the direction of the principal stress and having a length
proportional to the magnitude of the principal stress. Tensile
(negative) and compressive (positive) stress components were
distinguished by coloring their corresponding spindles green
and orange, respectively. The length of each cone (Å) was

Figure 2. Stable bound conformation of CB7 (cyan) with B5
(red), with an artificial forcing bond (green dotted line).
Hydrogen atoms omitted.
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set to the magnitude of the corresponding principal stress
(kcal/mol/Å), scaled by the factor 0.2Vloc. This visualization
approach differs from previously reported tensor glyphs
designed for visualization of stresses in continuous media.40-43

Results

Stresses in the Unbound Host, CB7, and Guest, B5.
Figure 3 displays the stresses computed for the most stable
conformation found for the free guest B5. Bond-stretch
stresses (top left) are tensile (orange spindles) in the
bicyclooctane moiety and weakly compressive in the am-
monium groups. The Lennard-Jones forces (top right) show
compression (green spindles) in the bicyclooctane moiety,
reflecting steric repulsion within this compact ring system
and accounting for the tensile bond stresses. The Coulombic
stresses (middle left) reflect chiefly the influence of the two
ammonium groups, which repel the aliphatic hydrogens of
the bicyclooctane moiety because of their weakly positive
charge and therefore place them under compressive electro-
static stress. The weakly negative bicyclooctanes are cor-
respondingly placed under tensile electrostatic stress. The
GB stresses (middle right) largely cancel the Coulombic
stresses when summed (bottom left), leaving mainly tensile
stress on the ammonium groups, presumably due to unbal-
anced GB forces drawing them toward the high dielectric
solvent. The summed bond-stretch, Lennard-Jones, Coulom-
bic, and GB stresses (bottom right) do not fully cancel,
indicating that this molecule is stressed in even this energy-
minimized conformation.

Figure 4A and B display, respectively, top and side views
of the stresses computed for the most stable conformation
found for the free host, CB7. The bond stresses (top left),
which are mainly tensile (orange), appear to result largely
from local forces intrinsic to the system of linked glycuril
rings. The Lennard-Jones forces (top right), which are mainly
compressive and circumferentially oriented, chiefly reflect
side-to-side repulsions between neighboring carbonyl moi-
eties. The Coulombic (middle left) and GB stresses (middle
right) appear more complicated and display larger radial
components than the bonded and Lennard-Jones stresses, but
as for the free guest (above), they largely cancel when
summed (lower left). The sum of all computed stresses (lower
right) shows considerable overall stress, including compres-
sion of the carbonyl carbons and tension of most other atoms
in the glycouril units.

Stress in the Relaxed Starting Conformation of the
Complex. The starting conformation of the CB7-B5
host-guest complex was generated by a conformational
search and energy minimization in the absence of the artificial
forcing bond. The guest’s bicyclooctane moiety lies in the
middle of the CB7 cavity, while its two ammonium groups
sit at opposite portals of the host and donate hydrogen bonds
to its carbonyl oxygens. The three panels in the left-hand
column of Figure 5 visualize differences in stress, relative
to the free host and guest, for this unforced, energy-
minimized complex. The bond stresses (top left) have
become less tensile and more compressive, relative to the
free molecules, as indicated by the ring of green spindles
around each of the portals of the host, with some variation

of stress around the ring. These observations are consistent
with the fact that binding has reduced the diameter of the
portals slightly and made the host less round and more oval

Figure 3. Stresses in free guest B5. Bonded: top left.
Lennard-Jones: top right. Coulombic: middle left. Generalized
Born: middle right. Electrostatic (Coulombic + GB): lower left.
Total: lower right.
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in shape. One can also see an increase in the tensile bond
stress on the ammonium groups (orange spindles), presum-

ably due to their hydrogen bonding to the host’s carbonyl
oxygens. The Lennard-Jones stresses (middle left) change

Figure 4. (A) Stresses in free host, CB7, top view. Bonded: top left. Lennard-Jones: top right. Coulombic: middle left. Generalized
Born: middle right. Electrostatic (Coulombic + GB): lower left. Total: lower right. (B) Same as in A in side view.
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little relative to the free molecules except for striking new
compressive stresses involving the ammonium groups and
the carbonyl oxygens to which they are hydrogen-bonded
in the complex. These result from steric compression of the
atoms involved in the hydrogen bonds. The same hydrogen
bonds are also associated with strong electrostatic stresses
(lower left): the attractive interactions of oppositely charged
atoms involved in the hydrogen bonds (e.g., ammonium
hydrogen and carbonyl oxygen) cause tensile stresses

(orange), while the associated repulsions (e.g., ammonium
nitrogen and carbonyl oxygen) lead to compressive electro-
static stresses (green).

A Sharp Conformational Transition. The guest is forced
out of the host by incremental increases in the equilibrium
length of the artificial bond, B0 (Figure 2). The bottom
ammonium moves to the top portal, while the top ammonium
group remains on top. The resistance of the guest to exiting

Figure 5. Stresses in three different conformations of the CB7 complex with diammonium guest B5. Left column: unforced
starting structure (B ) 5.5 Å), top view. Middle column: conformation with largest force imposed by the artificial bond (B ) 12.3
Å), side view. Right column: conformation immediately after the conformational transition (B ) 12.4 Å), side view. Bond stresses:
top row. Lennard-Jones stresses: center row. Electrostatic (Coulombic + GB) stresses: bottom row. The lengths of the bond
stress symbols on the two atoms involved in the artificial bond (Figure 2) were scaled down by an additional factor of 0.2.
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the host is manifested by the magnitude of the force, F,
exerted by the artificial bond as a function of its length, B.
As graphed in Figure 6A (blue), this force peaks at B )
12.3 Å and then drops sharply at 12.4 Å. The drop
corresponds to a conformational transition in which the
guest’s bottom ammonium cationic group jumps from the
bottom portal of the host to the top one. This jump is
illustrated in Figure 6B, which shows a sudden increase in
the distance of the bottom ammonium group from the bottom
portal and a simultaneous drop in its distance to the top
portal. The conformations immediately before and after this
transition are shown in the middle and right-hand columns
of Figure 5, respectively.

When the pulling force is at its maximum (B ) 12.3 Å),
the complex is highly stressed (Figure 5, middle column).

The graphical visualization of bonded stress (top middle)
includes two large, diagonal green spindles (rendered at
reduced scale) at the N and C atoms used as attachment
points for the artificial bond. These indicate that the artificial
bond is compressed, because it is pushing the N and C atoms
apart. There is also a large buildup of tensile bonded stress
(top middle) around the top portal. The stress is greatest at
the left of the top portal, toward which the guest is being
pushed. In addition, and rather unexpectedly, the left side
of the lower portal is under compressive, rather than tensile,
stress (green). There is also tensile bonded stress along the
long axis of the guest, consistent with the fact that its top
ammonium is being pushed up and to the left while the rest
of the guest is stuck partway through the host. The Lennard-
Jones stresses (center middle) are also focused at the left-
hand side of the top portal, since the artificial bond is pushing
the guest against the host in this region. The electrostatic
stresses (bottom middle) reflect hydrogen-bonding of the top
ammonium with the top portal and also show tension between
the bottom ammonium and the bottom portal.

After the conformational transition (B ) 12.4 Å), when
the bottom ammonium has jumped through the host and is
now hydrogen-bonded with the top portal (Figure 5, right-
hand column), the stresses have become markedly smaller.
This is particularly evident in the bonded stresses (top right
vs top middle). It is interesting to note a persistent spine of
modest tensile stress along the axis of the guest molecule,
presumably due to the interplay of the imposed pulling force
and the restraining H bonds of the ammonium groups with
the carbonyls. The Lennard-Jones stresses also have fallen
markedly (center right) and show mainly compressive steric
stresses, once again involving ammonium-carbonyl hydro-
gen bonds. The electrostatic stresses (bottom right) also are
consistent with this pattern of hydrogen-bonding.

Physical Basis for the Conformational Transition. We
had initially conjectured that the sharp conformational
transition resulted from a build-up and release of compressive
Lennard-Jones stress as the bulky bicylooctane group passed
through a constrictive exit portal, much as previously argued
for a host-guest system involving cucurbit[6]uril (CB6).26

However, this view was not fully supported by the stress
analysis, because the compressive Lennard-Jones stress prior
to the transition (Figure 5, top middle) does not extend
around the whole portal but is localized on the left-hand side,
where the artificial bond is driving the guest. In addition,
the bicyclooctane group appears to have already passed most
of the way through the top portal by time the forcing bond
has reached a length of 12.3 Å. An alternative view is
suggested by the observation of tensile electrostatic stresses
between the bottom ammonium and the bottom portal (Figure
5, bottom middle). Both Coulombic attractions between the
bottom ammonium and the bottom portal carbonyls and GB
forces resisting desolvation of the ammonium group could
contribute to the resistance of the bottom ammonium to
passing through the host, and the view that electrostatics
make a major contribution to the dissociation barrier would
be broadly congruent with prior observations regarding the
role of the guest molecule’s pH-dependent charge in the
binding kinetics of CB6.29

Figure 6. (A) Computed forces exerted by the artificial bond
vs the bond length, for guests B5 (blue) and B4 (red). (B)
Closest distance of bottom ammonium nitrogen to bottom
portal (solid) and top portal (dashed), as a function of the
length, B, of the forcing bond.
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We tested this idea by repeating the calculations with guest
B4 (Figure 1), which is the same as B5 except that it lacks
one methylammonium group. The computational pulling
experiment was arranged so that the single ammonium group
would lie at the top portal and only the bulky but electrically
neutral bicyclooctane moiety would need to clear the exit
portal. The peak of the new length-force curve (Figure 6a,
red) is only half as high as the original and is shifted from
12.3 Å to 10.4 Å. This change indicates that the original
electrostatic impediment to dissociation has been removed
and its place taken by a different interaction. Visualization
of the B4 complexes reveals that this guest, too, undergoes
a sharp conformational transition in which the bicyclooctane
moiety jumps from an intermediate location (Figure 7, left
column) to the top portal (Figure 7, right column) as the
peak in the length-force curve is passed. The pattern of
Lennard-Jones stresses (Figure 7, top row) is similar to that
for B5 at the peak of its force curve (Figure 5 top), but less
intense. The same is true for the bond stresses (not shown).
The electrostatic stresses (Figure 7, bottom row) are very
similar to those for B5 (Figure 5, bottom), except for the
absence of stresses on the deleted ammonium group.
Comparison of these results with those for guest B5 support
the view that electrostatics plays a major role in the
conformational transition of the latter.

Discussion

This computational stress analysis yields mechanistic insights
into the forced dissociation of a high affinity cucurbituril-guest
complex. We had initially expected to observe a classic

constrictive binding process, i.e., one in which a peak in the
length-force curve resulted from steric hindrance as the
bulky bicyclooctane moiety passed through a relatively
narrow CB7 portal.27,28 However, the pattern of Lennard-
Jones stress at the peak of the length-force curve did not
appear fully consistent with this expectation, and we
observed, furthermore, that the ammonium being pulled
through the host was under tensile electrostatic stress. These
observations suggested that electrostatics might play an
important role in establishing the peak in the force curve.
Such an explanation would be physically reasonable because
the hydrogen bond of the bottom ammonium to the bottom
portal must be broken for the forced dissociation to occur.
Moreover, the work of dehydrating the ionized ammonium
on entering the host’s cavity should be substantial. Compara-
tive calculations for another guest molecule lacking the
bottom ammonium group supported the importance of
electrostatics, because the force maximum was reduced and
shifted. These results suggest that the association kinetics
of CB[7] guests will tend to be faster for monocationic guests
than for diammonium guests that position on ammonium at
each portal. Both binding and dissociation are expected to
be slowed by the requirement of driving one of the
ammonium groups through the middle of the host for either
process. It is reasonable that electrostatics should be of central
importance for diammonium guests, given that even mono-
cationic guests have kinetics that are sensitive to charge.29

It was also interesting to observe a complex distribution
of bond stresses around the portals of the host in the highly
stressed conformation immediately before the conformational

Figure 7. Lennard-Jones (top) and electrostatic (Coulombic + GB, bottom) stresses in two conformations of the CB7 complex
with monoammonium guest B4. Left: conformation with peak force. Right: conformation immediately after peak force, with guest
shifted to top portal.
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transition involving the diammonium guest, B5. The tensile
forces at the top portal could have been anticipated, but the
appearance of compression around the bottom portal was
more surprising. Such results are reminiscent of stress
patterns computed for engineered structures and could be
useful as a basis for molecular engineering aimed at tailoring
energy barriers or molecular processes and pathways.

The present treatment of the forced dissociation process
is preliminary in the sense that, like a prior study,26 it does
not account for thermal motion. The calculations thus are
inconsistent with the quasi-adiabatic assumption that the
system equilibrates rapidly with respect to the time constant
for barrier crossing.44 Therefore, we have in effect studied
only a single dissociation pathway for the CB7-B5 complex.
One way to arrive at a more comprehensive description might
be to carry out a molecular dynamics simulation for each
equilibrium length of the artificial forcing bond and use the
resulting trajectory snapshots to compute time-averaged
stresses at each atom. This would effectively sample multiple
pathways for the dissociation process, leading to lower
computed forces and stresses. Such a result would be more
consistent with the lower forces observed in single-molecule
AFM measurements for related host-guest systems.45,46 It
is also important to note that the bimolecular rupture
(unbinding) force measured by AFM is not an intrinsic
property of the molecular system, but instead depends upon
the rate at which the two molecules are pulled apart, with
higher rates leading to greater forces.47,48,44 Thus, an even
better, though more challenging, calculation would be to
model the dynamic pulling process itself.

This paper also describes two methodological contributions
to the application of stress calculations at the molecular level.
One is the calculation of changes in stress in internal
molecular coordinates, rather than in lab-frame coordinates,
in order to enable meaningful comparisons of stresses among
different conformational states and molecular orientations.
The second is the method of displaying atomistic stress
tensors. This is not trivial challenge, given that the stress on
each atom is a symmetric 3 × 3 stress tensor with 6 distinct
components.

The present study supports and advances the usefulness
of computational stress analysis at the molecular level. It
proves to be remarkably straightforward and informative to
compute, compare, and visualize the stresses associated with
various force components for host-guest systems. It will
be interesting in the future to explore broader applications,
especially to biomolecules, for which studies of static and
dynamic stress can bear on atomistic mechanisms of con-
formational change that are of enormous scientific and
practical importance.
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Abstract: In this paper, we present a simple numerical approach to implement the modified
Becke-Roussel (mBR) model for the purpose of developing an exchange density functional
suitable for applications to atoms or molecules. Three steps constitute our approach. The first
step is to model the exchange hole with the mBR distribution with the form of FXσ

mBR ) (R/π)3/2

exp (-Rr2) at each reference point, where R and r represent, respectively, the diffuseness and
the distance of the model exchange hole from the reference point. We propose an iterative
procedure to determine the values (R, r) during the Kohn-Sham DFT calculation. Second, we
make a GGA correction to the functional obtained in the first step by adopting the conventional
GGA formula to the gradients of the spin density as well as the mBR exchange hole (mBR-
GGA). In the third step, mBR-GGA is combined with Dirac’s exchange functional to restore the
exchange energy at the homogeneous electron gas limit (mBR-hyb). We demonstrate that the
exchange energy densities of the mBR-based methods obey the -1/r asymptotic behaviors by
virtue of the fact that the electron density in a hydrogenic atom is used as a prototypical exchange
hole. Furthermore, we perform several test calculations for the properties of small molecules.
For atomization energies for 35 molecules in the G2 set, the mean absolute deviation (MAD)
with respect to the experiment is estimated to be 4.9 kcal/mol by the mBR-hyb functional, which
is much smaller than the value of PBE functional (7.7 kcal/mol). The MAD for the enthalpies of
formation of 68 molecules in the G3 set is evaluated as 9.4 kcal/mol by the present method,
while that is given as 18.7 kcal/mol by the PBE functional. These results suggest the possibility
of the present functional based on the mBR model for the applications to atoms or molecules.

1. Introduction
The density functional for the exact exchange energy of
homogeneous electron gas was first formulated by Dirac in
an attempt to establish a purely density-functional ap-
proximation for the electronic energy of a system.1 The
exchange functional was then introduced into the effective
Hamiltonian in place of the exact exchange potential by
Slater for the purpose of simplifying the Hartree-Fock
method.2 Later, this approach was reinterpreted within the
rigorous framework of the Kohn-Sham density functional
theory (KS-DFT)3 and was validated as the local density

approximation (LDA). The possibility of gradient corrections
to the inhomogeneous electron density in a real system was
first suggested by Hohenberg and Kohn4 and afterward
successfully taken into account by the method termed
generalized gradient approximations (GGA).5,6 The simplest
form of the gradient correction is based on the lowest order
gradient expansion,7 which is, however, divergent in the limit
of low electron density. In 1988, Becke proposed a nondi-
vergent form of the functional satisfying correct asymptotic
behavior of the exchange energy density (B88),8 where one
adjustable parameter was introduced in the correction term.
Later in 1996, Perdew, Burke, and Ernzerhof developed an
empirical-parameter-free exchange functional by imposing
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some physical constraints (PBE).9 These exchange formulas
in combination with correlation functionals achieved almost
comparable accuracies to some molecular orbital theories
considering the electron correlations. The success of the GGA
correction encouraged subsequent improvements of the
functional. In 1993, Becke proposed to mix the exact
exchange potential to incorporate the kinetic correlation
energy10 in the functional through the adiabatic connection
method. Perdew et al. made remarkable improvements in
the computation of the molecular atomization energies by
the method termed meta-GGA that includes the kinetic
energy density and/or the Laplacian of the electron density
in the functional.11 A number of functionals are also being
developed to compensate for other deficiencies inherent in
the LDA-based KS-DFT such as the self-interaction error
(SIE)5,6,12,13 or the lack of long-range behavior of the
exchange potential.6,14,15 As shown in the Figure 1 in ref
16, each step in the development is often compared to various
rungs of “Jacob’s ladder” that may lead to the heaven of
chemical accuracy.

Here, we pose a question whether the ladder in which LDA
is regarded as the first rung is the only way to improve the
exchange-correlation functionals. The exchange hole distri-
bution in the homogeneous electron gas is spherically
symmetric around the reference electron as a matter of
course. In a bulk system, such hole behavior simulated by
LDA gives a reasonable description for the real exchange
hole. The bulk system has no boundary of the electron cloud,
and hence, the exchange hole is always localized to some
extent in the vicinity of the reference electron. On the
contrary, in a finite molecular system, the exchange hole
resides at the molecule even when the reference electron is
placed far apart from the molecule. This is the origin of the
fact that the exact exchange energy density as well as the
exchange potential obeys -1/r asymptotic behavior given
that r is the distance between the reference electron and the
molecule. Nevertheless, the hole depth within the LDA
description decreases exponentially as r increases because
of the exponential decay of the electron density. This results
in a well-known unsatisfactory short-range behavior of the
exchange energy density.8 Thus, there is still room to
consider another candidate for the exchange functional for
the applications to atoms and molecules instead of the
conventional route that begins with the homogeneous electron
gas.

In this respect, Becke and Roussel (BR) proposed a unique
exchange hole model for inhomogeneous systems.17,18 They
introduced the density of a 1s electronic wave function in a
hydrogenic atom as a model of the exchange hole in
molecular systems. The nuclear charge of the atom (which
determines the diffuseness of the hole) and the distance of
the hole from the reference electron are determined by
imposing a condition that the model hole realizes the
behavior of the spherically averaged exchange hole of the
real system near the reference point. The exchange energy
density is, then, computed as the Coulomb interaction
between the reference electron and the exchange hole. The
BR approach seems to be a natural choice for the exchange-
hole model for the systems suffering serious inhomogeneity,

such as atoms or molecules. It is worth noting that the long-
range nature of the exchange energy density is fully restored
in the BR model since it takes the hydrogenic atom as a
prototypical system. In the subsequent developments by
Becke et al., the BR model was utilized in the functional as
a device to simulate the static correlations19 or to generate
the dispersion interactions.20 The drawback of the BR
approach is that the functional derivative with respect to the
electron density cannot be evaluated explicitly, and hence,
the variational potential appearing in the KS equation cannot
be obtained as suggested in ref 18. In the writing of this
paper, we noticed that Neumann et al. provided an efficient
numerical technique to implement the BR functional into
the self-consistent calculations in the KS-DFT with LCAO
(linear combination of atomic orbitals) basis sets.21,22

However, its realization in the computation with the real-
space grids method23 as well as the plane wave basis would
still remain to be difficult. Although the BR model has many
encouraging properties, so far there have been only a small
number of numerical examples to the best of our know-
ledge.18,22,24 In addition, in most cases in these studies, the
one-electron wave functions were given at the outset, and the
BR model was only used to evaluate the exchange energies for
the given electron densities. In the present work, to quest for a
new route to the exchange functional for practical applications,
we propose a simple numerical approach efficient for any choice
of the basis set within the framework of the BR model. Our
strategy to implement the BR approach is to express the nuclear
charge of the hydrogenic atom (or equivalently the exponent
of the hole) as a functional of the electron density at the
reference point. Then, the distance between the reference
point and the hole is determined by ensuring that the hole
density coincides with the electron density at the reference
point. Second, the gradient correction to this scheme is
also taken into consideration by utilizing the conventional
GGA formula.

The organization of this paper is as follows. Section 2 is
devoted to describing the details of the methodology. We
first present a concise review for the original BR approach.
Then, our approach is presented for the numerical imple-
mentation of the modified BR model in KS-DFT. The
computational details for the test calculations utilizing the
real-space grids approach are presented in section 3. We
examine in section 4 the behaviors of the exchange energy
density as well as the exchange potential with respect to the
variation of the distance between the reference point and a
molecule of interest. We also study the efficiency of the
method by computing several properties of the small
molecules such as atomization energy, ionization potentials,
etc. In section 5, we provide a summary and conclusions to
discuss the possibilities of the BR-model-based exchange
functional.

2. Methodology

2.1. Exchange Hole Based on the Becke-Roussel
Model. In the Becke-Roussel (BR) approach,18 the ex-
change hole distribution FXσ(R) for spin σ in a molecule is
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represented by a Slater function, which is a normalized 1s
orbital density of a hydrogenic atom:

In eq 1, R is the distance of the center of the hole from
the reference electron. R specifies the diffuseness of the hole
and is related to the nuclear charge of the hydrogenic atom.
Provided that R and R are known for any given reference
point r, the exchange energy density UXσ

BR(r) based on the
BR approach is expressed by the Coulomb interaction
between the reference electron and the exchange hole
distribution; thus,

In eq 2, Ωs denotes the integration over a sphere of radius
s centered at the reference point r. The energy of eq 2
represents the exchange energy per electron in the BR model
at the point r and is often referred to as exchange energy
density. Note that UXσ

BR(r) is only dependent on the values
(R, R). The exchange energy for spin σ is, then, given by
using UXσ

BR(r); thus,

For the evaluation of the exchange energy, it is required
to obtain the values (R, R) in eq 1 at every reference point.
Becke and Roussel proposed to use these values as param-
eters to mimic the realistic exchange hole by a proper fitting
at each reference point. Explicitly, the values (R, R) are
determined by imposing the condition that the spherical
average of the Taylor expansion of the model exchange hole
around the reference point reproduces that of the real system
up to the second order term of the expansion. In the
following, we briefly review the procedure to determine (R,
R). The exact spherically averaged exchange hole near the
reference point r is expressed by

where s is the radius of the sphere centered at r. Fσ(r) in eq
4 is the electron density with σ spin, and Dσ is given by

where τσ is the kinetic energy density and is defined as

γ in eq 4 is the parameter to be used in later reference, and
the equality γ ) 1 holds in the exact expression.

For the exchange hole model defined by eq 1, the
spherically averaged exchange hole is analytically expressed
by a function of the variables (R, R) as

By equating the first two coefficients of the Taylor
expansion of eq 7 to those of the real system given by eq 4,
we obtain two equations:

and

Then, they lead to the following equation with the definition
of x ) RR,

The variable x in eq 10 is obtained by using the
Newton-Raphson scheme, from which the parameters (R,
R) are determined. Importantly, eq 10 assures the existence
of a unique and positive root x for all conditions. The
exchange energy density at reference point r is, then, given
by

It is readily verified that UXσ
BR(r) behaves as -1/r when r

is placed far apart from the molecular system. It is worth
noting that one of the important features to be fulfilled by
the approximate exchange functional is, thus, naturally
incorporated in the BR functional from the outset by virtue
of the fact that the atomic electron density is chosen as a
prototypical system.

2.2. Modified Becke-Roussel Model and Its Imp-
lementation. Here, we introduce a modified Becke-
Roussel (mBR) model where the exchange hole is modeled
by a Gaussian function instead of the Slater type one as
given by eq 1. Recently, such a modification was also
suggested by Bahmann and Ernzerhof,25 who mixed the mBR
model with LDA by a switching factor, where the missing
cusp of the hole distribution is traded for the simplified
integrals. In the present work, we introduce the mBR model
for the purpose of suiting the BR model to the Kohn-Sham
equation that utilizes pseudopotentials. The exact exchange
hole at a given reference point is described in terms of the
one-electron wave functions, and hence, the exchange-hole
distribution reflects the behavior of the one-electron wave
functions to some extent. Since the point of the BR approach
is to express the spherical average of the hole distribution
by that of the atomic orbital density, a Gaussian function
will be well suited to mimic the behavior of the pseudo-
wave functions of which variation near the nuclei are forced
to be sufficiently smooth. On the contrary, the Slater function
of eq 1 is appropriate for modeling the exchange hole in
all-electron calculations where the wave functions have cusps

FXσ
BR(R) ) R3

8π
exp(-RR) (1)

UXσ
BR(r) ) -∫0

∞
ds

1
s ∫Ωs

FXσ
BR(r + s) ds (2)

EXσ
BR ) 1

2 ∫ dr FXσ(r) UXσ
BR(r) (3)

FSA-Xσ(r, s) ) Fσ(r) + 1
6

(∇2Fσ - 2γDσ)s2 + · · ·

(4)

Dσ ) τσ - 1
4

(∇Fσ)2

Fσ
(5)

τσ ) ∑
i

|∇φσi|
2 (6)

FSA-Xσ
BR (R, R;s) ) R

16πRs
[(R|R - s| + 1) exp(-R|R - s|) -

(R|R + s| + 1) exp(-R|R + s|)] (7)

R3exp(-RR) ) 8πFσ (8)

R2R - 2R ) 6RQσ/Fσ, Qσ ) 1
6

(∇2Fσ - 2γDσ) (9)

x exp(-2x/3)
x - 2

) 2
3

π2/3
Fσ

5/3

Qσ
(10)

UXσ
BR(r) ) - 4π∫0

∞
ds FSA-Xσ

BR (R, R;s)s

) -(1 - exp(-R) - 1
2

R exp(-R))/R
(11)
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near the nuclei. In the present work, we propose a numerical
approach for implementing both the mBR and the original
BR methods. Within the mBR model, the exchange hole is
represented by a normalized Gaussian function:

The notations in eq 12 are synonymous with those in eq
1. As discussed for the original BR model in section 2, the
determination of the parameters (R, R) is also crucial in the
mBR approach. We propose here a simpler numerical
approach to obtain these values than those proposed in refs
18 and 21. At first, we consider two limiting situations for
a reference electron. In case 1, the reference electron is
assumed to be placed at the position where the electron
density of the system has its maximum value Fσ

max (F(r) )
Fσ

max). And in case 2, it is assumed that the reference point
is placed far apart from the molecular system (F(r) = 0).
The concept of the Fermi orbital suggests that the behavior
of the exchange hole is dominated by the orbital that gives
a major contribution to the total density at the reference point.
Hence, it is reasonable to consider that the exchange-hole
distributions for the reference electrons in cases 1 and 2 are
characterized by the core orbital and the HOMO of the
system, respectively. Then, for these two limiting situations,
it is possible to estimate approximately the parameters (R,
R) in eq 12. For case 1, the center of the exchange hole may
coincide well with the position of the reference electron,
which implies that the variable R in eq 12 can be taken as
zero. Further, we impose a physical constraint that the
exchange-hole density at the reference point is exactly the
same with the electron density

This condition can be easily verified by taking s ) 0 in
the expansion of eq 4. Then, we have

where R1 denotes specifically the value of R for case 1. As
for the reference electron in the opposite situation (case 2),
the exchange hole obeys the asymptotic form as derived in
refs 26 and 27; thus,

Equation 15 is consistent with the fact that the wave
function decays exponentially in the asymptotic region. More
importantly, the exponent R0′ in eq 15 can be approximately
related to the ionization potential I as follows:

According to the proof given in ref 28, the eigenvalue
εHOMO of the exact Kohn-Sham equation is identical to -I.
Hence, R0′ in eq 16 can be approximated as

To employ the mBR model for describing the asymptotic
hole distribution, the Slater function with exponent R0′ given
by eq 17 has to be fitted by a Gaussian function. As shown
in ref 29, the value R0, defined as the exponent for case 2,
can be derived from R0′ by least-squares fitting and the
scaling relation; thus,

where R0
1.0 is the exponent of the Gaussian function fitted to

the Slater one with the exponent R0′ ) 1.0. Thus, we can
deduce approximately the exponents R1 and R0 with R ) 0
and R f ∞ corresponding to the opposite situations F(r) )
Fσ

max and F(r) ) 0, respectively. Here, we should note that
the use of εHOMO leads to an undesirable consequence that
the size consistency cannot be fulfilled. To show this, we
consider a complex of two monomers with different HOMO
energies at a large separation. Then, the HOMO energy of
the complex will be the same as the constituent molecule
with the larger eigenvalue. Hence, the complex does not have
the same energy as the separated fragments. Thus, our present
approach violates the size consistency. This limitation should
be kept in mind in simulating the dissociation processes.

For the determination of the exponent R in eq 12 for the
intermediate reference point r, which satisfies 0 < Fσ(r) <
Fσ

max, we introduce the interpolation

where p is the scaling parameter. Once the exponent R is,
thus, obtained, the distance R between the reference point
and the exchange hole can be simply derived from the
relation Fσ(r) ) FXσ

mBR(R) as

Since the exchange energy density UXσ
mBR is the Coulomb

interaction between the reference electron and the exchange
hole, UXσ

mBR is simply given by

with the definitions of eqs 19 and 20. Then, the exchange
energy EXσ

mBR of the system based on the mBR model is given
by

It should be noted that the functional of eq 22 fulfills the
important property that the exchange hole contains just one
electron. Furthermore, it is ensured by the construction that
the exchange-hole density at the reference point is exactly
equal to the electron density (i.e., the first term of the
expansion of eq 4 is ensured). Here, we also note that it can
be readily proved there exists no real value of R for p > 2/3
in eq 19. In other words, we can choose p as a scaling
parameter to control the diffuseness of the exchange hole
with respect to the magnitude of the spin density. At first,

FXσ
mBR(R) ) (Rπ)

3/2
exp(-RR2) (12)

FXσ
mBR(R)|R)0 ) Fσ

max (13)

R1 ) πFσ
max 2/3 (14)

lim
Rf∞

FXσ ) exp(-R′0R) (15)

1
2
R′0

2 ) I (16)

R′0 ) (-2εHOMO)
1/2 (17)

R0 ) R0
1.0 × R′0

2 (18)

R - R0

R1 - R0
) (Fσ(r)

Fσ
max )p

(19)

R ) (- 1
R

log((π
R)

3/2
Fσ(r)))

1/2
(20)

UXσ
mBR(r) ) - 1

R
Erf(-R

1/2R) (21)

EXσ
mBR ) 1

2 ∫ dr Fσ(r) UXσ
mBR(r) (22)
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we check the performance of the functional with the critical
value of p ) 2/3 to assess the efficiency of the present
approach based on the BR model and then optimize the
parameter to refine the functional (see details in section 2.4).

For the implementation of the mBR approach in the
Kohn-Sham equation, it is necessary that the exchange
potential νXσ

mBR(r) is obtained by the derivative of EXσ
mBR with

respect to the density Fσ(r),

As described in the previous paragraph, the exchange
functional EXσ

mBR defined by eqs 19-22 contains the param-
eters R1 and R0. We note that these parameters are also
dependent on the electron density; however, the derivatives
of the exponents R1 and R0 with respect to Fσ(r) are
unavailable. Here, we adopt the following numerical ap-
proach to determine these parameters iteratively. Analytical
expression ν̃Xσ

mBR(r) for the derivative δUXσ
mBR(r)/δFσ can be

readily obtained by supposing that the values R1 and R0 are
fixed. Then, we consider solving the following Kohn-Sham
equation with the exchange potential νXσ

mBR′,

where VH-ps is the sum of the Hartree and pseudopotentials,
and νcσ denotes the correlation potential. The solution of eq
24 leads to the electron density Fσ(r) and εHOMO, from which
we derive new values of R1 and R0 by eqs 14, 17, and 18.
Using the renewed R1 and R0, we reconstruct the potential
ν̃Xσ

mBR(r) and solve eq 24. This procedure is continued until
the parameters R1 and R0 converge. We confirm in practice
that the renewal of these values at every SCF step is sufficient
for the convergence. This iterative approach will give rise
to an instability in the SCF procedure to some extent;
however, our test calculation shows a satisfying convergence
rate as demonstrated in section 4.1. Thus, we obtain a
simplified procedure based on the BR model for describing
the exchange energy. In closing this paragraph, it should be
noted that we are not guaranteed to have the proper exchange
potential even at the convergence since it is not possible to
obtain the correct Kohn-Sham eigenvalues.

So far, we have discussed the practical implementation
of the mBR approach that is efficient for the calculations
with the plane-wave basis and real-space grid methods
utilizing pseudopotentials. Here, we also illustrate a method
along this line for the original BR model with the form of
eq 1. As for the exponent R1′ of the Slater-type exchange
hole for the situation of case 1, we have

as the counterpart of eq 14 for the Gaussian function. The
exponent R0′ for case 2 is directly determined by eq 17 when
we employ the Slater function. Then, the exponent R′ for
the intermediate reference point can be determined as

We note that the scaling parameter p′ in eq 19′ can also
be considered as an adjustable parameter which should satisfy
0 e p′ e 1/3. In accord with the choice of p ) 2/3 in eq 19
for the case of the Gaussian-type exchange hole, p′ is taken
as 1/3 for eq 19′. Then, the distance r′ between the reference
point and the center of the Slater-type hole is expressed as

The exchange energy density UXσ
BR is exactly expressed in

the form given by eq 11. The subsequent procedure for the
SCF calculation for the solution of the Kohn-Sham equation
is essentially parallel to that for the mBR model.

2.3. Gradient Correction to Modified Becke-Roussel
Model. The exchange functional introduced in the previous
section is originated from the BR model and has an important
property that the exchange energy density obeys -1/r
asymptotic behavior for the reference electron placed far
apart from the molecule. It is obvious that this advantage is
attributed to the nature of the atomic electron density chosen
as a model exchange hole. However, our simplified approach
does not involve the information of the gradient of the
electron density in its functional. And, hence, it gives exactly
the same value of the exchange energy density at two
different points as far as they have the same electron density.
Here, we propose a method to incorporate the gradient
correction into the mBR approach (mBR-GGA) by utilizing
the conventional GGA formalism. In the following, we
present the formulation for the mBR-GGA approach. At first,
we consider the expansion of the spherically averaged
exchange hole for the mBR model that is completely parallel
to eq 4; thus,

The notational conventions in eq 25 are, of course,
common with those in eq 4, except that the superscripts mBR
are attached to each function. The exact spherically averaged
exchange hole FSA-Xσ(r,s) can be formally written as

By substituting the expansions given by eqs 4 and 25 into
eq 26, we obtain an exact expression for FSA-Xσ(r,s) as

The relation of FXσ
mBR(r) ) Fσ(r) is used in taking the

subtraction in the parentheses of eq 26. The exchange energy
contribution due to the term FSA-Xσ

mBR (r,s) in the right-hand
side of eq 27 is what we discussed in section 2.2 and
explicitly given by eq 22. The s2 terms in the parentheses of
eq 27 are the leading terms of the gradient corrections for

νXσ
mBR(r) ≡

δEXσ
mBR(r)

δFσ
) 1

2(UXσ
mBR(r) + Fσ(r)

∂UXσ
mBR(r)

∂Fσ
)
(23)

[-1
2

∇2 + VH-ps(r) + ν̃Xσ
mBR(r) + νcσ(r)]�iσ(r) ) εi�iσ(r)

(24)

R′1 ) 2(πFσ
max)

1/3 (14′)

R′ - R′0
R′1 - R′0

) (F(r)
Fmax

)p'
(19′)

R' ) - 1
R′log(8π

R′3
Fσ(r)) (20′)

FSA-Xσ
mBR (r, s) ) FXσ

mBR(r) + 1
6

(∇2FXσ
mBR - 2γDσ

mBR)s2 + · · ·

(25)

FSA-Xσ(r, s) ) FSA-Xσ
mBR (r, s) + (FSA-Xσ(r, s) - FSA-Xσ

mBR (r, s))
(26)

FSA-Xσ(r, s) ) FSA-Xσ
mBR (r, s) + ((1

6
(∇2Fσ - 2γDσ)s2 + ...) -

(1
6

(∇2FXσ
mBR - 2γDσ

mBR)s2 + ...)) (27)
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the electron density of the real system and the exchange hole
distribution of the mBR model. Here, it should be reminded
that the GGA approach is constructed to evaluate ap-
proximately the contribution due to the s2 term in the gradient
expansion. Our method to evaluate eq 27 is to compute
gradient corrections in the parentheses by employing the
available GGA exchange functionals EXσ

GGA such as B88 and
PBE; thus,

In eq 28, the exchange energy contribution EXσ
LDA due to

the homogeneous electron gas, which is included in the GGA
functional, completely vanishes by the subtraction in the
parentheses. Furthermore, when |∇Fσ| is equal to |∇FXσ

mBR| at
a reference point, the exchange energy density UXσ

mBR-GGA is
the same with UXσ

mBR at that point due to the cancellation of
the gradient terms. It is worth noting that no empirical
parameter is newly introduced in the construction of eq 28.
For the SCF procedure to solve the Kohn-Sham equation,
the functional derivative of eq 28 with respect to density
(νXσ

mBR-GGA(r) ≡ δEXσ
mBR-GGA/δFσ) is necessary. We take es-

sentially the same procedure as that proposed in the previous
section, that is, the exchange potential ν̃Xσ

mBR-GGA(r) in
Kohn-Sham equation is computed with the exponents R0

and R1 frozen. Then, these values are to be renewed after
every SCF cycle to construct a new exchange potential. This
process is iterated until the exponents as well as the electron
density are converged.

2.4. Combination of Modified Becke-Roussel Model
with LDA. The exchange functionals EXσ

mBR and EXσ
mBR-GGA

discussed so far are along a unique line that starts from an
inhomogeneous electron density as a prototypical hole
distribution. However, these functionals have a crucial
deficiency that they do not yield the exact LDA exchange
energy at the homogeneous electron gas limit. This situation
is also true for the original BR model described in section
2.1. Becke and Roussel proposed a method to recover the
LDA exchange energy at the homogeneous limit by substi-
tuting γ ) 0.8 in eq 9 instead of the true value of 1.0. Here,
we take a mixing scheme (mBR-hyb) which hybridizes the
EXσ

mBR-GGA with an LDA based exchange functional in a similar
way to that proposed by Bahmann and Ernzerhof.25 That is,
we introduce the hybrid exchange functional EXσ

mBR-hyb as

In eq 29, R is the distance between the reference point r
and the center of the exchange hole described by the mBR
model, and it is explicitly given by eq 20. UXσ

LDA-GGA denotes
the standard LDA-based GGA exchange functional, and c
expresses the mixing parameter. We note that, for the system
with uniform electron density, Fσ(r) ) Fσ

max holds wherever
the reference point is chosen, and hence, R is equal to zero
and the second term of the right-hand side of eq 29 vanishes.
Thus, it is readily recognized that the functional of eq 29

recovers the exact exchange energy at the uniform gas limit.
The mixing parameter c in eq 29 is, of course, an unknown
parameter and considered to be an adjustable parameter to
tune the distance at which the mBR exchange hole is mixing
in. As noted in section 2.2, we at first take the parameter p
in eq 19 as 2/3, and correspondingly the mixing parameter
is chosen as c ) 1.0 to ensure almost the exact value of 0.5
au for the electronic energy of a hydrogen atom. Then, the
two-dimensional optimization for the parameter set (p, c) is
carried out to attain the best performance of the present
functional. It should be stressed that p and c are adjustable
but surely contain physical meanings. Lastly, it should be
noted that the GGA correction to the original BR model with
the form of eq 1 can also be formulated in parallel to that
for the mBR model described above.

3. Computational Details

Here, we present the computational details for the test
calculations performed for small molecules. We have imple-
mented the series of the mBR-based exchange functionals
described above in our original code, which utilizes the real-
space grids (RSG) and the pseudopotentials.30-32 The
methodological details for our RSG approach were presented
in refs 23, 33, and 34. The kinetic energy operator in the
one-electron Hamiltonian has been represented by the fourth-
order finite-difference method. The nonperiodic hartree
potential has been constructed by the method proposed in
ref 35. The pseudopotentials derived by the method of
Kleinmann and Bylander36 have been used to express the
effective potentials for valence electrons. A molecule of
interest has been placed in the center of a cubic cell of which
the axis has been uniformly discretized by 64 grids along
each direction. The time-saving double grid approach
proposed by Ono and Hirose37 has been utilized to realize
the rapid behavior of the nonlocal pseudopotentials as well
as the pseudo-wave functions near the atomic cores. We have
set the width of the original coarse grid at h ) 0.1518 Å
and that of the double grid at h/3. The convergence of the
SCF procedure has been judged by the root-mean-square δ
for the deviation of the electron density. To be specific, δ <
10-5 is imposed on the SCF convergence, which typically
ensures the convergence within 10-6 ∼ 10-7 Eh in the total
electronic energy. The use of the pseudopotentials leads to
an error due to its approximate construction. We have
carefully checked the effects by comparing the atomization
energies obtained by our code with those given by all-
electron calculations with the Gaussian 0338 program pack-
age. For these calculations, the PBE exchange has been used
in combination with the Lee-Yang-Parr (LYP)39 correlation
functional. In the calculations by Gaussian 03, sufficiently
large LCAO basis sets have been employed, where the
quadruply split valence orbitals are used and polarization as
well as diffuse atomic orbitals are augmented (aug-cc-
pVQZ). Furthermore, the “Grid ) UltraFine” option has been
invoked to ensure the accuracy in the numerical integration
of the DFT calculation.

EXσ
mBR-GGA ) EXσ

mBR + (EXσ
GGA[Fσ, ∇Fσ] -

EXσ
GGA[Fσ

mBR, ∇Fσ
mBR]) (28)

EXσ
mBR-hyb ) 1

2
(∫ dr exp(-cR2)FσUXσ

LDA-GGA +

∫ dr (1 - exp(-cR2))FσUXσ
mBR-GGA) (29)

652 J. Chem. Theory Comput., Vol. 6, No. 3, 2010 Takahashi et al.



4. Applications and Tests

In this section, we present the results of the numerical
applications of the mBR-based functionals and compare them
with the conventional GGA functionals. In section 4.1, the
convergence behaviors in the SCF procedures for these
functionals are examined. In sections 4.2 and 4.3, the
enhancement factors as well as the exchange energy densities
and the exchange potentials have been plotted as functions
of the position of the reference electron placed in a molecular
system. In section 4.4, we present the results of the
atomization energies, ionization potentials, proton affinities,
and enthalpies of formation to discuss the accuracy and
efficiency of the present approach. The exchange-hole
functions given by this model for several reference points
in a molecule are plotted in section 4.5 to make comparisons
with LDA and the exact exchange holes. Hereafter, we refer
to the exchange functionals defined by eqs 22, 28, and 29
by the shorthand notations mBR, mBR-GGA, and mBR-hyb,
respectively.

4.1. Convergence Behavior. As described in section 2.2,
the exchange energy functional EXσ

mBR of eq 22 includes
density-dependent parameters (R, R) which are iteratively
determined in the SCF procedure as well as the electron
density. This possibly leads to a numerical instability in the
SCF convergence to a certain extent. To see this in detail,
we have examined the convergence rate in SCF for the mBR
and mBR-GGA exchange functionals which are, respectively,
given in the forms of eqs 22 and 28. The PBE exchange
functional has been used for the GGA correction term EXσ

GGA

in eq 28. We have also investigated the convergence
behaviors of the SCF calculations with B88 and PBE
exchange functionals to make comparisons. A water molecule
has been used for these test calculations, where the wave
functions have been updated by the scaled steepest descent
(SD) algorithm starting from the same initial guess. The
geometry of the water has been taken from ref 40.

In Figure 1, the log plots have been shown for the
absolutes of the differences in the electronic energies between
adjacent steps in the SCF procedure against the SCF step

number. It is clearly shown that the convergence rates of
the SCF calculations with mBR or mBR-GGA are compa-
rable to those with the conventional GGA functionals such
as B88 or PBE. Thus, it has been demonstrated that no
serious numerical instability takes place in the SCF proce-
dures for the practical applications of the series of the mBR
exchange functional. We remind the reader that the pseudo-
potentials have been used through these test calculations, and
they may possibly support the stability in the convergence.
Unfortunately, we could not check the effect of the use of
pseudopotentials since an LCAO-based program package
equipped with our approach is not available.

4.2. Enhancement Factor. To investigate the property
of an exchange functional mBR, we have evaluated the
exchange enhancement factor FXσ

mBR defined by

In eq 30, UXσ
LDA is the exchange energy density of the

uniform electron gas derived by Dirac1 and is given by

Equations 22 and 30 suggest that the factor FXσ
mBR represents

the ratio of the exchange energy density UXσ
mBR given in eq

21 with respect to UXσ
LDA. We have performed the same

evaluations for the functionals mBR-GGA and mBR-hyb.
Usually, the enhancement factor for a GGA functional is
plotted as a function of the dimensionless parameter xσ ≡
|∇Fσ|/Fσ

4/3, which represents the inhomogeneity of the
electron density since a usual GGA functional depends only
on xσ. However, our functional is also dependent on the
maximum value of the electron density as well as the
eigenvalue of the HOMO besides the gradient of the density.
Therefore, we have computed Fxσ for a real system with a
closed shell electronic structure. Specifically, we have chosen
a water molecule as a model system; then, the enhancement
factors have been plotted by varying the position of the
reference electron along the symmetry axis of the water
molecule. For the calculations of the enhancement factors
for each functional shown below, we have adopted the
electron density obtained by using the B88 functional without
correlation.

In Figure 2, we have plotted the enhancement factors for
the functionals, mBR, mBR-GGA, and mBR-hyb. The PBE
functional has been employed for the GGA correction in the
mBR-GGA and mBR-hyb functionals. The factors for
the functionals B88 and PBE have also been depicted in the
figure to make comparisons. The inhomogeneity parameter
xσ has been superimposed in Figure 2. The horizontal axis
of Figure 2 represents the coordinate of the reference electron
placed on the symmetry axis of the water molecule for which
an experimental geometry40 has been used. The origin of
the axis has been placed on the oxygen atom of the water.
In addition, the center of molecular mass has been adjusted
to the negative direction of the axis.

At first, we made comparisons between the behaviors of
Fxσ for the conventional GGA exchange functionals B88 and
PBE. These two functionals start from the same basis;

Figure 1. Convergence behaviors of the SCF procedures in
KS-DFT that utilize the exchange functionals, B88, PBE, mBR,
and mBR-GGA. Absolute values of the energy differences
between neighboring steps are plotted against the SCF steps.

EXσ
mBR ) 1

2 ∫ dr Fσ · UXσ
LDA · FXσ

mBR (30)

UXσ
LDA ) -3( 3

4π)
1/3
Fσ

1/3 (31)
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nevertheless, Fxσ for B88 shows a distinct deviation from
that for PBE. We observe in Figure 2 the enhancement factor
FXσ

B88 for the B88 functional increases rapidly as the reference
electron moves away from the molecule, and this behavior
agrees with that of the inhomogeneity parameter xσ. In
contrast to B88, the enhancement factor FXσ

PBE for PBE
increases modestly and converges to a certain value as r
increases. Such a discrepancy in the region of large inho-
mogeneity can be attributed to the difference in the physical
constraints that are imposed on these functionals. Both the
B88 and the PBE exchange functionals originate from
basically the same analytic function with a nondivergent
property for the increase of xσ.9,41 On the basis of this
function, the B88 functional was constructed so that it
recovers the -1/r asymptotic behavior of the exchange
energy density,8 while the PBE functional was subjected to
the constraint of the local Lieb-Oxford bound.42 Conse-
quently, the enhancement factor for B88 increases rapidly
in the asymptotic region, and that for PBE converges to 1.804
at the limit of the large inhomogeneity, as shown in Figure
2. Later, Zhang and Yang proposed a method termed revPBE
by choosing the asymptotic value of FXσ

PBE as 2.245 instead
of 1.804.43 This modification can be validated by the fact
that the adoption of the Lieb-Oxford bound for all positions
of the reference electron is just a sufficient but not necessary
condition to satisfy the integrated Lieb-Oxford bound.
Anyway, we observe that the enhancement factors for B88
and PBE functionals coincide well in the region of small xσ,
and they diverge rapidly as the reference electron moves
away from the molecule. From a numerical point of view,
we note that such a divergence does not have serious effects
on the energetics because the region of large inhomogeneity
coincides with the small density tail, and therefore with
exponentially small energy density owing to the F1/3 term
from the LDA part.

The enhancement factor FXσ
mBR for the functional mBR

shows the correct asymptotic behavior similar to the B88
functional by virtue of the fact that the atomic electron
density is adopted as a model exchange hole. Here, it should
be emphasized that such an important property is built-in in
the model and is naturally simulated without making a special
device for it. In Figure 2, it can also be recognized that the
factor FXσ

mBR is almost comparable to FXσ
LDA from the short to

middle range of the reference position (note that FXσ
LDA ) 1

holds everywhere by the definition of eq 30). Thus, the
deviation of the mBR functional from B88 or PBE has been
found to be serious for the reference electron placed on the
coordinate of ∼1.5 Å. The enhancement factor FXσ

mBR-GGA for
eq 28 shows that this unpleasant situation can be substantially
alleviated by the GGA correction adopted in the mBR
functional.

As for the short-range behaviors of FXσ
mBR and FXσ

mBR-GGA, it
is shown in Figure 2 that they slightly overestimate those of
the LDA-based exchange functionals. According to the
prescription by Perdew et al.,16 an exchange functional
should reproduce Dirac’s exact exchange at the uniform
electron gas limit. The functional mBR-hyb given by eq 29
is designed so that it recovers the LDA exchange energy at
the uniform gas limit. Consequently, the enhancement factor
FXσ

mBR-hyb realizes the sound behavior in the region of the small
inhomogeneity. Thus, the mBR-hyb functional has a desirable
property in the enhancement factor from the short- to long-
range region of the reference electron.

4.3. Exchange Energy Density and Exchange Potential.
One of the important features of the mBR-model based
approach lies in the possibility that it can recover the correct
long-range behaviors of the exchange energy density Uxσ and
the exchange potential νxσ. Uxσ represents the exchange
energy per electron felt at a given position and is explicitly
defined by an equation parallel to eq 3. It can be readily
verified that exact Uxσ behaves as -1/r in the asymptotic
region of rf∞ (r is roughly the distance between the
reference point and the molecule of interest). The exchange
potential νxσ given by the functional derivative of exchange
energy Exσ with respect to density (parallel to eq 23) is also
known to decay asymptotically in the Coulombic manner as
-1/r. In the following, we have investigated the behaviors
of Uxσ and νxσ obtained with the exchange functional mBR-
hyb and compared it with conventional GGA functionals.
For these calculations, we have employed the same system
used in the calculation of the enhancement factors presented
in section 4.2.

In Figure 3, the exchange energy density for the mBR-
hyb functional has been plotted for the variation of the
position of the reference point. Those for the B88 and
the PBE functionals have also been drawn in the figure.
The horizontal axis is the coordinate of the reference
electron of which the origin has been taken in the same
manner as in section 4.2. For the construction of the
Coulomb potential -1/r in the figure, the origin has been
set at the nuclear-charge weighted center of mass.
Explicitly, a coordinate of -0.118 Å is chosen as the
origin of the Coulomb potential. We observe in Figure 3
that the exchange energy density for B88 functional

Figure 2. Plots for the enhancement factors given by B88,
PBE, mBR, mBR-GGA, and mBR-hyb functionals. The hori-
zontal axis represents the position of the reference electron
placed on the symmetry axis of a water molecule. The oxygen
atom is taken as the origin of the axis. The electron density
obtained by the KS-DFT calculation using the B88 functional
without correlation is employed to evaluate the enhancement
factors with these functionals. The dimensionless parameter
xσ is also drawn in the figure.
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asymptotically behaves as -1/r, while that for PBE decays
rapidly as the reference electron moves away from the
molecule. The origin of such a difference between these
two GGA functionals is the same as that of the deviation
in the enhancement factors discussed in section 4.2. That
is, the bifurcation of the exchange energy densities arises
from the difference in the constraints imposed on the
functionals. In accord with the B88 fucntional, the curve
for mBR-hyb also shows correct asymptotic behavior by
virtue of the exchange hole based on the mBR model.
We again emphasize that the long-range nature of the
exchange energy density is naturally incorporated in the
mBR model since it mimics the hole in a hydrogenic atom.

In Figure 4, it is shown that the exchange potential νx for
B88 decays rapidly in contrast to the behavior of the
exchange energy density in the long range. This asymptotic
behavior coincides with that of the PBE functional. Such an
undesirable behavior of the exchange potential of the B88

functional was analyzed in ref 44, and it was proved
analytically that any exchange functional Exσ with the form
of

does not satisfy the -1/r asymptotic relation when f(x) in
eq 32 is constructed so that the exchange energy density
behaves asymptotically as -1/r. Specifically, νx for the B88
functional decays non-Coulombically as k/r2 with a negative
constant k. In contrast to B88 and PBE, we observe that the
potential for the mBR-hyb functional decays Coulombically
in the asymptotic region; however, it recovers only half of
the -1/r. The -1/2r asymptotic behavior of the mBR-based
approach is readily understood by consulting eq 23. In the
region of the small electron density, it is verified that the
exchange potential Vxσ is dominated by half of the exchange
energy density Uxσ which behaves as -1/r. Thus, it has been
demonstrated that the exchange potential of the functional
based on the mBR exhibits Coulombic asymptotic behavior
of -1/2r.

4.4. Properties of Small Molecules. In this section, we
have assessed the performance of the series of the mBR-
based exchange functionals by computing atomization ener-
gies, ionization potentials, and proton affinities respectively
for 35, 13, and 3 molecules supplied in the G1 and G2
molecular sets.45,46 The method to determine the asymptotic
value of the exponent R0 of the exchange hole through eqs
17 and 18 necessitates the eigenvalue εHOMO of HOMO to
be negative. Unfortunately, εHOMO for anionic molecules are
positive in most cases, and hence, the performance check
for the electron affinities could not been done. In this sense,
our approach lacks robustness and needs to be refined in the
procedure to determine the exponent R0. In Tables 1, 2, 4,
and 5, we have only presented the statistics for each property.

Figure 3. Plots for the exchange energy densities given by
B88, PBE, and mBR-hyb functionals. The definition of the
horizontal axis is the same as in Figure 2. The electron density
used in the construction of Figure 2 is employed for these
calculations.

Figure 4. Plots for the exchange potentials given by B88,
PBE, and mBR-hyb functionals. The definition of the horizontal
axis is the same as in Figure 2. The same electron density
used in the construction of Figure 2 is employed for these
calculations.

Table 1. Mean Absolute Deviations of Atomization
Energies for 35 Molecules in the G2 Set Evaluated by
LDA, mBR, mBR-PBE, mBR-hyb, and PBE Exchange
Functionalsa

LDA mBR mBR-PBE mBR-hyb PBE

mean abs. deviation 38.5 32.2 16.4 7.9 7.7

a Deviations are in the units of kcal mol-1. The LDA exchange
is combined with the local correlation term given by Perdew and
Zunger.12 The rest of the functionals are used along with the LYP
functional.39 In the mBR-hyb calculation, the parameters p and c
in eqs 19 and 29 are those not optimized (p ) 2/3 (0.667), c )
1.0). We refer the readers to Supplementary Table 1 in the
Supporting Information for the values of individual molecules.

Table 2. Mean Absolute Deviations of Ionization Potentials
for 13 Molecules in the G1 Set Evaluated by LDA,
mBR-hyb, and PBE Exchange Functionalsa

LDA mBR-hyb PBE

mean abs. deviation 0.3 0.2 0.2

a Deviations are in the units of eV. The correlation functionals
used are common to those in Table 1. In the mBR-hyb calculation,
the parameters p and c in eqs 19 and 29 are those not optimized
(p ) 2/3 (0.667), c ) 1.0). We refer the readers to Supplementary
Table 2 in the Supporting Information for the values of individual
molecules.

EXσ[Fσ] ) ∫ Fσ
4/3f(xσ) dr (32)
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We have supplied “supporting information” for the references
to the results for individual molecules.

We have computed the atomization energies by using
mBR, mBR-GGA, and mBR-hyb functionals and compared
them with experimental values in Table 1. The results by
the LDA and PBE functionals have also been provided in
the table for comparisons. All exchange functionals except
for LDA have been used in combination with the LYP
correlation functional.39 In the LDA calculation, on the other
hand, the local correlation functional proposed by Perdew
and Zunger (PZ)12 has been used. Hereafter, we omit the
notation of “LYP” or “PZ” specifying the correlation
functional for the sake of brevity. Mean absolute deviation
(MAD) of the atomization energies from the experimental
values has been computed for each functional. As described
in the Computational Details, we have checked the error due
to the pseudopotentials utilized in the real-space grids scheme
by performing all-electron calculations with Gaussian 03 with
a sufficiently large basis set (aug-cc-pVQZ). The MAD of
the PBE functional derived by Gaussian 03 has been
estimated to be 8.2 kcal/mol, which shows good agreement

with the value of 7.7 kcal/mol given by our code. It may be
reasonable to conclude that the use of the pseudopotential
does not seriously affect the energetics at least for these
molecules. The MAD for the mBR calculation has been
obtained as 32.2 kcal/mol, and it has been found that the
mBR approach gives rather better results than the LDA level
calculations. However, it is quantitatively far from satisfac-
tion to predict the energetics for the chemical reactions. It
has been found that the introduction of the GGA correction
to the mBR functional (mBR-GGA) significantly improves
the computational accuracies in the atomization energies. The
value of MAD has been reduced to 16.4 kcal/mol. It should
be noted that the MAD given by mBR-GGA lies in the
middle of those given by two sorts of calculations based on
the original BR approach conducted by Neumann et al.21

To be specific, they performed calculations by setting the
values of γ in eq 4 at ∼1 and 0.8. Then, the MAD values
were given as 10.3 and 21.1 kcal/mol for the calculations of
γ ) 1.0 and 0.8, respectively. As described in section 2.4,
the relation of γ ) 1.0 holds in the exact expression of the
spherically averaged Taylor expansion of the exchange hole,
while the choice of γ ) 0.8 is intended to recover the
exchange energy at the homogeneous electron gas limit. We
conclude that the mBR-GGA level funtional is almost
comparable to the original BR approach in the computational
accuracy for the atomization energy. However, it is obvious
that the mBR-GGA functional is still less accurate than the
PBE functional. We can see in the table that further
improvement can be achieved by combining the mBR-GGA
with the LDA-based functional (mBR-hyb). The hybridiza-
tion with the LDA functional reduces the MAD value from
16.4 to 7.9 kcal/mol. Thus, the realization of exchange energy
for the uniform electron gas limit at low xσ is crucial to
ensuring the computational accuracy of the functional as
suggested in ref 16. Thus, it has been revealed that mBR-
hyb is comparable to the PBE functional.

By utilizing the mBR-hyb functional we have also
computed the ionization potentials and proton affinities for
some molecular systems, the results of which are, respec-
tively, presented in Tables 2 and 3. And comparisons have
been made with the results given by LDA and PBE. We can
see that the MAD for mBR-hyb is comparable to that for
PBE in the calculations of the ionization potentials. As for
the proton affinity, the mBR-hyb functional shows slightly
better results than PBE, though the number of the samples
is very small.

Here, we emphasize that there is still room for further
refinement in the mBR-hyb functional. The adjustable
parameter p in eq 19 has so far been taken as 2/3, which is
simply the maximum of the allowed value which ensures
the existence of the real value of r defined by eq 20. In
addition, the mixing parameter c in eq 29 has been chosen
somewhat arbitrarily as 1.0 to reproduce the exact electronic
energy of hydrogen. To optimize these parameters, we have
extended the benchmark molecules to the G3 set.47 Explicitly,
63 molecules in the G3 set have newly been added to the
above 35 molecules (98 molecules in total) for the two-
parameter fit to the experimental atomization energies and
the enthalpies of formation. Molecules in the G3 set that

Table 3. Proton Affinities for Three Molecules in the G1
Set Evaluated by LDA, mBR-hyb, and PBE Exchange
Functionalsa

system LDA mBR-hyb PBE expt.

NH32 206.5 210.2 207.1 211.2
H32O 167.4 170.7 167.3 173.5
C2H2 153.6 158.9 154.9 155.7

a Energies are in the units of kcal mol-1. The correlation
functionals used are common with those in Table 1. In the
mBR-hyb calculation, the used parameters p and c in eqs 19 and
29 are those not optimized (p ) 2/3 (0.667), c ) 1.0). The
experimental values are taken from ref 45, from which the ZPEs
are removed. ZPEs are obtained by the same manner as in Table
1.

Table 4. Atomization Energies for 35 Molecules in the G2
Set Evaluated by mBR-hyb, the Original BR Functional,
and That Hybridized with the Hartree-Fock (HF)
Exchangea

mBR-hyb BR BR+HF

mean abs. deviation 4.9 4.3 1.6

a Energies are in the units of kcal mol-1. The mBR-hyb
exchange functional is used along with LYP correlation
functional,39 while original BR and BR+HF functional are
combined with the correlation energy of ref 48. In the mBR-hyb
calculation, the parameters p and c in eqs 19 and 29 are those
optimized (p ) 0.7/3 (0.233), c ) 0.15). We refer the readers to
Supplementary Table 3 in the Supporting Information for the
values of individual molecules.

Table 5. Mean Absolute Deviations of Enthalpies of
Formations for 63 Molecules in the G3 Set Evaluated by
mBR-hyb and the PBE Exchange Functionala

mBR-hyb PBE

mean abs. deviation 9.4 18.7

a Deviations are in the units of kcal mol-1. The correlation
functionals used are common to those in Table 1. In the mBR-hyb
calculation, the parameters p and c in eqs 19 and 29 are those
optimized (p ) 0.7/3 (0.233), c ) 0.15). We refer the readers to
Supplementary Table 4 in the Supporting Information for the
values of individual molecules.
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include the S atom have been excluded from the benchmark
test because the pseudopotential for the S atom is not
available in the present version of our program. To be specific
for molecules in the G3 set that include relatively large
hydrocarbons, we have prepared 90 grid points along each
direction of the real-space cell to ensure that the wave
functions will be enclosed within the cell. This optimization
has led to a set of values p ) 0.7/3 (0.233) and c ) 0.15.
The atomization energies for the above 35 molecules
computed by using the parameters have been presented in
Table 4 in comparison with the experimental values. It has
been demonstrated that MAD has been successfully de-
creased to 4.9 from 7.9 kcal/mol for the 35 molecules in the
G2 set. In the second and third columns in Table 4, we have
also presented the results24 obtained by Becke, who utilized
the original Becke-Roussel approach. It should be noted,
however, that the computations were performed using the
orbitals and densities given at the outset by LDA calculations.
The second column shows the results by the BR exchange
functional in an unaltered form (γ ) 1.0 in eq 4) in
combination with the correlation energy based on the
inhomogeneous electron gas model,48 which gives the MAD
from experiment as 4.3 kcal/mol. Thus, it has been found
that the parameter-optimized mBR-hyb functional is almost
comparable in accuracy to the original BR functional. The
data in the third column were obtained by replacing the small
fraction of the exchange term by the exact (Hartree-Fock)
exchange with mixing parameter cX ) 0.154. By mixing the
exact exchange in the functional, the MAD value greatly
decreased to 1.6 kcal/mol. As described in section 2.2, the
size consistency is violated in the present method. We have
checked the energy deviation due to the size inconsistency
by dissociating the O-H bond in a H2O molecule. The
absolute energy of the sufficiently separated OH and H
complex subtracted by the sum of the energies of the
constituent fragments has been evaluated as 1.7 kcal/mol.
The O-H bond energy has been obtained as 125.0 kcal/
mol, and hence, the size inconsistency is not so serious in
this case. However, we note that care must be taken for this
shortcoming in the functional.

As for the molecules in G3 set, we have computed the
enthalpies of formation with the procedure described in the
G2 and G3 papers. The enthalpy of formation ∆Hf′(AxBy) at
298 K for a compound such as AxBy can be expressed as

where ∆Hf denotes the enthalpy of formation at 0 K, and H′
and H stand for the enthalpies at 298 and 0 K, respectively.
The corrections for enthalpies of elements are for the standard
states of elements and denoted by “st” in eq 33. ∆Hf(AxBy)
in eq 33 can be, further, decomposed into

The first three terms in the right-hand side of eq 34
constitute the minus atomization energy corrected by zero-
point vibrational energy (ZPE). In the calculation of eqs 33

and 34, the experimental values have been adopted by the
elemental enthalpies of formation and by their corrections.49

Furthermore, it has been assumed that the corrections for
the enthalpies of compounds as well as ZPE can be estimated
with substantial accuracies by the G3 theory.50 Then, the
errors in the theoretical enthalpies of formation can be
reasonably ascribed to those in the atomization energies. In
the first column in Table 5, we have presented the enthalpies
of formation computed by the mBR-hyb functional with the
optimized parameters (p, c) ) (0.233, 0.15). The MAD for
the 63 molecules in the G3 set has been obtained as 9.4 kcal/
mol, where the n-octane (C8H18) molecule has given the
maximum absolute error of 23.3 kcal/mol. It should be noted
that absolute errors in enthalpies of formation increase with
molecular size because of the increase in the atomization
energies. For instance, the atomization energy of n-octane
has been evaluated as 2451 kcal/mol. The third column of
Table 5 shows the results given by the Gaussian package
using the PBELYP functional with the aug-cc-pVQZ basis
set, where the MAD value has been obtained as 18.7 kcal/
mol and the maximum absolute error has been obtained as
40.6 kcal/mol for pyrimidine (C4H4N2). Furthermore, we have
also evaluated the enthalpies of formation by using PBE
exchange combined with the PBE correlation functional using
the same basis set, which have led to a MAD value of 22.0
kcal/mol. Thus, it has been demonstrated that the mBR-hyb
functional with the optimized parameters is superior to a
conventional GGA functional for the evaluation of atomi-
zation energies of this molecular set.

Last, we present in Figure 5 the results for the computation
of the hydrogen-bond (HB) energy curve of a water dimer
as a function of the distance between oxygen atoms. The
illustration for the geometry of the water dimer has also been
drawn in Figure 5. The geometrical parameters of the
constituent water molecules have been fixed at those of
the TIP4P model (rOH ) 0.9572 Å, HOH ) 104.52°)51 for
the variation of the O-O distance. To construct a reliable
standard for the HB energy curve, we have performed a
CCSD(T)52/aug-cc-pVTZ calculation with the counterpoise
corrections by utilizing the Gaussian 03 package. To make
comparisons, the computations by the LDA and the PBE
functionals have also been carried out by Gaussian 03 in
the same manner as the CCSD(T) calculation. In the mBR-
hyb calculations, we have employed both parameters that
were optimized (p ) 0.7/3 (0.233), c ) 0.15) and not
optimized (p ) 2/3 (0.667), c ) 1.0). In the real-space cell,
90 grids have been placed along each axis with interval h )
0.118 Å, and the width of the dense grid has been set at
h/10. In accord with the findings of a previous work,53 we
observe in Figure 5 that the LDA functional seriously
overestimates the binding energy and underestimates the
optimum O-O distance. However, the behavior of the HB
energy curve is dramatically improved by the introduction
of the GGA correction, as exhibited in the PBE curve, which
shows comparable behavior with the CCSD(T) result. And,
the curve for mBR-hyb with unoptimized parameters lies
between those for CCSD(T) and PBE. Importantly, the mBR-
hyb curve also shows good agreement with CCSD(T) after
the parameter optimizations. Thus, it is demonstrated that

∆H'f(AxBy) ) ∆Hf(AxBy) + {H'(AxBy) - H(AxBy)} -
x{H'(A) - H(A)}st - y{H'(B) - H(B)}st (33)

∆Hf(AxBy) ) H(AxBy) - xH(A) - yH(B) + x∆Hf(A) +
y∆Hf(B). (34)
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the mBR-hyb functional also gives a satisfying result in the
computation of the HB energy.

From these test calculations so far, we conclude that the
mBR-hyb functional offers energetics with comparable or
yet superior accuracy as compared to a sophisticated GGA
functional based on the LDA. This greatly encourages further
improvements on the mBR-based functionals for practical
applications to atoms or molecules.

4.5. Exchange-Hole Function. In this section, we have
plotted the exchange-hole distribution of the present approach
in comparison with that of LDA and the exact one. We first
make a formulation for the exact exchange hole. The exact
exchange hole FXσ(r, r′) is defined by

where F1σ(r, r′) is the one-body density matrix for spin σ
and is simply expressed in terms of the one-electron wave
functions; thus,

The spherically averaged exchange-hole function FXσ
SA(r,s)

can be written as

where Ωs denotes the integration over a sphere of radius s
centered at a reference point r. On the other hand, the
exchange hole based on the mBR model is represented by
eq 12, and its spherical average FXσ

SA-mBR(R,R;s) is obtained
by simple algebraic manipulations; thus,

It is useful to note that eq 38 corresponds to eq 17 of ref
18 that utilizes the Slater-type function as an exchange-hole
model. We also note that (R, R) in eq 38 has been determined
from the spin density Fσ(r) as described in section 2.2 where
the scaling parameter p in eq 19 has been set at 0.233. In
the LDA approach, the exchange hole is spherically sym-
metric around r and is given by

where

We have plotted the exchange-hole distributions expressed
by eqs 38, 39, and 40 for various positions of the reference
electron in a molecule to make comparisons. Furthermore,
we have also performed calculations with the mBR func-
tional, where the parameters (R, R) in eq 38 have been
determined by the procedure proposed in the original
Becke-Roussel approach. Explicitly, (R, R) are obtained by
imposing the conditions that zeroth- and second-order terms
in the Taylor expansion of eq 4 coincide with those of the
exchange-hole model defined by eq 12. The computational
procedure for the Gaussian-type function is parallel to that
for the Slater-type one. In the following, we term this
approach the original mBR.

For the construction of the exchange hole, we have
employed a water molecule with the same geometry that was
used in section 4.2. In the real-space grid approach, 90 grids
have been placed along each axis with grid spacing h )
0.0679 Å, and the width of the dense grids has been set at
h/5. We have constructed the exchange-hole functions by
using the same spin density and one-electron wave functions
obtained from the outset by the B88 exchange functional
without electron correlations. In Figure 6a-c, we have
compared the behaviors of exchange-hole functions for three
different positions of the reference electron. In Figure 6a,
the reference point has been placed at the oxygen atom. It
appears in the contour map that the exchange-hole function
is dominated by the 2a1 orbital of the water molecule. The
exchange-hole functions for mBR and LDA show good
agreement with the exact one, while the original mBR model
slightly deviates from the others. Anyway, it has been
demonstrated that these three approaches can properly
simulate the behavior of the exact exchange hole. In Figure
6b, the reference point has been placed below the oxygen
atom along the symmetry axis of the molecule. In this case,
we recognize that the exchange hole distribution is character-

Figure 5. Potential energy curves of a hydrogen bond of a
water dimer computed by CCSD(T), LDA, PBE, and mBR-
hyb calculations. In the mBR-hyb calculations, both optimized
(p ) 0.7/3 (0.233), c ) 0.15) and nonoptimized parameters
(p ) 2/3 (0.667), c ) 1.0) are used. The horizontal axis
represents the O-O distance. The notation of LDA stands
for the calculation of Dirac’s exchange in combination with
the correlation functional proposed by Perdew and Zunger.
In the PBE and the mBR-hyb calculations, the correlation
energies are estimated by the LYP functional.

FXσ(r, r′) )
|F1σ(r, r′)|2

Fσ(r)
(35)

F1σ(r, r′) ) ∑
i

occ

φiσ(r) φiσ*(r′) (36)

FXσ
SA(r, s) ) 1

4πs2 ∫Ωs
FXσ(r, r + s) ds (37)

FXσ
SA-mBR(R, R;s) ) R

1/2

4π
3/2Rs

(exp{-R(R - s)2} -

exp{-R(R + s)2}) (38)

FXσ
SA-LDA(r, s) ) 9Fσ(r)(sin t-t cos t

t3 )2
(39)

t ) (6π2Fσ(r))
1/3s (40)
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ized by the 3a1 orbital. It is shown in the plot that the LDA
approach fails to reproduce even the qualitative behavior of
the exact exchange hole. This originates from the fact that
the maximum peak of the exchange hole always locates
at the reference point in the homogeneous electron gas. On
the other hand, we observe that the mBR approach success-

fully simulates the behavior of the exact exchange hole,
though the detailed structures of the hole cannot be repro-
duced. This directly demonstrates the advantage of the mBR
approach that it allows the exchange hole being attached at
the molecule even when the reference electron is moved far
apart from the system. We have also plotted the exchange

Figure 6. Contour plots of the exchange-hole functions for the reference electron placed at various positions on the molecular
plane of H2O (left). Spherically averaged exchange holes as functions of the distance s from the reference point (right). Arrows
in the contour map indicate the positions of the reference electrons. The value of the outermost contour line is 0.001 au, and the
interval is set at 0.01 au.

The Exchange-Energy Density Functional J. Chem. Theory Comput., Vol. 6, No. 3, 2010 659



hole function given by the original Becke-Roussel procedure.
The peak position as well as the overall behavior of the
original mBR shows good agreement with those of the mBR
exchange hole. In Figure 6c, the position of the reference
electron has been chosen so that the exchange hole is
characterized by the 1b2 orbital. Again, we see that the mBR
approach can illustrate the appearance of the exact exchange-
hole distribution in contrast to LDA. The mBR approach
also shows excellent agreement with the original mBR.

5. Summary and Conclusions

The point of the BR approach is to mimic the exchange hole
function at a given reference point by an electron distribution
of a hydrogenic atom. This allows the exchange hole to be
attached to the molecule even when the reference electron
is placed far apart from the system, in contrast to the LDA
approach, which naturally improves the asymptotic behavior
of the exchange energy density. In this paper, we have
proposed a series of exchange functionals based on the mBR
model for the purpose of finding a new route to the exchange
functional. Our approach to the simple realization of the
mBR-based functional consists of three steps. The first step
is to determine the parameters (R, R) that specify the
distribution of the mBR exchange hole with respect to the
reference point. The width R of the hole is to be obtained
from its asymptotic values R1 and R0 through eq 19. Then,
the distance r between the reference point and the exchange
hole is readily computed from the constraint that the depth
of the hole is equal to the spin density at the reference point.
In the second step, we make a GGA correction to the
functional obtained in the first step (mBR-GGA). More
specifically, as expressed in eq 28, the conventional GGA
formula has been adopted to take into account the gradients
of the spin density as well as the mBR exchange hole. Third,
the gradient-corrected mBR functional thus obtained is
combined with the LDA approach as in the form of eq 29 to
reproduce the exchange energy at the homogeneous electron
gas limit (mBR-hyb).

We have examined the behaviors of the enhancement
factors of the mBR-based exchange functionals with respect
to the distance between the reference electron and a molec-
ular system. It has been demonstrated that the mBR-hyb
functional shows an excellent overall behavior in accord with
B88. The exchange energy densities of the mBR-based
approaches have shown correct asymptotic behaviors of -1/r
by virtue of the fact the electron density of a hydrogenic
atom is taken as a model of the exchange hole. Further, the
exchange potential in mBR-hyb has also been shown to decay
Coulombically in contrast to B88 and PBE; however, it
recovers only half of the -1/r potential in the asymptotic
region. We have assessed the performance of the series of
the mBR exchange functionals combined with the LYP
correlation functional by computing several properties of the
small molecules in the G1, G2, and G3 sets. It has been found
that the computational accuracy for atomization energies can
be systematically improved by the three steps noted above.
It has been demonstrated that the mBR-hyb functional is
almost comparable in accuracy to the GGA functional of
PBE. Optimization of only two adjustable parameters in

mBR-hyb functional has shown to provide much better
results in the atomization energies and enthalpies of forma-
tion. The MAD value for the atomization energies of 35
molecules in the G2 set has been evaluated as 4.9 kcal/mol
by the mBR-hyb functional with optimized parameters. And
the MAD for the enthalpies of formations of 65 molecules
in the G3 set has been computed as 9.4 kcal/mol. The
calculations for the water dimer have revealed that the mBR-
hyb is adequate enough to reproduce rather weak interactions
such as hydrogen bonds.

The results of the test calculations obtained so far is very
encouraging for further improvement of the mBR-based
functional. In spite of the success, the present method clearly
has deficiencies in some respects. First of all, the procedure
to determine the exponent R0, that utilizes the energy level
of the HOMO, must be refined for the applications to anionic
systems. The use of the orbital energy also leads to an
undesirable property in the functional, that is, the lack of
size consistency. Second, the parameters p and c which
appear, respectively, in eqs 19 and 29 should be optimized
for molecular systems involving all electrons to avoid the
influence of the pseudopotentials used in the present calcula-
tions. We conclude that the route to develop the exchange
energy functional that begins from the BR model is worth
consideration as a potential candidate for the establishment
of the exchange functional suitable for the applications to
atoms or molecules.
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Abstract: The size-extensive second-order state-specific (or single root) multireference (MR)
perturbation theory (SS-MRPT) in the Brillouin-Wigner (BW) form using Mφller-Plesset perturbative
evaluations of orders up to 2 [termed as SS-MRMPPT(BW)] presents a viable, as well as promising,
approach to include both nondynamic and dynamic correlations in the study of the bond-stretching
(in multireference/quasidegenerate situations) of molecular species with a manageable cost/accuracy
ratio. It combines numerical stability in the presence of an intruder state problem with strict size
consistency (when localized orbitals are used). In this paper, the SS-MRMPPT(BW) method has
been shown to properly break the bonds (in the ground state) of several diatomic molecules (such
as F2, Cl2 and Br2, and BH) that have posed a severe challenge to any many-body theoretical
approach due to the presence of quasidegeneracy of varying degrees in the ground state. A
comparison of the resulting potentials with the various theoretical results reveals that the method
represents a valuable tool that is capable of properly accounting even for very strong quasidegen-
eracies, while also performing well in nondegenerate situations. In this work, we have also calculated
spectroscopic constants (such as equilibrium bond lengths, vibrational frequencies, and dissociation
energies) of the ground state of these molecular systems. The SS-MRMPPT spectroscopic constants
are compared with the most accurate available ab initio calculations and other theoretical estimates
of previous works to calibrate the efficacy of the method. For the sake of completeness, we also
compare the computed spectroscopic constants with the experimental observations. The accuracy
of computed spectroscopic parameters appears to be rather consistent over a multitude of systems
for various basis sets. The SS-MRMPPT enables quantitatively accurate and computationally
affordable analysis of potential energy surfaces and spectroscopic constants of various multireference
systems in the ground state. It is particularly visible for spectroscopic parameters and nonparallelism
error (NPE) calculations. The calculations further reveal that the SS-MRMPPT(BW) method compared
to its Rayleigh-Schrödinger counterpart [SS-MRMPPT(RS)] provides a more accurate and consistent
solution for the whole dissociation path and spectroscopic constants.

I. Introduction

Accurate quantum mechanical calculations of molecular
electronic energy variations on potential energy surfaces
(PESs) are essential in many contexts [such as equilibrium
geometries, transition states, force constants, etc.]. The study
of molecular electronic energies along bond breaking-making
paths also provides key information needed in reaction
kinetics and various spectroscopic processes. Thus, it is

worthwhile to try and calculate the PES at a level of accuracy
that, hopefully, allows a comparison with experimental data
(spectroscopic quantities).

The computation of a smooth PES requires a balanced
treatment of dynamic and static correlation effects, and thus
a genuine multireference (MR) formalism is warranted.
Among the possible types of MR technologies available to
compute the PES, we consider here MR-based perturbation
theory (MRPT),1-17 which is, in general, computationally
cost-effective in describing dynamical correlation in the
presence of electronic degeneracy. The conventional effective
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Hamiltonian MR approaches based on complete model space
(CMS) suffer convergence difficulties once intruder states
intervene while studying PES, which spoil the quality of the
spectroscopic constants. To overcome this bottleneck, a state-
specific multireference (SSMR) approachstargeting only the
state of interest unencumbered by intruderssis an inherently
useful strategy. Over the past few decades, many promising
methods have emerged [for an overview, see ref 18]. Among
the various intruder-free MRPT methods, multireference
Møller-Plesset perturbation theory (MRMPPT),3 complete
active space perturbation theory (CASPT),5,6 and second-
order n-electron valence perturbation (NEVPT2) theory11

approaches have been established as very efficient methods
for computing the PES of any state (regardless of charge,
spin, or symmetry) with satisfactory and consistent accuracy
[see also ref 19]. The convergence of the MRPT with MP
partitioning is not free from objections.20-23 It must be
admitted that CASPT2 can handle large active space leading
to a satisfactory accuracy. However, it has two serious
limitations which may invite inconsistent behavior of the
method. One is a lack of strict size extensivity and the other,
more importantly, is that it is occasionally subjected to the
intruder state problem, causing divergences in the perturba-
tion series.24,25 MRMPPT3 and MCQDPT4 are also not
rigorously size-extensive.24,25 The main features of recently
developed NEVPT211 theory are size consistency and the
absence of intruder states. In our view, a state specific (or
single root) MR method that is size-extensive as well as size-
consistent is essential and crucial to getting correct results
of dissociation PESs and associated spectroscopic parameters
[see ref 26 regarding this aspect].

We also mention other developments in the context of
MRPT methods which are able to deal with the PES. There
have been significant contributions by Wolinski and Pulay,27

Murphy and Messmer,28 Dyall,29 and most recently by
Robinson and McDouall.30 In this context, we also mention
the development of multiconfiguration perturbation theory
by Surján and his group.31 Surján and Rosta32 have inves-
tigated the MRPT using the APSG (antisymmetrized product
of strongly orthogonal geminal) reference state. To increase
the computational effectiveness, a number of groups30,33-35

have investigated the possibility of avoiding the CASSCF
step, by using orbitals obtained from simpler methods to
define the active spaces for use in multireference perturbative
treatments. The earlier CIPSI (Configuration Interaction with
Perturbation Selection Iteratively) method36 may be viewed
as a forerunner of many of the more recent MR perturbation
theories. This method can be viewed as a second order
perturbation correction to CI energies via diagrammatic
techniques using multiconfigurational zeroth order wave
functions.

In recent times, Mukherjee and co-workers14,15,18 have
introduced a rather elegant size-extensive and size-consistent
MRPT approach to tackle the intruder state problem [referred
to as state specific second-order MRPT, SS-MRPT]. In SS-
MRPT formulation, they used the Jeziorski-Monkhorst (JM)
ansatz37 in a state specific fashion. The SS-MRPT utilizes a
multipartitioning strategy.10,38 The SS-MRPT is quite rich
in its structure in the sense that it can be viewed as versions

of both a Rayleigh-Schrödinger (RS) and a Brillouin-Wigner
(BW) perturbation theory, depending on the expansion
strategy [we use the nomenclature SS-MRPT(RS) and SS-
MRPT(BW), respectively]. The SS-MRPT method has all
the attractiVe features of the parent SS-MRCC method.39

The SS-MRPT method obeys satisfactorily the logical and
practical requirements of a good MRPT approach such as
the following: (i) it is rigorously size-extensive and size-
consistent (when localized orbitals are used); (ii) it is
generally applicable to a wide class of problems within one
framework, i.e., not dependent on specific choices of
configurations; (iii) it bypasses the intruder state problem;
(iv) it is efficient and cost-effective; (v) the model can
properly treat dissociation of fragmentation problems (reac-
tions) in a spin-pure way for closed as well as open shells
(spin symmetry is essential to the proper description of bond
breaking); (vi) there is flexibility of using the coefficients
of reference functions in either a relaxed or an unrelaxed
mode under the effect of the perturbation; (vii) it is able to
calculate energies of similar quality in a wide domain of
geometries. As the SS-MRPT method is designed to facilitate
the relaxation of the reference function, it thus deals with
the mixed-states problem characterized by large changes
in the relative contributions of the coefficients of reference
functions in an exact (correlated final) wave function
compared to the zero-order function. The SS-MRPT approach
is able to model any region of the PES of a molecular system
(with closed-/open-shell and singlets/nonsinglets model func-
tions) even when the traditional effective Hamiltonian based
MR methods fail due to intruders.14,15,18,40 More recently, a
number of researchers have adapted the SS-MRPT approach
to a production-level implementation;41 hitherto the deriva-
tion has been formulated in terms of spin-orbitals. One of
the main objections of the spin-orbital based formulation
exists in the incorrect treatment of spin eigenstates. As a
word of caution, it is important to note that the SS-MRPT
method is useful as long as the target state energy is well
separated from the virtual functions. This is generally true
for the ground and low-lying states.40 Our application in this
paper is based on the problem of describing PESs of
molecular systems in their ground states.

The main difficulty in CAS-based MR calculations arises
from the use of CAS in constructing many-electron wave
functions due the exponential increase of the size of the
model space when one increases the number of active
orbitals. The main relevant criticism of the theories based
on the wave operator of the Jeziorski-Monkhorst type is
its prohibitively increasing number of amplitudes as a
function of the size of the model space, since the cluster
operator is defined with respect to each reference determi-
nant. The computational scaling, however, is not favorable
if the number of the reference determinants is large. Beyond
that, for each cluster operation (specific for the target state),
one must solve a set of coupled equations which scales with
the CAS size. In contrast, the ansatz for internally contracted
methods is more compact. Despite the computational benefit
of the internal contraction, internally contracted state-specific
multireference formalisms may suffer due to internal con-
traction of the wave function in the reference space. In the
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case of computation of the interaction between close lying
states, or of weak crossings, some of the spurious effects
induced by the internal contraction42 may affect the stability
and accuracy of this type of method. It is worth mentioning
that CASPT25,6 can be implemented in terms of either
internally contracted configurations, configuration state func-
tions, or some combination of the two, whereas MRMPPT3

is formulated in terms of configuration state functions. In
this context, we can also mention the work on the reduced
model space method in MRPT of Staroverov and Davidson.43

In order to corroborate the SS-MRPT with some applica-
tions, we have chosen to start with the implementation of
its various variants. Instead of following an RS expansion
based MP-type philosophy in SS-MRPT [named SS-MRM-
PPT(RS)], one may also use the BW-based MP-type [termed
SS-MRMPPT(BW)] spirit while retaining the main advan-
tages of size extensivity and size consistency rigorously in
an intruder free way. Our multipartitioning scheme for RS
and BW follows the ideas advanced by Mahapatra et al.14

and Ghosh et al.,15 respectively. There have been several
numerical studies illustrating the ability and power of the
SS-MRMPPT(RS) method to describe single, double, and
triple bond breaking on singlet and nonsinglet PESs,14,40 but
little is known about the performance of the SS-MRM-
PPT(BW) approach in calculations of bond breaking in
molecular species.14,15 The pre-eminent success of the SS-
MRMPPT(RS) method in treating electron correlation for
many types of systems prompted us to apply the SS-
MRMPPT(BW) scheme. The main goal of the present
investigation and of the analysis is to examine the perfor-
mance of the SS-MRMPPT(BW) method in the difficult
quasi-degenerate situation arising from the bond stretching
and to compare our results with other approaches, particularly
those belonging to the general category of the MRMP method
(such as CASPT2, MRMPPT, BWPT, etc). It would be very
constructive if we are able to incorporate a comparative study
of the results of the SS-MRMPPT method with respect to
the other nonperturbative methods in each case. In this work,
we also inspect explicitly the convergence issue with respect
to the correlation treatment and the basis set for the SS-
MRMPPT(BW) method along with its RS version. However,
the application of the SS-MRMPPT(RS) is computationally
less demanding than SS-MRMPPT(BW) at the cost of
accuracy.

In this paper, we investigate the ground state of the X2 [X
) F, Cl, and Br] and BH molecules as our benchmark
systems, as they are the prototype systems for a variety of
spectroscopic and reaction dynamics studies. The importance
of the X2 systems as laser media, as well as their unusual
behavior, provides motivation for trying to understand them
better. The molecular dihalogens exhibit interesting yet only
partially understood molecular properties, one being the
apparent scrambling of the order in bond dissociation
energies. As one descends along group VIIA of the periodic
table, there should be an expected decrease from fluorine to
iodine; curiously, the chorine molecule has the highest bond
dissociation energy. The traditional explanation lies in
positing the fact that the fluorine atom has a very small size,
with high electron density over it, resulting in molecular

fluorine being a stretched molecule (with a more than
expected bond distance, as is envisaged in fact) owing to
the high lone-pair-lone-pair repulsion. The fluorine molecule
shows different electronic behavior in relation to chlorine
and bromine molecules. It is already known that F2 is
unbound at the Hartree-Fock (HF) level. In contrast to
fluorine, chlorine and bromine molecules are bound at the
HF level. The situation dramatically changes for the CASSCF
(Complete Active Space-Self Consistent Field) wave func-
tion. However, despite the improvement, the calculated
bonding energy is still disappointingly small, as CASSCF
does not treat the dynamic correlation, which is important
for a correct description. Relying on the generalized valence
bond method, recently Barbosa and Barcelos44 have put forth
an additional understanding of this phenomenon. It is now
well-known that to compute the PES within “chemical
accuracy”, sextuple excitations with respect to single-
determinant reference functions are needed even for the
single-bond (F-F) breaking of the F2 molecule.45 This is
the main reason for the problems faced by the SR-based
methods.

Along the ground state dissociating reaction path of X2

and BH, the starting reference function changes multicon-
figurationally and encounters the perennial “intruder state
problem”, which prompted us to undertake the present study
of X2 and BH dissociation. It is to be remembered that, when
the “intruder state” makes a contribution to the target state,
removing it from the perturbation expansion in the region
of the singularity invites in a noticeable error in the computed
perturbative energy in the context of an effective Hamilto-
nian-based approach(es). We have observed that the SS-
MRMPPT formalism does not break down when generating
a ground state dissociation energy surface for X2 and BH.
In this work, we also focus on the calculation of the
spectroscopic constants through the computation of nonrela-
tivistic PES for the dissociation of the X2 molecule into two
X atoms in the ground electronic state (belongs to the 1Σg

+

representation) via the SS-MRMPPT(BW) [and also SS-
MRMPPT(RS)] approach using various basis sets. We
consider the same for the ground state of the BH molecule
also. At this point, we want to state that the most detailed
experimental information regarding energies along the entire
reaction paths is available in diatomic molecules by virtue
of their spectroscopic constants, and thus they furnish
exacting tests for methods attempting to describe PESs.
Actually, theoretical computation of vibrational frequencies
has become almost “a must” for experimental spectroscopists
these days, as it helps to interpret and assign experimental
infrared or Raman spectra, especially in difficult and
questionable cases. The SS-MRMPPT spectroscopic con-
stants (evaluated by fitting the energy surfaces or curves to
cubic polynomials) are found to be in reasonable agreement
with the corresponding experimental values. In the present
work, we calculate the dissociation energies as the difference
in energy at an asymptotically large distance and the fitted
energy minimum.

Chlorine and bromine introduce a new level of complexity
to our computational methods because they are so large.
Chlorine and bromine have 17 and 35 electrons, respectively,

664 J. Chem. Theory Comput., Vol. 6, No. 3, 2010 Sinha Mahapatra et al.



and taking into consideration every electron for these atoms
costs a great deal computationally. Also, the core electrons
have quite high energy so that there is the possibility of
relativistic effects on the core electrons. In systems containing
heavy atoms, such as chlorine or bromine, relativistic effects
and spin-orbit coupling cannot be neglected (in some cases
even in the first-order perturbative treatment) to get correct
results. Since the ground state (1Σg+) has zero angular and
spin momentum, it is not subject to spin-orbit splitting;
however, relativistic effects play an important role. These
relativistic effects are not taken into consideration under
standard levels of theory. In our calculations presented in
this paper, the inner-shell electron correlation and relativistic
effects have been disregarded. In our remaining discussion,
we will mainly focus on the analysis of the basis set and a
balanced treatment of dynamical as well as nondynamical
correlation effects, the key to a successful description of
molecular PESs involving bond making and breaking.

The SS-MRMPPT(BW) approach has been shown to work
slightly better and be consistent in comparison to the SS-
MRMPPT(RS). It is important to note that the convergence
of the correlation energy with basis set size of the SS-
MRMPPT(BW) is better than the RS counterpart, as it should
be. A close observation of the numerical performance of the
SS-MRMPPT methods exhibits that the overall performance
of SS-MRMPPT(BW) is better and more consistent over its
RS counterpart. This paper is not to advocate replacement
of the SS-MRMPPT(RS) approach with the SS-MRM-
PPT(BW) one; rather, it is to throw light on the role of the
scheme of perturbative expansion in the treatment of the
coupling term maintaining size extensivity. The SS-MRPT
method is generalizable to SS-MRENPT in RS and BW
expansion. In this context, we remark that the SS-MRENPT
approach is endowed with size extensivity and size consis-
tency properties in contrast to the traditional MRPT method
with EN partition. In the present work, the SS-MRENPT
with RS and BW expansion has been applied to investigate
the F2 system. The results of the SS-MRPT with an EN
partition are not too good. The ground state PESs of F2 via
SS-MRMPPT have already been published by Mahapatra et
al.14 with the EN-type partitioning scheme (using RHF
orbitals). However, that work was based on relatively small
basis sets. We have used sequences of the correlation-
consistent cc-pVXZ basis sets (with spherical components)
of Dunning in calculations described in this paper. The basis
sets used in this paper were taken from ref 46.

Before embarking on the numerical performance of the
SS-MRPT method, we first discuss in section II some salient
methodological aspects of the SS-MRPT method, which are
pertinent for numerical discussion. The numerical results are
presented and discussed in section III. A summary and
outlook is given in section IV.

II. Brief Résumé of Theory and Discussion

Before presenting the results of the present work, we shall
give a brief introduction of the SS-MRPT theory. It is not
our purpose here to describe the detailed derivation of the
SS-MRPT method starting from the mother theory, the SS-
MRCC formalism. Such details can be found elsewhere.14,18,39

Considerable theoretical and computational progress has been
achieved for a companion perturbation theory (SS-MRPT)
for state-specific multireference coupled cluster methods of
Mukherjee and co-workers.18,39,41 The formal development
of SS-MRPT has been based on the JM ansatz. In the JM
ansatz, the wave function has the form

where the combining coefficients of the model space (MS)
functions cµ’s are a priori unknown. The reference function
ψ0 is a combination of the MS function (configuration state
functions, CSF) φµ, called the complete model space (CMS):

Here, the cluster operator, Tµ, acting on φµ creates a set of
virtual functions, {�l

µ}. Every CSF is associated with its own
cluster excitation operator to take care of differential cor-
relation and dynamical correlation effects, instead of applying
one universal operator to the whole reference function. This
makes the approach based on this ansatz the method of choice
for computing the state energies per se. Inserting the ansatz
into the Schrödinger equation yields37

If all the parameters are independent, there is redundancy in
the ansatz in the sense that some excited CSFs can be reached
in multiple ways by the linear excitation of some reference
CSFs. Thus, the use of the JM ansatz in a state specific
fashion introduces an inherent redundancy problem. Mukher-
jee and co-workers tackled the obstacle and solved the
amplitude equations by using some physically motivated
sufficiency conditions.39 The SSMR approach of Mukherjee
and co-workers explicitly contains the eigenvector coef-
ficients in contrast to both state-universal37 and Brillouin-
Wigner based methods.12 In recent years, BW methods have
been applied to the many-electron systems in a state specific
formulation. For all practical purposes, actual perturbative
computations require the truncation of the perturbative
expansion, and this truncation is only meaningful if the
perturbation series either converges rapidly or at least
converges rapidly in an asymptotic sense. The general
problem of spin-adaptation using the JM ansatz based MR
methods is quite a nontrivial and a rather involved exercise.47

The spin-adaptation of the SS-MRPT method has been
achieved (i) by invoking suitable spin-free unitary generators
to define the cluster operators and (ii) by considering the
entire portion of the highest closed-shell component, φ0µ, of
a model function φµ as the vacuum to define all the
excitations on φµ in normal order [see ref 18 for the spin-
free development of SS-MRPT in detail]. In the SS-MRPT
development, intermediate normalization is used, making
the introduction of a complete active space essential (the
amplitudes corresponding to the internal excitations are set
to zero). It is also worth mentioning that the assumption of
a complete model space enables proving the connectivity of

|ψ〉 ) ∑
µ

exp(T µ)|φµ〉cµ

ψ0 ) ∑
µ

cµφµ (1)

(H - E) ∑
µ

exp(Tµ)|φµ〉cµ ) 0
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the cluster operator making the method scale correctly with
the number of electrons (size-extensive). This is an important
and nontrivial result. It should be noted that, because of the
lack of invariance of the SS-MRPT with respect to active
orbitals, strict size consistency can be demonstrated only for
localized orbitals (which would also be the case for the
analogous perturbation theory).

To discuss the structural features of cluster finding
equations of the SS-MRPT approach, we recall the following
quasi-linearized form of the parent SS-MRCC theory:39

Here, {�l
µ} (for all µ) are the set of virtual functions spanning

the space complementary to the space of ψ0, H̃µν ) 〈φµ|H|φν〉
+ 〈φµ|HTµ|φν〉. In the development of SS-MRPT, one can
treat ε a dependent from our choice of H̃µν, depending on
the RS or BW mode of formulation, but not on a specific
partitioning strategy. For the RS version, one can choose
H̃µν as Hµν, while the second order effective pseudo-operator
H̃µν

(2) can be chosen for the BW scheme. The partitioning of
H affects the second and third terms of eq 2. Thus, from the
very mode of development of the SS-MRPT method, one
can observe that the formalism provides a completely
independent treatment of the size-extensivity correction term
and partitioning of the total Hamiltonian. Hence, one can
consider several schemes for the development of the MRPT-
like approach from the parent SS-MRCC theory.

For actual applications, the form of the working equations
for the first-order cluster amplitudes can be written as

for RS, and

for BW. The dependence of denominators on the unknown
exact energy eigenvalue E is one of the distinguishing
features of Brillouin-Wigner methods. This property is
responsible for the existence of a natural gap that may lead
to a rapid convergence of perturbation series. Here, Hlµ )
〈�l

µ|H|φµ〉, and Hll ) 〈�l
µ|H0|�l

µ〉. �l
µ stands for a general (mono/

bi)-excited function from the φµ. H0 is the zeroth-order
Hamiltonian. In practice, however, for a given MR reference
wave function, the MRPT energy depends on the definition
of the zero order Hamiltonian. Different variants of MRPT
deviate from each other in the selection of these quantities.

As in the SS-MRPT method, the partitioning of H and
the treatment of the size-extensivity correction term are
independent, and we can even choose H0 to be a one-particle
operator, as that for a truly MP theory. In SS-MRPT, the

zeroth-order Hamiltonian, H0, is different for different CSFs,
φµ or ψ0 [henceforth, we refer to H0 for φµ as H0µ]. In our
MP partition, we choose H0µ to be a sum of the Fock
operators for the function φµ. This will correspond to a
multipartitioning MP perturbation theory analogous to what
was originally advocated by Malrieu and co-workers.10 Our
SS-MRPT thus utilizes a multipartitioning strategy. We can
also envision using an EN type of partition for H. In both
the choices, H0µ is a diagonal operator, and this lends a
simpler structure to the SS-MRPT. The SS-MRPT uses the
best traits of the multipartitioning strategy as well as of a
rigorously size-extensive formulation.

In the cluster amplitude finding equation of the SS-MRPT
[see eqs 3 and 4], two sets of terms are present: (i) the first
term, called the “direct” term [analogous to the SR part for
each φµ, thus preserving the structure of SR perturbation
theory], and (ii) the second part, called the “coupling” term,
which is mainly responsible for the twin goals of the
formulation: alleviate intruders (which are ubiquitous in a
traditional effective Hamiltonian based MR approach) and
maintenance of rigorous size extensivity. This plays an
important role in the wave function being size-consistent with
localized molecular orbitals. It is worth mentioning that the
reliability of a computational approach as applied to large
systems and chemical reactions depends critically on its
ability to maintain the size consistency of calculated proper-
ties. Hence, the coupling term(s) have physically and
numerically distinct contributions to the electron correlation
problem for MR situations. This distinction is the primary
feature of the SS-MRPT. The working equations of the SU-
and SS-based MRPT methods differ in the form of the
coupling terms. However, a repeated solution of essentially
the same set of equations for each state is required in the
case of SS-based methods, whereas in the conventional SU
approach, all states are considered simultaneously.

We note that eqs 3 and 4 involve the coefficients cµ
0/cµ

explicitly indicating that the cluster amplitudes depend on
them. In contrast, coefficients do not appear(s) in the cluster
amplitude equation of pure state universal theory. The
coefficients and the required energy of the target state are
generated by diagonalizing an effective operator (non-
Hermitian) H̃µν

(2) defined in CAS (or CMS):

Once the cluster amplitudes, tµ
l(1), are determined using the

reference coefficient, the reference function can be updated
by diagonalization of the matrix H̃µν

(2), and thus a self-
consistent procedure is obtained. The number of unknowns
in this formalism is exactly the same as in the corresponding
SUMR-based theory. As the theory is state specific, only
one eigenvalue corresponding to the target state represents
the exact energy, while the remaining eigenvalue(s) have no
physical meaning. That is, if the number of linearly in-
dependent functions in the CAS (i.e., Hilbert space) is N,
only one root is meaningful (represents the exact intruder
free energy); the rest of the roots are extraneous, which is
the principal difference with the state-universal-based meth-
od(s). It should be emphasized that the strict separability of

〈�l
µ|H|φµ〉cµ + [( ∑

m

〈�l
µ|H|�m〉 - 〈φµ|H|φµ〉δlm)〈�m

µ |Tµ|φµ〉]cµ -

[ ∑
ν

〈�l
µ|Tµ|φµ〉ε]cµ + [ ∑

ν

〈�l
µ|Tν|φµ〉H̃µν]cν ) 0∀l, µ

(2)

tµ
l(1) )

Hlµ

[E0 - Hll]
+

∑
ν

ν*µ

〈�l
µ|Tν(1)|φµ〉Hµν(cν

0/cµ
0)

[E0 - Hll]
(3)

tµ
l(1) )

Hlµ

[E - Hll]
+

∑
ν

ν*µ

〈�l
µ|Tν(1)|φµ〉H̃µν(cν/cµ)

[E - Hll]
(4)

∑
ν

H̃µν
(2)cν ) E(2)cµ (5)
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the matrix elements of the effective Hamiltonian ensures the
separability of its eigenvalues and eigenvectors provided that
complete model spaces and localized orbitals are used. Very
recently, Evangelista et al.41 observed that localizing the
orbitals to maintain rigorous size consistency of the method
does not affect the accuracy of the results obtained.

Equations 3, 4, and 5 are the working expressions used in
this work for the evaluation of cluster operators and energy
in the perturbative framework. The sets {Tµ} and {cµ} are
coupled through eqs 4 and 5 in the case of BW. From the
working equations, it is evident that the cµ’s are updated
iteratively for the BW case, whereas cµ

0 is used for RS scheme
to evaluate the cluster amplitudes and H̃. In the RS case,
model space combination coefficients get relaxed during the
computation of energy when this is obtained by diagonal-
ization. The CAS energy, E0 and coefficients (unrelaxed) for
the reference functions, cµ

0 ’s are obtained by diagonalizing
the matrix of Hµν. Thus, for the RS theory, E0 (CAS energy)
appears in the denominator, while in BW, the target state
energy appears. It should be noted that all the variables [cµ,
Tµ] are determined self-consistently for the BW case. Thus,
the computation of the SS-MRPT energy requires knowledge
of first-order cluster amplitudes which can be obtained via
an iterative procedure because of the presence of coupling
terms. There are several provisions about how to perform
iterations of the cluster equations in the SS-MRPT method.14

Consideration of different solution techniques of the first
order equations is an important aspect. Very recently,
Evangelista et al.41 demonstrated that the iterative solution
of the SS-MRPT amplitude equations is not a bottleneck
issue. The perturbative energy for the RS scheme is a (up
to) second-order quantity, whereas for the BW expansion,
this is pseudo-second-order in nature [the energy is no longer
rigorously second order] as the amplitude finding equations
for BW are not truly first-order due to the presence of explicit
H̃µν in an amplitude equation, eq 4. In eq 5, there is a choice:
one can use it to compute the energy either as an expectation
value with respect to the unrelaxed (or frozen) function or
by diagonalization in the relaxed form. It should be noted
that, in SS-MRPT(RS), the effect of relaxation of the
coefficient is somewhat different compared to the traditional
MR-MBPT. The effect of large mixing of reference functions
and consequent relaxation cannot be estimated fully by SS-
MRPT(RS), because frozen cµ’s figure in the amplitude
finding equation. SS-MRMPPT(RS) can be regarded as an
approximation to the SS-MRMPPT(BW) method. But, we
expect that the SS-MRPT(BW) scheme takes this relaxation
fully.

Working equations clearly offer the solution to the intruder
state problems for low-lying electronic states as long as E0/E
is well separated from the external space. This is a convenient
aspect of applying the SS-MRPT method to PES, illustrated
in the next section. It is noteworthy that, if the contribution
of an intruder state is significant, then the “shifting technique
to avoid the intruder” will not correct the situation rigorously,
and a substantial error in the perturbation energy may be
expected. In such situations, one may expand the reference
space to include the intruder state. It is well-known that in
most cases the effect of intruder states becomes more

pronounced away from equilibrium region, and successful
treatment of this aspect improves the accuracy of predicted
energies.

The development of IMS-based SSMR theory18 may have
the potential to avoid or at least to attenuate the instability
of the theory when the virtual determinants do not remain
reasonably well-separated in energy from the state energy.
To attenuate the computational cost of the CAS-based SS-
MRPT method, one can use the IMS-based SS-MRPT
scheme. Another way to reduce the computational demand
would be to work with a contracted description of the ansatz
of the starting wave function as that in the case of the
contracted MRCI method.18

It should be underlined that mere elimination of small
denominators is not sufficient to ensure the convergence of
cluster finding equations [eqs 3 and 4] because of the explicit
presence of cµ in it. In the development of the SS-MRPT
amplitude finding equations, we have assumed that all the
elements of the eigenvector cµ are nonzero, which allows us
to divide the µth cluster equation by cµ. The working equation
is prone to numerical instability owing to the presence of
the coefficients cµ (or cµ

0) in the denominator, and the paucity
of these makes the terms explode. This is an unwarranted
situation. This issue is completely different from the con-
ventional intruder effect (related to the vanishing energy
difference in the denominator of the cluster finding equations,
leading to convergence difficulties). If the reference coefficients
go to zero (nearly vanishing), the value of 〈�l

µ|Tν(1)|φµ〉H̃µνcν/
[〈�l

µ|Tν(1)|φµ〉Hµνcν
0] becomes small, akin to the values of the

coefficients cµ. As in any reference function (ψ0), if the
contribution of some of its component function (φµ) is very
small, then the back coupling from other components in the
cluster finding equation should not be large, at least not larger
than the zero-order value; i.e., 〈�l

µ|Tν|φµ〉Hµνcν will be as small
as cµ. Consequently, the problem of divergence is alleviated.
Practical calculations show that SS-MRPT method has good
convergence properties even for molecules far away from
their equilibrium geometries. In our present applications, we
have observed that the amplitude finding equations do not
suffer from numerical instability even when all coefficients
(cµ) have been included. But still, the appearance of cµ in
the denominator invites a threat for the calculations of excited
states. Recently, a numerically more robust approach has
been suggested and implemented by Evangelista et al.41,48

Explicit discussion of this issue has appeared in the recent
paper of Engels-Putzka and Hanrath.49 In this paper, they
devised a technique which is very effective in drastically
reducing the numerical instability of amplitude finding
equations without an undue sacrifice in accuracy. In passing,
we should mention that the cluster finding equations in the
SUMR37 and BWMR12,50 approaches have no cµ coefficient
in the denominator and are free from such difficulties.

In this article, we have considered MP type partitionings.
In our numerical application, we used the following definition
of the Fock operator in the case of SS-MRMPPT:

fµ ) ∑
ij

[fcore
ij + ∑

u
(Viu

ju - 1
2

Viu
uj)Duu

µ ]{Ei
j} (6)
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Here, u represents both a doubly occupied and a singly
occupied active orbital in φµ, and Dµ’s are the densities
labeled by the active orbitals. Since our H0 is always diagonal
for MP scheme, the zeroth-order Hamiltonian operator is H0

µ

) Σifµ
ii{Ei

i}. Thus, H0 is built on one-particle operators; i.e.,
it is monoelectronic in nature. The use of diagonal zero-
order operators ensures the maximum computational simplic-
ity of the scheme, which can attenuate computational cost
in rather complicated situations. For the sake of comparison,
results of the EN partition (appropriately generalized in the
context of multipartitioning10) have also been presented.

This discussion will remain incomplete if we do not
discuss the characteristic features of the SS-MRPT with
respect to the multireference state specific Brillouin-Wigner
second-order perturbation theory (BWPT) of Hubać and co-
workers.12 In this part, we will analyze qualitatively the
structural kinship and scaling (size-extensivity) property of
these two methods. Theoretical derivations and detailed
discussions of further aspects of these approaches are given
elsewhere.12,14 A complete active space is employed as a
reference for both the perturbation theory studies. Here, we
want to state that both the BWPT of Hubać and co-workers12

and the SS-MRPT developed by Mukherjee and co-workers14

are based on the “diagonalize then perturb” philosophy.

In the state-specific Brillouin-Wigner PT of Hubać and
co-workers,12 working equations are obtained by introducing
the SS wave operator in the BW form of the Bloch equation.
The equations that determine the amplitudes of the wave
operator are coupled only through the exact energy of the
target state (the price paid is the lack of size extensivity of
the method), a computational advantage emphasized by
Hubać and co-workers. Thus, in BWPT, the amplitude
equations naturally decouple for each reference and do not
contain expansion coefficients for the reference wave func-
tion. On the other hand, the development of the SS-MRPT
formalism of Mukherjee and co-workers involves inserting
the state-specific JM wave operator into the expansion for
the exact wave function and using the physically motivated
sufficiency condition discover cluster finding equations. As
a result of this, in contrast to the BWPT, the amplitudes of
the SS-MRPT for reference µ are dependent on the ampli-
tudes of the entire model space through the renormalization
(or coupling) terms. We recall that, in the SS-MRPT
formalism, the renormalization terms have been exploited
to attain the twin goals of ensuring size extensivity and
avoiding intruders. Although both the theories of Mukherjee
and co-workers and of Hubać and his group use sufficiency
conditions, it is worth noticing the difference in the suf-
ficiency conditions of BWPT and SS-MRPT. In contrast to
the BWPT approach, the SS-MRPT(BW) method explicitly
contains the eigenvector coefficients. This reference coef-
ficient weighing originates from the sufficiency condition
used.

To make some comment on the formulation of BWPT
proposed by Hubać and co-workers,12 we have written the
perturbative equations with the same H0 used by us and with
the energy parameter unexpanded. Their amplitude equations,
in place of the coupling term, contain the target energy E
itself, multiplied by certain expressions containing just the

amplitudes of the Tµ. The coupling of the various tl
µ’s with

different µ’s is thus implicit, appearing via E, since E
involves all the cluster operators with different µ’s. The
equation for the first order cluster operator in our terminology
is

Using the multipartitioning expression10 of H we get

A strong objection to the choice of sufficiency conditions
used by Hubać and co-workers to yield amplitude equations
is that BWPT is not rigorously size-extensive due to the
presence of disconnected terms stemming from E〈�l|Tµ(1)|φµ〉.
There are no counter terms to cancel this disconnected
contribution. The remaining terms of this equation are
connected in nature. Attempts to restore size extensivity in
the formalism of BWPT attempt to do so by way of
expanding the target energy E in terms of an unperturbed
RS-like energy E0. The size-extensivity correction in this way
does not necessarily improve the quality of results with
respect to the nonextensive parent theory.51 It has been
observed that the intruders would not show up if the
inextensivity correction is incorporated by one iteration only.
However, in general, this procedure does not ensure the
removal of all the inextensive terms. Multiple iterations or
the converged RS type of results will, however, unfortunately
bring back the problem of potential intruders. In spite of that,
recent calculations have shown that this approach produces
very promising results in some difficult quasi-degenerate
situations. On the other hand, SS-MRPT(BW) is both size-
extensive and size-consistent (when localized orbitals are
used). The cluster amplitudes in the BW series are generally
obtained in the SS-MRPT theory by using BW-type denomi-
nators but are corrected for size inextensivity with counter
terms originating from coupling terms; such counter terms
are inherently absent in the BWPT approach.12 In SS-
MRPT(BW), there is an extra term Σν〈�l|Tµ(1)|φµ〉Hµν(cν/cµ)
which cancels the disconnected term; as a result, the final
cluster finding equation is manifestly connected. Hence, the
amplitude finding equations in SS-MRPT involve an explicit
coupling between the cluster operators for all the µ’s as
demanded by the rigorous requirement of size extensivity.
Proving the extensivity and consistency of both cluster
amplitudes and the energy E of SS-MRPT is a rather
involved exercise, and we refer to the original papers for
details.14,15

The above-mentioned, nice formal properties provide a
unique niche for the SS-MRPT approach that has opened
the possibility toward accurate treatment for the electronic
states, especially when investigating large systems that are
computationally intractable for the more robust electron
correlation methods. The SS-MRPT method resolves the
contradiction between the conditions for a reliable as well
as good convergence and those for asymptotic separability
in the context of the MRPT approach.10 The goodness of

〈�l
µ|H|φµ〉 + 〈�l

µ|H0T
µ(1)|φµ〉 ) E〈�l

µ|Tµ(1)|φµ〉 (7)

〈�l
µ|H|φµ〉 + (Hll - E)〈�l

µ|T µ(1)|φµ〉 +

∑
m*1

′
〈�l

µ|[H0]µ|�m
µ 〉〈�m

µ |Tµ(1)|φµ〉 ) 0 (8)
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the SS-MRPT method in different partition and expansion
schemes will be examined by way of example calculations
in the next section, where we shall illustrate the accuracy of
the SS-MRPT method for a number of homonuclear diatomic
halogen and BH molecules. The performances of the SS-
MRMPPT(RS) and SS-MRMPPT(BW) methods based on
the same CAS have been compared. To validate our
numerical implementation, we tested our results against
independent numerical results available in the literature. The
remainder of this paper consists of discussion of our
numerical applications.

III. Numerical Applications: Dissociation PES
of Molecular Systems

In the present paper, we deal with the dissociation of single
bond systems. Despite their geometric simplicity, the elec-
tronic structure of these molecules provides a difficult
challenge for MRPT. We have organized the sequence of
the presentation of our numerical results in two parts: (A)
dissociation of X2 [X ) F, Cl, and Br] systems and (B) the
calculation of the ground state PES of the astrophysically
important BH molecule in order to show the applicability
of the SS-MRPT approach to a open-shell case. In this paper,
we have also investigated the effects of orbital rotation on
the total SS-MRMPPT energy.

In the approach pursued here, the recovery of correlation
is perceived as a two-stage process. The procedure we used
involved running an initial CASSCF calculation followed
by SS-MRMP analysis. The SS-MRPT correction ensures
(provides the second order energy in the full active space) a
proper treatment of the dynamic electron correlation in the
wave function. All current calculations use CASSCF for the
description of the reference state because it is size-consistent
and correctly describes the static correlation. CASSCF wave
functions are especially useful for exploring the details of
PES. In the CASSCF method, the active electrons are
distributed in all possible ways over the active orbitals with
a given space-spin symmetry of the state considered. The
active space provided by the user of the CASSCF software
represents a key point to obtain accurate theoretical predic-
tions, once the dynamic correlation has subsequently been
taken into account, for instance, at the SS-MRPT level. In
our CASSCF calculations for electronic states of the X2 and
BH systems, two electrons were active, and the active space
included two orbitals [denoted as CAS (2,2)] for each
internuclear distance. In our calculations of the BH system,
we also used the same CAS, termed CAS(val), as the one
reported in ref 52, and thereby the performance of the various
SS-MRMPPT variants can be assessed by comparing our
results with the results reported in ref 52 of Sherrill and co-
workers. The choice of the active space stemmed from the
electron configuration of the ground state of the molecules.
In order of increasing severity, our tests include the homo-
nuclear diatomic molecules F2, Cl2, and Br2. The single
bonding in X2 is basically a chemical reaction that involves
one bonding orbital(s) and the corresponding higher-lying
antibonding orbital. CAS(2,2) is thus the smallest active
space that allows for a qualitatively correct treatment of the
bond breaking since, in the dissociation region, both bonding

and antibonding orbitals become quasi-degenerate nonbond-
ing orbitals. On the other hand, the larger reference space
provides improved first order energies and smaller overall
perturbation corrections. Not only that, increasing size of
the reference space enhances the diagonal perturbation matrix
elements. It might be expected that the perturbation series
displays slow convergence with the larger reference spaces
in comparison to the smaller one. It is always desirable to
use as accurate a description of the unperturbed state as
possible. In this computational method, the full reaction
coordinate is computed at the CASSCF level of theory [using
GAMESS(US) quantum-chemistry software]. For the per-
turbation calculations, mono- and bielectronic integrals are
calculated by the GAMESS(US) program package.

A. Ground State PES of Homonuclear Dihalogen
Molecules X2. Theoretical studies on ground electronic states
along the dissociation path of X2 are very challenging as it
possesses quasi-degeneracy at some point on the reaction
path and there are potential intruders at some other points
in the PES. This is the main reason (to our knowledge) for
the inapplicability of state-universal MRCC theory to gener-
ate spectroscopic constants of X2. Thus, these systems are
appropriate to test the efficacy of any state-specific MR-based
theory. Therefore, in order to obtain a PES accurate enough
in the whole range of the reaction path, computation of both
nondynamical and dynamical electron correlation in a
sophisticated and intruder free manner is very much essential.

Before investigating the properties of Cl2 and Br2, we
consider the demanding example of F2, which is well-known
to have multireference character in its equilibrium descrip-
tion. The fluorine molecule is one of the most widely studied
and still one of the most difficult diatomic molecules in terms
of obtaining a correct dissociation behavior. Almost any new
single or multiconfiguration reference approach to the
correlation energy has been long-since checked for the
computation of the lowest state of the F2 molecule as a simple
multireference system that is difficult to solve.14,26,45,53-60

A proper description of the reference wave function of
equilibrium and the entire reaction coordinate including
dissociated X2 requires a linear combination of two closed-
shell determinants: (core)σg

2 and (core)σu
2 in the D2h point

group. As the stretching of the X2 bond increases, the
contribution from the second determinant to the total
CASSCF(2,2) wave function increases significantly. Needless
to say, the SR-based method noticeably underestimates the
second determinant contribution. Recent papers by Pittner
et al.26 and Evangelista et al.48 provide a nice summary of
the performance of various many-body methods applied to
the F2 problem. A comprehensive tabulation of spectroscopic
constants of F2 obtained from different perturbation theory
have been found in a paper by Rosta and Surjan.59 The
dissociation energy of F2 has been determined by Yang et
al.61 using ion-pair dissociation imaging. In very recent
articles, Bartlett and Musial62 have given a detailed discus-
sion of the performance of a new hierarchy of SR-based
coupled-cluster methods, nCC for the F2 bond-breaking
process. Very recently, Evangelista et al.48 published a nice
paper regarding the performance of various MRCC methods
to calculate the dissociation energy of F2 in considerable
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detail. It should be emphasized here that the most extensive
application at the production level of SS-MRCC theory by
Mukherjee and co-workers39 beyond double excitation was
carried out by Evangelista et al.48 [termed by them as Mk-
MRCC]. They provide a benchmark for other high-accuracy
calculations of the F2 dissociation surface. In this paper,48

they stated that the low accuracy of MR-BWCCSD theory
to describe the dissociation reaction of F2 in comparison to
the Mk-MRCCSD is due to the size inextensivity of BWCC
method. Recently, Ruedenberg and co-workers63 established
the nonrelativistic PES taking into account electron correla-
tions only in the valence shell, while to get very accurate
results, one must also include the effects of relativity. The
spectroscopic results of Evangelista et al.48 along with the
present work allow an assessment of effectiveness of the SS-
MRMPPT in comparison to the computationally demanding
parent, full-blown SS-MRCC (Mk-MRCC) method. It is
evident from the above discussion that F2 provides a unique
testing ground for different theoretical approaches to the
study of PESs. Because the F2 system is small enough for
the application of very large basis sets close to the limit, we
have done a series of calculations for the system to get a
definite answer to the performance of the SS-MRMPPT with
the RS and BW scheme. The results for F2 have been
obtained with a variety of basis sets. The perturbation series
converges safely if diffuse basis functions are added to the
basis set. It is worth mentioning that, in our numerical
application, we have not observed any unphysical kink (or
barrier) in the F2 dissociation PES, but Mášik et al.57 have
observed that there is an unphysical barrier in the CASPT2
dissociation surfaces near R(FF) ) 3 Å.

For our computations on the F2 system, let us first consider
the frozen-core calculations using the DZP+basis54 [which
is the standard Huzinaga-Dunning DZ set with the most
diffuse p function uncontracted and augmented by six
Cartesian d functions (Rd(F) ) 1.580)] where we have
various theoretical results26,45,53-60 for comparison. Spec-
troscopic constants of F2 at various levels of theory are
available in the literature for this basis. Hence, we have
performed our calculations using this basis to demonstrate
the efficacy of the SS-MRPT for different partitions and
expansion schemes. The spectroscopic properties (equilib-
rium bond length and dissociation energy) derived from our
PESs are reported in Table 1 for the F2 molecule using the
DZP+ basis. The fluorine 1s core orbitals have been kept
frozen (uncorrelated) in our calculations. Comparisons are
presented with other multireference perturbation calculations
focusing only on the relative performance of the methods
of Hirao (MRMPPT),3 Roos and co-workers (CASPT2),5 and
the APSG (antisymmetrized product of strongly orthogonal
geminals) PT of Surján and co-workers.59 For the sake of
comparison, we have also summarized the results of spin-
flip and MR-CISD methods.58 For a balanced comparison,
we also report in Table 1 the best nonrelativistic, valence-
correlated, CBS results from Bytautas et al.63 The FCI result
is not available at this level, and the results from Bytautas
et al. have been taken as a reference. The results in the table
show the ability of both versions of SS-MRMPPT to
reproduce the established theoretical values well. The results

from the CASSCF, GVB (generalized valence bond), and
APSG (represents an independent electron-pair model)
calculations compare well with spin-flip-SCF (SF-SCF).
Although incorporation of the dynamical correlation in the
SF-SCF method improves the results, the SS-MRMPPT
represents a somewhat better description for the spectroscopic
constants than SF-SCF based correlated methods [such
as SF-CIS(D), SF-OD, and so on]. From the table, it is
abundantly clear that the agreement of the SS-MRMPPT
results with state-of-the-art ab initio results of Bytautas
et al.63 (and also the experimental ones) is definitely better
than for CASPT2, GVB+HPT, and APSG+HPT and is of
the same quality as the MRMPPT of Hirao.3 It seems
therefore reasonable to say in this case that SS-MRMPPT is
not only a useful MRPT approach but also a strong
competitor to other well established MRPT methods such
as CASPT2, MRMPPT, and so on. A major advantage of
the computed SS-MRMPPT energy is that it is rigorously
size-extensive in nature in contrast to the MRMPPT and
CASPT2. It may be of interest to note that Rintelman et al.
investigated extensively the size extensivity problem of
MRMPPT and CASPT2 with the F2 molecule using a series
of basis sets. To illustrate that this high accuracy of the SS-
MRMPPT in predicting spectroscopic constants is not an
accident, we re-evaluate the same using various correlation-
consistent basis sets.

The DZP+basis is too small to illustrate a sensible
comparison of the computed spectroscopic data with the
corresponding experimental results. Actually, in the case of
F2, the use of a basis set up to quadruple-� quality is sensible
(in accordance with the literature) in order to demonstrate
the effect of the basis set and to compare the calculated
results with the experimental data. In Figures 1 and 2, we

Table 1. Spectroscopic Constants for the Electronic
Ground State of F2 Molecule Using DZP+ Basis Sets

method Re (Å) De (eV)

CASSCF 1.5107 0.63
SS-MRMPPT(RS) 1.4330 1.42
SS-MRMPPT(BW) 1.4321 1.35
GVBa 1.512 0.453
APSGa 1.501 0.486
MRMPPT2a 1.4254 1.440
GVB1H1PTa 1.445 1.025
GVB1H2PTa 1.420 1.180
APSG1H1PTa 1.447 1.026
APSG1H2PTa 1.423 1.274
MRCISD10b 1.435 1.222
MRLCCM10b 1.439 1.221
MRCISD32b 1.436 1.275
MRLCCM32b 1.439 1.257
CASPT2c 1.442 1.275
MRMBPT(2)c

simple averaging 1.374 2.348
double averaging 1.377 2.196
SF-SCFd 1.567 0.28
SF-CIS(D)d 1.429 1.14
SF-ODd 1.437 1.24
VOO-CCD(2)d 1.417 1.51
MR-CISDd 1.435 1.22
best ab initioe 1.4148 1.70
experiment 1.412 1.66

a Ref 59. b Ref 54. c Ref 57. d Ref 58. e Ref 63 (2,2) CAS has
been used in our works.
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draw the SS-MRMPPT PESs for F2 using a different
correlation consistent basis sets. From the PESs, it can be
seen that a qualitatively balanced description is obtained by
SS-MRMPPT approaches for various basis sets. From our
computations, we have observed that the SS-MRMPPT(BW)
potential surfaces are situated above the SS-MRMPPT(RS)
surfaces at all geometries for all basis sets considered here
[see Figure 3]. As the traditional full configuration interaction
(FCI) and the high level PES calculations are not available
for these basis sets, comparison of SS-MRMPPT methods
is made with the spectroscopic parameters of high level
methods reported in the literature, and thereby one can
envision the correct description of bond breaking. Table 2
contains the spectroscopic constants for F2 in various cc-
pVXZ basis sets with different SS-MRPT methods using EN
and MP partition schemes. These basis sets would be
expected to describe, for example, the anion character of the
F+F- charge transfer components of the wave function with
more flexibility. It is interesting to compare our results with
the Mk-MRMP2 results of Evangelista et al.41 In Table 2,

we present results of the CASSCF and CCSD as well as
CCSDT for comparison. Further, we tabulate a variety of
state selective equation of motion coupled cluster based
methods of Nooijen.55 Results of auxiliary-field quantum
Monte Carlo method (AFQMC) calculations, which yields
spin-contamination-free results within a Hilbert space, of
Purwanto et al.60 have also been reported in Table 2. BW-
MRCCSD results and the rather recent results from the Mk-
MRCC method of Evangelista et al.48 are also given in the
same table to calibrate the quality of our results because the
Mk-MRCC method serves as a benchmark. In fact, methods
such as Mk-MRCC and BW-MRCC provide useful results
for our understanding of the electronic structure of molecules
despite their high computational cost. Due to this high
numerical cost, applications of such methods remain con-
strained to relatively small systems in contrast to the
corresponding MRPT part. We observed that SS-MRMPPT
and Mk-MRPT2 methods are of comparable accuracy. Here,
we recall once more that, in the Mk-MRPT2 computation,
Evangelista et al. used unrelaxed description, and we have
already discussed the importance of the issue of relaxed
variants. Table 2 displays that the performance of the SS-
MRMPPT is better than the CCSD and various EOM-CC
methods. It is found that, even though only a single bond is
broken in the dissociation considered here, nonetheless,
sextuple excitations with respect to single-determinant refer-
ence functions are required to recover the binding energy
with a “chemical accuracy”. This view is supported by the
fact that dissociation energy and vibrational frequency
provided by CCSD are not as good as the other methods
reported in the table. Recently, Purwanto et al.60 observed
that, in the case of F2 with the cc-pVXZ basis, the RCCSD(T)
method breaks down in the dissociation limit. On the other
hand, the PES provided by UCCSD(T) is correct in the
dissociation limit, but the shape of the surface near the
equilibrium distance is distorted in nature, which invites
significant error in the intermediate geometries. From the
table, we have observed that the SS-MRMPPT results for
each basis set are comparable to those obtained with the
AFQMC method. Here, it is important to note that the

Figure 1. Potential energy surfaces for the F2 molecule with
the SS-MRMPPT(RS) method in different cc-pVXZ basis sets.

Figure 2. Potential energy surfaces for the F2 molecule with
the SS-MRMPPT(BW) method in different cc-pVXZ basis sets.

Figure 3. Potential energy surfaces for the F2 molecule with
the SS-MRMPPT(RS) and SS-MRMPPT(BW) methods in the
cc-pVQZ basis set.
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CAS(10,12) has been used in the AFQMC method, whereas
in our calculation we have used CAS(2,2). Computationally,
the SS-MRPT method is less demanding than the AFQMC
one. The values of spectroscopic constants of the SS-
MRMPPT in Table 2 are in better agreement with the highly
accurate available ab initio calculation63 (and also experi-
ment) than those of the LSDA and B3LYP methods. It should
be noted that the shapes of the LSDA and B3LYP PESs are
not correct in the intermediate region of UCCSD(T) in
contrast to the SS-MRMPPT one. As seen in Table 2, the
errors in the computed spectroscopic constants are usually

large for several of the methods for the cc-pVDZ basis
relative to that of the other basis. It is important to realize,
however, that the poor performance of various methods for
cc-pVDZ basis is not in its inability to describe charge
transfer components of the wave function, but rather it is an
inflexibility of the valence region itself. It has been found
that, in order to obtain good results, the use of quite large
and proper atomic orbital basis sets is clearly desirable.
Analyzing the results in Table 2, we find that the calculated
spectroscopic constants of the ground state via different
variants of SS-MRPT agree reasonably well with the
corresponding experimental values. Our spectroscopic con-
stants agree quite well with the previously calculated
theoretical values. In general, the SS-MRMPPT provides
superior results (for the spectroscopic constants of F2) relative
to the BW-MRCC methods reported by Evangelista et al.48

The present calculations of F2 produce almost the same
equilibrium distance, vibrational frequency, and dissociation
energy as those reported in Mk-MRCC. In other words, the
SS-MRPT results are competitive with the Mk-MRCC to
deliver accurate energetics for the dissociation of F2 but at
lesser cost in the calculation. It is worth noting that the SS-
MRPT method is computationally cost effective for realistic
applications, and it is able to achieve a similar level of
accuracy as the Mk-MRCC method for the treatment of the
dynamical correlation and can thus serve as a reference for
calibration of more approximate approaches. Table 2 clearly
displays that the various SS-MRMPPT results do not differ
significantly in the general trends for a given partitioning.
In this work, we have also listed in Table 3 the comparative
performance of the various methods reported by Shepard et
al.64 for the sake of comparison. Our observations are that
the SS-MRMPPT results generate spectroscopic properties
that are better than the best single-reference MP methods
summarized in this study (MP3, MP4). From Tables 2 and
3, we have observed, in general, our current multireference
calculations via SS-MRMPPT methods predict Re values with
an accuracy competitive to, or better than, the MR-SDCI
and MR-AQCC methods, despite the fact that the MR-AQCC
method is computationally costly. In contrast to the SS-
MRMPPT method, the calculated Re values using the MR-
CISD and MR-AQCC methods tend to be smooth and
monotonic with basis set improvement. From Tables 2 and
3, as far as the prediction of spectroscopic constants is
concerned, we note that the general performance of the SS-
MRMPPT is better than its EN counterpart. Being a
symmetrical system, it is well known that the EN partition
meets with particular difficulties in the description of the
dissociative part of the PES65 with a delocalized basis of
molecular orbitals, as unphysical Coulombic terms and other
artifacts appear in the interaction energy of the fragments.
In particular, we want to mention that Angeli et al.66 also
observed the defects of the EN partition with respect to
dissociation in the case of F2 even in the case of CAS
containing 78 432 determinants [e.g., Figure 1 of ref 66].
Our numerical experience with the EN partitioning is
mingled. Very satisfactory results with EN for correlation
energies have been obtained in some cases,18 while in other
cases, an overestimation of low-order contributions and very

Table 2. Spectroscopic Constants for the Electronic
Ground State of F2 Molecule Using Different cc-pVXZ
Basis

basis method Re (Å) ωe (cm-1) De (eV)

cc-pVDZ CASSCF 1.5309 575
SS-MRMPPT(RS) 1.4546 809 1.40
SS-MRMPPT(BW) 1.4557 795 1.34
SS-MRENPT(RS) 1.4342 887 2.15
SS-MRENPT(BW) 1.4365 865 1.89
Mk-MRPT2a 1.4454 815 1.29
CCSDb 1.432 885 0.96
CCSDTb 1.4577 787 1.18
BW-MRCCSDb 1.4469 821 1.63
Mk-MRCCSDb 1.4548 793 1.37
AFQMCc 1.467 725 1.29
RCCSD(T)c 1.4751 785 1.18
UCCSD(T)c 1.4428 853 1.14
LSDAc 1.3970 1026 3.45
B3LYPc 1.4097 1033 1.64

cc-pVTZ CASSCF 1.4696 699 0.72
SS-MRMPPT(RS) 1.4151 918 1.71
SS-MRMPPT(BW) 1.4134 917 1.62
SS-MRENPT(RS) 1.4001 1017 2.63
SS-MRENPT(BW) 1.3984 987 2.26
Mk-MRPT2a 1.4055 955 1.61
CCSDb 1.3946 1012 1.22
CCSDTb 1.4154 923 1.50
BW-MRCCSDb 1.4060 953 2.03
Mk-MRCCSDb 1.4127 925 1.71
AFQMCc 1.411 928 1.70
RCCSD(T)c 1.4131 926
UCCSD(T)c 1.3987 1022 1.49
LSDAc 1.3863 1065 3.49
B3LYPc 1.3957 1072 1.65
DIP-STEOM-CCSD[2-]d 1.4353 834
DIP-EOM-CCSD[2-]d 1.4249 811
CSS-EOM-CCSD[B]d 1.4173 901
RSS-EOM-CCSD[B]d 1.4126 927

cc-pVQZ CASSCF 1.4688 696 0.72
SS-MRMPPT(RS) 1.4120 931 1.80
SS-MRMPPT(BW) 1.4094 921 1.69
SS-MRENPT(RS) 1.3994 1016 2.71
SS-MRENPT(BW) 1.3962 988 2.31
Mk-MRPT2a 1.4023 958 1.68
CCSDb 1.3906 1016 1.29
CCSDTb 1.4124 925 1.58
BW-MRCCSDb 1.4024 955 2.12
Mk-MRCCSDb 1.4093 926 1.79
AFQMCc 1.411 912 1.77
RCCSD(T)c 1.4108 929
UCCSD(T)c 1.3946 1036 1.567
LSDAc 1.3856 1062 3.47
B3LYPc 1.3944 1109 1.63
best ab initioe 1.4148 920 1.70
experiment 1.412 916.64 1.66

a Ref 41. b Ref 48 [for symmetry-adapted natural orbitals]. c Ref
60. d Ref 55. e Ref 63. Experiment: ref 86 (2,2) CAS has been
used in our works.
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slow convergence have been reported. However, more
extensive analysis of several systems is required before one
can assume this to be a general conclusion. Work towards
this direction is in progress in our laboratory. All of this
underlines the importance of a detailed study of the partition-
ing problem in SS-MRPT, just as with that of the other
MRPT. This paper illustrates the considerations that are
necessary when choosing a zeroth-order Hamiltonian for the
MRPT method. Inspecting Table 2, one observes that in the
case of the F2 molecule with the cc-pVTZ basis, the SS-
MRMPPT method yields accurate predictions of the equi-
librium distance, vibrational frequency, and dissociation
energy.

For the sake of completeness of our comparative study,
in Table 4, we have also presented the SS-MRMPPT results
along with another well studied internally contracted state-
specific MRPT method, variants of the NEVPT2 method42

which also confirm what is said for the potentiality of the
SS-MRMPPT scheme. In a paper by Angeli et al.,42 various
active spaces have been considered. In this table, a selection
of the previously published theoretical values of Lourderaj
et al.67 has also been reported. From Table 4, it is observed
that the SS-MRMPPT describes the ground state spectro-
scopic properties to a reasonable accuracy in comparison with
the various NEVPT2 schemes, MRCI, (SD)2SDCI, and MP-
EN methods, and with respect to the experiments. In some
cases, the agreement of the SS-MRMPPT results with highly
accurate ab initio results63 is acceptably closer than that for
other methods reported in the table. The comparative
demonstration in Table 4 clearly illustrates again the efficacy
and reliability of the SS-MRMPPT method to predict the
spectroscopic properties.

It is interesting to compare our findings with the recently
introduced method of correlation energy extrapolation by

intrinsic scaling (CEEIS).63 Table 5 compares the spectro-
scopic constants relating to the F2 molecule that are obtained
from the CEEIS method of Ruedenberg and co-workers63

and various sources reported by them in addition to our SS-
MRMPPT/cc-pVQZ method. Comparing the results, we find
that SS-MRMPPT(RS) and SS-MRMPPT(BW) are both
accurate and of comparable accuracy with CEEIS. In this
context, it should be kept in mind that the present SS-
MRMPPT calculations do not incorporate the correction due
to core-electron correlations and relativity effects (including
spin-orbit coupling) in contrast to the CEEIS. These
incorporations significantly improve the overall quality of
the PES and hence can considerably change the values of
the spectroscopic constants.63,68

Here, we also want to mention that (2,2)MR-MP2 calcula-
tions done by Barbosa and Barcelos44 with an aug-cc-pVTZ
basis set have given values Re ) 1.428 Å, ωe ) 888 cm-1,
and De ) 1.59 eV. Malrieu et al.69 have performed
(SC)2SDCI calculations of F2 with a basis set of 5s4p3d2f1g
quality and reported Re )1. 389 Å, ωe ) 1004.2 cm-1, and
De ) 3.05. In the same paper, Malrieu et al. reported the
corresponding values for the (MR-SDCI + Q) method as
1.417, 930, and 1.658, respectively.

Very recently, Zhang et al.70 have implemented the idea
of a locally contracted configuration interaction of singles
and doubles (by introducing a coupled-electron pair ap-
proximation, CEPA-3) including the leading part of the
triples and quadruples in the evaluation of equilibrium bond
lengths (A0) and harmonic frequencies (cm-1) of the F2

molecule with the TZVP basis set. The results obtained
therefrom reveal that the bond length and the frequency
respectively vary as (i) LC-CEPA-3, 1.380 and 1052.6; (ii)
LC-CEPA-3+TQ/col/line, 1.416 and 911.5; and (iii) LC-
CEPA-3+TQ/explicit, 1.415 and 907.8. Our overall observa-
tion is that the SS-MRMPPT approach is very competitive
in accuracy with the theoretical results of Zhang et al.70 as
well in the case of the F2 system.

Table 3. Equilibrium Bond Length for the Electronic Ground State of F2 Molecule Using Different cc-pVXZ Basisa

basis MP2 MP3 MP4 MRSDCI MRAQCC SS-MRMPPT(RS) SS-MRMPPT(BW)

cc-pVDZ 1.4239 1.4168 1.4504 1.4652 1.4620 1.4546 1.4557
cc-pVTZ 1.3958 1.3837 1.4151 1.4191 1.4184 1.4151 1.4134
cc-pVQZ 1.3275 1.3812 1.4149 1.4153 1.4153 1.4120 1.4094

a Results are taken from: ref 64.

Table 4. Spectroscopic Constants for the Electronic
Ground State of F2 Molecule Using cc-pVQZ Basis for
Various NEVPT2 along with the SS-MRMPPT Method

method Re (Å) De (eV)

SS-MRMPPT(RS) 1.4120 1.80
SS-MRMPPT(BW) 1.4094 1.69
NEVPT2a 1.3960 1.717
PCNEVPT2a 1.3960 1.720
NEVPT3a 1.4171 1.390
FDD-MR(C)/NEVPT2a 1.4050 1.751
FDD-MR(C)/NEVPT3a 1.4200 1.395
MP-ENa 1.4108 1.77
(SC)22SDCIa 1.4129 1.59
MRCIa 1.4119 1.62
8-ref CASSCFb 1.4076 1.64
8-ref CIb 1.4076 1.66
best ab initioc 1.4148 1.70
experiment 1.412 1.66

a Ref 42. b Ref 67. c Ref 63, (2,2) CAS has been used in our
works.

Table 5. Spectroscopic Constants for the Electronic
Ground State of F2 Moleculea

method Re (Å) ωe (cm-1) De (eV)

SS-MRMPPT(RS) 1.4120 931 1.80
SS-MRMPPT(BW) 1.4094 921 1.69
CEEIS 1.4135 915 1.66
CC-5/R12 1.4122 918.9
ic-MRCI+Q 1.4105 916.9 1.59
ic-MRCI 899.7 1.49
CASPT3 1.4091 920.0 1.47
(mv)td-2 1.4118 915.2 1.59
4R RMR CCSD(T) 1.416 911.2
experiment 1.412 916.64 1.66

a Various theoretical results are taken from ref 63 [for a detailed
discussion, see Tables X and XI of ref 63]. (2,2) CAS has been
used in our works.

Dissociation of Diatomic Molecular Systems J. Chem. Theory Comput., Vol. 6, No. 3, 2010 673



Several comparisons of the results of the SS-MRMPPT
with respect to the different theoretical calculations including
the most accurate available ab initio calculations in the
context of F2 molecule have shown that the method is a very
useful companion perturbation theory to the parent full blown
SS-MRCC(Mk-MRCC) one and can be used to study larger
multireference systems, for which SS-MRCC is generally
not applicable. It is justified to use the SS-MRMPPT
formalism as an effective and acceptable compromise
between the computational demands and accuracy, and this
we propose to adapt in our next applications (say, Cl2 and
Br2).

The general properties followed by Cl2 and Br2 molecules
are very close to each other and can be discussed together.
In Figures 4 and 5, we draw the potential surfaces calculated
by the SS-MRMPPT methods for Cl2 and Br2 using cc-pVQZ
basis sets to display the pattern of the computed PESs. The
spectroscopic properties using computed PESs at each level
of SS-MRMPPT calculation for these molecules along with
the experimental results are presented in Tables 6 and 7. The

calculations documented in Tables 6 and 7 have been done
with the exclusion of the He core correlation for Cl2 and
Br2. To judge the performance of the SS-MRMPPT methods
for the Cl2 system, we analyze our results vis-a-vis the values
obtained from the CCSD, CCSD(T) LC-CEPA-3, and LC-
CEPA-3+TQ methods.70 Table 6 clearly demonstrates that
our method yields equilibrium bond lengths and harmonic
frequencies that are quite akin to those obtained from LC-
CEPA-3 for Cl2 molecule. Although LC-CEPA-3+TQ equi-
librium bond lengths are similar to CCSD and CCSD(T),
the average absolute deviation relative to experimental
equilibrium bond lengths is a little larger than that of our
results with the cc-pVQZ basis. We have obtained consis-
tently quantitative descriptions for Cl2 and Br2 molecules
along the wide range of bonding coordinates and thereby
got encouraging spectroscopic constants with good accuracy.
Comparing the experimental results, we see once again that
the SS-MRMPPT method yields an accurate description of
the spectroscopic parameters. All of the calculated bond
lengths for Br2 are slightly longer than the experimental
result, and the reverse is true for Cl2. For both the systems,
the SS-MRMPPT calculations overshoot the vibrational
frequency. We have observed that the spectroscopic constants
for Cl2 and Br2 systems obtained from SS-MRMPPT with a
good basis are chemically accurate. For both these diatomic
systems, the performance of SS-MRMPPT(BW) is slightly
better than the RS scheme as that in the case of the F2. In

Figure 4. Potential energy surfaces for the Cl2 molecule with
the SS-MRMPPT(RS) and SS-MRMPPT(BW) methods in the
cc-pVQZ basis set.

Figure 5. Potential energy surfaces for the Br2 molecule with
the SS-MRMPPT(RS) and SS-MRMPPT(BW) methods in the
cc-pVQZ basis set.

Table 6. Spectroscopic Constants for the Electronic
Ground State of the Cl2 Molecule

Basis Method Re (Å) ωe (cm-1) De (eV)

cc-pVDZ CASSCF 2.0628 468 1.42
SS-MRMPPT(RS) 2.0367 543 2.02
SS-MRMPPT(BW) 2.0366 543 1.94

cc-pVTZ CASSCF 2.0368 504 1.69
SS-MRMPPT(RS) 2.0085 574 2.51
SS-MRMPPT(BW) 2.0054 563 2.37

cc-pVQZ CASSCF 2.0337 504 1.71
SS-MRMPPT(RS) 2.0020 584 2.63
SS-MRMPPT(BW) 1.9991 565 2.47

TZVP LC-CEPA-3a 1.989 585.8
LC-CEPA-3+TQ/col/linea 2.016 533.9
LC-CEPA-3+TQ/explicita 2.013 539.1
CCSDa 2.003 559.0
CCSD(T)a 2.011 543.1
experiment 1.988 564.9 2.475

a Ref 70. Experiment: ref 86 (2,2) CAS has been used in our
works.

Table 7. Spectroscopic Constants for the Electronic
Ground State of the Br2 Molecule Using Different cc-pVXZ
Basesa

basis method Re (Å) ωe (cm-1) De (eV)

cc-pVTZ CASSCF 2.3408 294 1.48
SS-MRMPPT(RS) 2.2854 326 2.33
SS-MRMPPT(BW) 2.2892 328 2.18

cc-pVQZ CASSCF 2.3371 294 1.50
SS-MRMPPT(RS) 2.2684 336 2.47
SS-MRMPPT(BW) 2.2739 334 2.25

cc-pV5Z CASSCF 2.3371 293 1.50
SS-MRMPPT(RS) 2.2720 331 2.47
SS-MRMPPT(BW) 2.2786 327 2.20
experiment 2.283 323.2 1.971

a Experiment: ref 86; (2,2) CAS has been used in our works.
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the more complex system, Br2, we have a less satisfactory
performance of the SS-MRMPPT method. While the calcu-
lated results shown here are not free from approximation,
and thus not exact, it is nonetheless significant that, of all
X2, Br2 shows the largest discrepancy between our calculation
and the experimental data. The cause of this discrepancy is
not clear. We ascribe the unsatisfactory result of the SS-
MRMPPT for Br2 (i) to the increased number of electrons
[implying a rather large CAS] and (ii) to the absence of the
relativistic effects in the formalism. Actually, in F2, Cl2, and
Br2, the active orbitals mainly consist of atomic p, d, and f
orbitals, respectively. To increase the accuracy, one can
suggest the inclusion of appropriate sets of orbitals in the
active space. However, the resulting dimension of the CAS
space would make the corresponding numerical calculations
most unpractical, especially for Cl2 and Br2. Recent studies
at the MRCI level63 demonstrate the importance of the
flexibility of the reference space in the description of PESs
in the case of the F2 molecule. We have already mentioned
that the incorporation of the relativistic effect is very
important for the numerical accuracy of the SS-MRMPPT
method for large systems. This is also true for other
nonrelativistic methods. For Cl2 and Br2 calculations, using
a rather large CAS cannot even provide a qualitatively
acceptable form of the PES due to the strong importance of
the dynamical correlation of the inner electrons along with
relativistic effects. In our opinion, in order to get a quantita-
tive agreement of the spectroscopic constants with the
corresponding experimental data, inclusion of these effects
is inevitable. It is noteworthy that, in order to make contact
with physical reality, using large basis sets and extrapolations
to the complete basis set (CBS) limit is essential, though
we have not explored this aspect in the current paper. A good
deal of quantitative information has been learned about Cl2

and Br2 from this study, but a considerable amount of
additional theoretical research should be performed in order
to understand the molecular species better.

The calculated values of the dissociation energy exhibit
the trend Cl2 > Br2 > F2 [see also Figure 6], as also observed
experimentally. This is usually explained by enhanced Pauli

repulsion between the occupied p(π) orbitals, which is
particularly strong in F2 because it has the shortest bond of
the dihalogens. The plots shown in Figure 6 need special
mention at this juncture. Here, we have plotted the potential
energy surfaces for the X2 system (X ) F, Cl, Br), and for
a clear presentation we have subtracted out the energy value
at the equilibrium internuclear distance for the concerned
system in an attempt to emphasize the actual trend in the
data. It is quite evident that the computed equilibrium bond
distances via SS-MRMMPPT(BW) and SS-MRMMPPT
(RS) agree well with the experimental trend for the X2
systems, that is, Req(F-F) > Req(Cl-Cl) > Req(Br-Br).

B. Ground State PES of BH Molecule. In this subsec-
tion, we consider the dissociation of the diatomic boron
hydride (BH) molecule, where the presence of an open-shell
model function(s) is necessary for the accurate description
of nondynamical correlation. The accurate computation of
the ground-state (X1Σ+) PES of the BH molecule is a
“touchstone” for many ab initio methods.18,52,71-81 The
ground state reaction path of the BH system shows varying
degrees of quasi-degeneracy with a rather physical nature
and hence is appropriate to test the efficacy of the different
multireference many-body methods. Thus, for this molecule,
the use of the spin-free SS-MRPT method in studying PES
seems to be justified. It is well documented that MP2, MP3,
and MP4 schemes of the SR-based method cannot lead to a
correct dissociation limit.64 Kowalski and Piecuch76 observed
that the quality of the results of the CCSD[T], CCSD(T),
and CCSD(TQf) methods is not as good at larger bond
distances. They have demonstrated that the renormalized CC
methods82 are able to remove the failures of the traditional
SRCC methods at a larger internuclear bond separation. Al-
Saidi et al.81 also observed the failure of RCCSD(T) with
the cc-pVXZ basis to describe the BH molecule for larger
bond lengths. They observed that AFQMC/cc-pVDZ results
are in very good agreement with FCI energies and exhibit
uniform behavior across the entire PES. Dutta and Sherrill75

also showed that the performance of MP2 and CCSD(T) goes
down with very large errors in the bond breaking region [the
computed PES has an unphysical shape in the intermediate
bond breaking region]. This arises from the inapplicability
of SR-based theory in cases of strong degeneracies as
occurring at large bond distances. Dutta and Sherrill75

summarized that methods on the basis of the UHF reference
exhibiting significantly better performance for BH molecule
than the RHF reference. In our calculation, we have used
the CASSCF reference, as it is able to dissociate BH in a
correct manner.

To compute PES, for this molecule, we have employed
two different basis sets, namely, 6- 31G** and cc-PVQZ,
which enables a comparison with the exact FCI results.52,80

In both cases, we employed a CAS(2,2) [(core)σ2, (core)σ*2,
and (core)σσ*]. As already mentioned, we also present the
calculations performed on the BH molecule employing the
same CAS scheme [CAS(val)] and basis as used by Sherill
and co-workers52 for a comparison with the literature data
of various previous calculations. The larger the space, the
larger is the amount of the nondynamical correlation
introduced. Calculations with a second active space, CAS-

Figure 6. Potential energy surfaces for the X2 [X ) F, Cl,
and Br] molecules with the SS-MRMPPT(BW) method in the
cc-pVQZ basis set.
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(val), have been performed in order to see whether this active
space could give a more balanced treatment of the correlation
effect for the target state. As CAS contains open-shell CSF,
it is desirable to apply a proper spin-adapted state-specific
theory to compute a completely accurate PES. The use of
the cc-pVXZ basis set in our present calculations of
spectroscopic constants is due to the possibility of direct
comparison with calculations by other methods including the
FCI one. Sherrill and co-workers78,79 have provided several
spectroscopic constants for the ground state of BH using
different types of basis sets including the cc-pVXZ via FCI
method.

Dissociation PESs for the BH molecule for the cc-pVQZ
basis via the CASPT2, SOCI, and FCI methods have been
reported by Abrams and Sherrill.52 The PES obtained by the
SS-MRMPPT method along with FCI are displayed in Figure
7. As far as the shape of the resulting PES is concerned, it
is observed that the SS-MRMPPT/CAS(val) also produces
a qualitatively correct PES, just as that of the FCI one.
Therefore, we feel encouraged to investigate the PES using
the larger reference space, CAS(val), and we are interested
to see whether an increase of the reference space improves
the results. Here, we want to mention that the quality of the
SS-MRMPPT/CAS(val) PES is slightly better than the
CASPT2(val) as far as NPE is concerned.

We now focus our attention to the error graph with respect
to the corresponding FCI values. In Figure 8, we have plotted
the corresponding graph along with previously published
results using CASPT2 and SOCI methods.52 In terms of these
deviations, it has been observed that the CASPT2(1:1)
performs much poorer than the methods considered here. The
errors of SS-MRMPPT with respect to the FCI are modest,
and overall SS-MRMPPT does quite well in the case of BH.
Although SS-MRMPPT/CAS(2,2) values are more close to
the FCI in comparison to the SS-MRMPPT/CAS(val), the
errors for the former change sign in contrast to the latter
one. In other words, a larger fluctuation for SS-MRMPPT/
CAS(2,2) is observed relative to that for the SS-MRMPPT/
CAS(val). Not only is the value of error an important issue,
equally important is the requirement of the generated PES

to be parallel to the corresponding FCI one. The deviation
of SS-MRMPPT/CAS(val) from FCI is comparable with that
of CASPT2(val). For better clarity, in Table 8, we also
summarized the nonparallelity errors (NPE). For a given set
of calculations in a dissociative surface, the NPE is defined
as the difference between the maximal and minimal devia-
tions from the exact FCI PES. The NPE for SS-MRMPPT
approaches are very modest. In terms of the NPE (indicating
the quality of the overall shape of the PES), we observe that
the SS-MRMPPT/CAS(val) PES is marginally better than
the CASPT2 method.

Recently, Paap et al.80 have published applications of
multireference state specific second-order Brillouin-Wigner
perturbation theory (BWPT2) to the bond breaking process
in the ground state of the BH molecule using the 6- 311G**
basis. It is thus instructive to examine the performance of
SS-MRMPPT(BW) using the same basis set. The results of
the BWPT2 method are then used to access the performance
of the calculations based on the SS-MRMPPT method. In
Figures 9 and 10, we have summarized results for the
6-311G** basis as a function of the nuclear separation. Also,
as expected, the RMP280 is seen to perform reasonably well
at smaller internuclear separations but becomes increasingly

Figure 7. Potential energy surfaces for the BH molecule in
the cc-pVQZ basis set.

Figure 8. Plots of the errors versus FCI as a function of bond
length using the cc-pVQZ basis set.

Table 8. Nonparallelity Error (NPE) in kcal/mol for BH
Using Various Basis Setsa

basis method NPE

cc-pVQZ CASSCF(val) 9.25
SS-MRMPPT(RS)/CAS(val) 2.86
SS-MRMPPT(BW)/CAS(val) 2.65
SOCI(val) 0.29
SOCI(1:1) 1.54
CASPT2(val) 3.16
CASPT2(1:1) 3.26

6-31G** SS-MRMPPT(RS)/CAS(2,2) 4.82
SS-MRMPPT(BW)/CAS(2,2) 4.76
SS-MRMPPT(RS)/CAS(val) 2.89
SS-MRMPPT(BW)/CAS(val) 2.68
3R-BWPT2 7.38
3R-BWPT2corr 4.83
BWCCSD 7.16

a SOCI and CASPT2 values have been taken from ref 52.
BWPT and BWCC values have been taken from ref 80.
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poor (diverging in nature) as one goes over to large nuclear
separations (owing to the poor quality of the RHF wave
function in describing bond breaking), indicating the neces-
sity of a multireference description. Figure 10 illustrates that
the BWPT2 energies are in less agreement with FCI than
the SS-MRMPPT with CAS(2,2) and CAS(val). In the 6-
311G** basis, SS-MRMPPT with CAS(val) gives a better
overall accuracy and a more uniform behavior than SS-
MRMPPT/CAS(2,2) in mapping the PES. This is also evident
from the NPE values. The NPE values calculated for various
methods using the 6- 311G** basis are set out in Table 8.
Inspecting the results listed in Figures 9 and 10 as well as
the NPE values in Table 8, we can draw the conclusion that
the PESs have been generated reasonably well by the SS-
MRMPPT method. Considering the overall performance (in
the context of NPE nd spectroscopic constants) in the entire
studied region of geometries for various basis sets, the SS-
MRMPPT/CAS(val) scheme gives very satisfactory results
with the small NPE.

In our numerical work, we thus observed that SS-
MRMPPT produces a smooth and consistent behavior across
the entire PES between the equilibrium and the dissociation
limit in BH bond breaking for various cc-pVXZ bases,
suggesting it may be used with confidence to calculate
various spectroscopic constants. In Table 9, the SS-MRMPPT
results are gathered and compared with those computed in
the most recent theoretical studies; the experimental data are
also reported. Using recent theoretical results, we have
summarized spectroscopic constants calculated by CCSD(T)
and FCI (acts as benchmark) values for the various cc-pVXZ
basis sets of Sherrill and co-workers79 in the same table.
We have also included the results for various basis sets
employing different methods considered here which can
provide a measure of the effects due to basis set choice (i.e.,
which level of basis set is required to obtain a given
accuracy). The choice of an appropriate basis set is especially
intricate in studies on electronic states of a molecule. In order
to examine the accuracy of the spectroscopic values at
different levels of correlated theory, we also tabulated the
coupled cluster results of Martin et al.73 and Larsen et al.77

with different basis sets to display the effectiveness of the
SS-MRMPPT method, as a scheme, to provide spectroscopic
properties. They have demonstrated the convergence aspect
of spectroscopic constants of BH with respect to contracted
and uncontracted basis sets. They have also illustrated that
the correction due to the nonadiabatic effect is much more
important in predicting spectroscopic constants accurately
than that of basis set errors in the case of BH. In this context,
we mention the recent work of Sherrill and coworkers.78,79

From the tabulation of data in Table 9, we observed that for
each basis set the performance of the SS-MRMPPT methods
in both the perturbative schemes is very close to the results of
CCSD(T) and FCI for Sherrill and co-workers.78,79 Here, we
should recall that the SS-MRMPPT method is computation-
ally quite less demanding compared to the significant
computational cost of the CC-based methods. The works of
Abrams and Sherrill78 via the FCI/DZP-NO(5Z) scheme
provide very sound estimations of the ground state dissocia-
tion energy, vibrational frequency, equilibrium internuclear
distance, and some other measurable quantities. As we have
seen for the BH molecular system, SS-MRMPPT can also
compete with the precision of the other well established
sophisticated ab initio methods. At this point, we want to
discuss the accuracy of the SS-MRMPPT method to yield
dissociation energy, De. Our best theoretical value for De is
3.57 eV, obtained by SS-MRMPPT(RS)/cc-pVTZ. Baus-
chlicher et al.74 determined a De of 3.65 eV using (4e-/9)
orbital complete active space multireference configuration
interaction wave functions. A more accurate De value was
computed by Curtiss and Pople72 through QCISD(T) calcula-
tions. The most recent calculation by Miliordos and Mavri-
dis83 provides a value for De of 3.53 eV. Our works thus
provide very sound estimations of the ground state dissocia-
tion energy of BH. As far as the computational cost is
concerned, the overall agreement of the SS-MRMPPT De

with accurate high-level theoretical methods is very good,
giving general support to the reliability of the present SS-
MRMPPT results. From a comparative study of various

Figure 9. Potential energy surfaces for the BH molecule in
the 6- 311G** basis set.

Figure 10. Plots of the errors versus FCI as a function of
bond length using the 6-311G** basis set [CAS(2,2) has been
used in SS-MRMPPT calculations].
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spectroscopic properties, we have found that SS-MRMPPT
is a reliable tool to achieve quantitative accuracy for
calculating various spectroscopic properties of BH via the
computation of intermolecular interaction energies over all
geometries including those near the dissociation limit, as with
that of X2 systems.

We now discuss the aspect of the effect of orbital rotation
on the SS-MRMPPT energy from a numerical point of view
for the BH system. Whether or not a method is invariant
depends on the ansatz and the amplitude equations. It is now
well documented that there are serious difficulties in making
JM-ansatz based methods orbital invariant with respect to
active space rotation, although they are invariant with respect
to rotations in core orbital space and inactive virtual orbital
space.41,84 This is a very relevant and important issue. If a
molecule has degenerate representations at a high symmetry
point, then it may happen very easily that the orbitals change
very rapidly as a function of minor geometrical distortions.
If the electronic structure method is sensitive to such rotations
(for example, if the results depend on the precise definitions
of the orbitals at the high symmetry point), then one can
expect to obtain poor results. In our numerical analysis, we
have observed that the change in SS-MRMPPT energy due
to the active-active rotation is not negligible, and the
change for SS-MRMPPT(BW) is less than its RS coun-
terpart [see Table 10]. Our results indicate that the change
in energy due to virtual-virtual rotations is much smaller
than that of the active-active one. On the other hand, the
effect of occupied-occupied orbital(s) rotations exhibits a

very small influence. Thus, the resulting effective Hamilto-
nians, H̃µν

(2), of SS-MRMPPT method 5 are not invariant with
respect to orbital rotations within active subspace, and
therefore, to ensure reproducibility of the energies, the
orbitals should be specified unambiguously.

Our study explores several general trends of MR-based
methods. Figures of PESs show that the SS-MRPT procedure
is able to yield a qualitatively balanced description for the
equilibrium region as well as the dissociation zone of the
X2 and BH molecule, and the computed dissociation PESs
are completely exempt from any “intruder state” problem.
Our work in this paper shows that the performance of the
SS-MRMPPT(BW/RS) methods to compute the spectro-
scopic constants of different chemical systems with varying
degrees of MR character is quite satisfactory. Applications
to a number of state energies and comparison with bench-
mark FCI results (when available) show a uniform behavior
of the SS-MRMPPT formalism. We see that SS-MRMPPT
recovers most of the binding energy of the X2 and BH

Table 9. Spectroscopic Constants for the Electronic Ground State of BH Molecule Using Different cc-pVXZ Basesa

basis method Re (Å) ωe (cm-1) De (eV)

cc-pVDZ CASSCF 1.2672 (1.2665) 2269 (2277) 3.25 (3.12)
SS-MRMPPT(RS) 1.2582 (1.2552) 2310 (2347) 3.35 (3.28)
SS-MRMPPT(BW) 1.2581 (1.2554) 2310 (2346) 3.34 (3.28)
CCSD(T)b 1.2558 2342.65
FCIb 1.2560 2340.72 3.44

cc-pVTZ CASSCF 1.2512 (1.2504) 2275 (2278) 3.36 (3.18)
SS-MRMPPT(RS) 1.2296 (1.2267) 2348 (2372) 3.54 (3.48)
SS-MRMPPT(BW) 1.2299 (1.2273) 2355 (2378) 3.54 (3.45)
CCSD(T)b 1.2354 2350.84
FCIb 1.2356 2348.71

cc-pVQZ CASSCF 1.2498 (1.2242) 2270 (2392) 3.37 (3.06)
SS-MRMPPT(RS) 1.2317 (1.2227) 2349 (2395) 3.55 (3.46)
SS-MRMPPT(BW) 1.2314 (1.2222) 2354 (2377) 3.55 (3.46)
CCSD(T)b 1.2333 2358.91
FCIb 1.2335 2356.78
FCI/cc-pV 5Zb 1.23285 2358.21
FCI/cc-pCVDZb 1.25434 2340.12
FCI/cc-pCVTZb 1.23339 2355.26
FCI/cc-pCVDZc 2340.1
FCI/aug-cc-pCVDZc 2320.8
MRCId 1.2301 2358 3.68
MRCI+Qd 1.2301 2359 3.68
RCCSD(T)d 1.2296 2361 3.68
RCCSDTd 1.2304 3.68
FCI/DZPe 1.2491 2339 3.48
FCI/DZP-NOe 1.2362 2354 3.57
FCI/DZP-NO(5Z)e 1.2362 2350 3.57
FCI/631G**e 1.2344 2388 3.61
FCI/WMR-ANOe 1.2675 2309 3.47
ref 71 1.2338 2254 3.65
exp (ref 87) 1.23217 2366.73
experiment 1.2324 2367 3.57

a The values in parentheses describe the values using CAS(2,2). b Ref 79. c Ref 73. d Ref 83. e Ref 78, experiment: ref 86.

Table 10. Numerical Test of the Change in Energy (a.u.)
of SS-MRMPPT/CAS(2,2) with Respect to the Orbital
Rotations (about π/4), Performed on the Ground State of
the BH Molecule for the Equilibrium Bond Length in the
cc-pVQZ Basisa

rotation SS-MRMPPT(RS) SS-MRMPPT(BW)

no rotation -25.214396 -25.212309
A-A rotation -25.220023 -25.214260
V-V rotation -25.214455 -25.212350

a A-A, active-active; V-V, virtual-virtual.
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molecules. This fact is more significant if one considers the
dimension of CAS we have used. The agreement of the SS-
MRMPPT spectroscopic constants with the previously
published theoretical calculations is reasonably good. The
accuracy of the results appears to be encouraging, taking
into account the low computational cost. We have illustrated
that the method gives geometries, frequency, and dissociation
energies which are at least as accurate as the corresponding
results obtained with the Mk-MRCC method and more
reliable than the CCSDT method for X2 systems where the
wave function has a strong MR character in their ground
state.

From the foregoing analysis we have noticed that the two
methods, SS-MRMPPT(RS) and SS-MRMPPT(BW), are
also chemically accurate relative to each other. However,
the performance of SS-MRMPPT(BW) is generally better
than that of its RS cousin, although the RS scheme is
computationally less expensive than its BW counterpart.
Further work is required to assess more fully the accuracy
of the SS-MRMPPT(BW) method; however, our initial
results validate the accuracy of the theory vis-à-vis the
experiment and other theoretical methods. Very good agree-
ment with the experiment is observed for F2, Cl2, and BH
molecules using the SS-MRMPPT technique, while a rela-
tively less satisfactory agreement is observed for Br2. As a
whole, the above numerical analysis reveals that the SS-
MRMPPT is a useful method, with an extremely reasonable
performance/cost ratio.

We now discuss the effect of basis set size. As is well-
known, the choice of basis used for calculations of spectro-
scopic constants is very crucial, especially in the determi-
nation of bond dissociation energy. A closer inspection of
the comparison of the computed spectroscopic constants for
the various basis sets gives us an optimistic view of the
expected accuracy of the individual orbital basis sets and of
the infinite basis set extrapolation limit. The spectroscopic
constants summarized in the tables display the necessity and
utility of using large basis sets in analyzing and demonstrat-
ing intrinsic errors associated with theoretical methods. The
SS-MRMPPT calculations have been performed for X2 with
different basis sets using the same active space to examine
the basis set effect on the quality of spectroscopic constants.
The systematic exploration of various basis sets permits an
assessment of the reliability of our results. Although the
shape of the surface is similar for all the basis sets, there
are important quantitative changes of PESs as the basis set
is increased [see Figures 1 and 2]. From the tables, one notes
that the variation of basis sets has a substantial effect on
spectroscopic constants (which looks rather unsystematic at
first glance), as it should be. From the tables of F2, the change
of spectroscopic constants appears slightly less systematic
when compared to the Mk-MRCC approach. This is also
true for other systems. We hope to investigate the issue more
deeply in the future. However, the aforementioned findings
encourage us to make the comment that the numerical
accuracy of the SS-MRMPPT method is appreciably good,
and the method is capable of incorporating most of the
essential correlation that has been left out by the mean-field
method(s). It should be noted that our calculations have not

been corrected for basis-set superposition errors (BSSE)
point-by-point using the counterpoise technique. Such a
correction reduces an artificial bias toward dissociation
energies and bond lengths, particularly for weakly bound
species, such as those investigated in this work. It is worth
noting, in the dissociation PES calculations of F2, that the
contributions due to innercore electron (1s) correlation and
relativistic effects (which have been excluded from the
correlation treatment in the present study) to the dissociation
of the molecule have been estimated to be less than 1
kcal/mol.26,85 The basis set superposition error in the case
of the F2 molecule is about the same in magnitude but
opposite in sign. So one can expect the cancellation of these
effects for the computation of the dissociation PES of F2

[see ref 85]. Nevertheless, incorporation of relativistic effects
to chemical processes is not only desirable but also essential
for the level of “spectroscopic accuracy” or “chemical
accuracy” even for X2 and BH diatomics. Considering the
pros and cons of the SS-MRPT approach, we think that
further improvements are needed. However, it should also
be pointed out that the corrections due to the core correlation,
nonadiabatic correction, basis saturations, and relativistic(s)
effects are not always necessarily negligible compared to
the intrinsic errors in the methods considered.

IV. Conclusion

This paper is a continuation of our preceding studies40 on
the numerical applications of the SS-MRPT method, drawing
on a previous work of Mukherjee and co-workers.14 The SS-
MRPT method, which is based on a multiconfiguration
reference state, can provide increased accuracy for treating
potential energy surfaces far from equilibrium, certain types
of excited states, and the mapping of complete reaction paths.
The SS-MRMPPT method includes nondynamical and
dynamical correlation effects in a balanced way in the
electronic wave function of closed-shell and open-shell states
and performs satisfactorily at low numerical expenses (the
only problem seems to be a rapidly increasing cost of
CASSCF with the increasing size of the active space). For
large systems, SS-MRPT is usually the method of choice
instead of SS-MRCC (can only be applied to relatively small
electron systems because of their high computational cost)
as the former gives a manageable accuracy/cost ratio for
dealing with multiconfigurational problems.

A characteristic application of SS-MRPT is to describe
bond dissociation processes in rather complicated cases with
a satisfactory accuracy. The SS-MRMPPT in RS and BW
variants is endowed with the desirable properties of strict
separability and absence of intruder states. The SS-MRPT
can handle the lowest energy state regardless of charge or
spin symmetry with reasonable and consistent accuracy,
supporting our use of this method as a “standard” for treating
small- to medium-sized systems. As the validity of the SS-
MRMPPT(RS) has already been illustrated in a large number
of earlier publications,40 this work focuses on establishing
the efficacy of the SS-MRMPPT(BW) method. We have
included the results of SS-MRPT, using Møller-Plesset (MP)
as well as Epstein-Nesbet (EN) partitions with respect to
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the RS and BW expansion. In order to show that our results
are not spoiled by intruder state effects that are not related
to the partitioning, intruder containing molecules and refer-
ence spaces have been investigated here.

In this work, we performed SS-MRMPPT calculations
using complete active space: keeping the active space as
small as possible for computing the nondynamical correlation
(i.e., proper dissociation). The aim of the present investigation
is to calibrate the adequacy of the SS-MRPT approach
through the computation of the reaction paths of singlet
ground states of X2 [X ) F, Cl, and Br] and BH for
Dunning’s correlation-consistent double-, triple-, and qua-
druple-� basis sets. As recognized in several studies, along
the dissociating reaction path of X2 and BH, the zeroth-order
reference function changes multiconfigurationally, and hence
the bond breaking involved is difficult to handle computa-
tionally. Therefore, the dissociation of X2 and BH molecular
systems is a demanding test case used traditionally to
benchmark new computational methods. In order to display
the performance of the SS-MRMPPT method, the potential
energy surface obtained using the SS-MRPT method (without
changing the size of the CAS) is used to calculate the
spectroscopic constants. The accuracy of the computed SS-
MRMPPT spectroscopic constants is assessed by comparing
them with the corresponding accurate and established
theoretical and experimental results (whenever available). In
general, agreement between the SS-MRMPPT and experi-
ment is significantly better than that with its EN counterpart
for the systems studied by us in this paper. With the example
applications presented here, it seems that it may not be fair
at this stage to conclude definitively about the relative
performance of SS-MRMPPT and SS-MRENPT methods.
More exhaustive calculations, in particular for the SS-
MRENPT, are needed to come to a definitive conclusion,
which is on the way. In the present work, the applicability
of the SS-MRMPPT(BW) method to X2 and BH systems is
documented in detail. In the case of F2 system, we consider
results from full-blown Mk-MRCC (parent SS-MRCC
theory) and BW-MRCC calculations for a comparison
reported recently which establishes the fact that the SS-
MRMPPT method provides a convenient way (considering
the rather low computational effort) to generate an accurate
potential energy surface involving bond breaking to provide
spectroscopic constants of good quality for the ground state
of F2. It has been demonstrated that the SS-MRMPPT(BW)
along with its RS counterpart provide very good results for
single bond breaking over the entire reaction pathways,
eliminating the failures of the conventional MRPT methods
in those multireference situations. It is to be remarked that
our SS-MRMPPT results for the RS and BW expansion
produce spectroscopic properties close to each other even
in the smallest CAS space. The foregoing numerical analysis
of the SS-MRMPPT(RS) and SS-MRMPPT(BW) results
demonstrates clearly that the BW values are better as
compared to the RS values, as is seen in the NPE value.
The different spectroscopic constants that we have computed
too point to this. Our numerical results also confirm that the
orbital rotation effect on the energy is less in the case of
SS-MRMPPT(BW) in comparison to its RS counterpart.

Thus, the SS-MRMPPT(BW) method can be considered as
a very effective perturbative companion of the state-specific
multireference coupled cluster method of Mukherjee and co-
workers.

The issue that merits separate discussion at this juncture
is the extent of relaxation of the reference coefficients in
SS-MRMPPT. The effect of large mixing of reference
functions and consequent relaxation cannot be estimated fully
by SS-MRMPPT(RS), while the SS-MRPT(BW) scheme
takes this relaxation fully during the computation of cluster
amplitudes and energy. Here it should be mentioned that, if
the computational model does not allow relaxation of the
coefficients of the reference configurations in the correlation
treatment, a correct description of the potential energy
surfaces where the orbitals change very rapidly as a function
of minor geometrical distortions (as in the case of weakly
avoided crossings) cannot be expected. We plan to explore
this issue in the near future by considering systems that pose
such complexities.

A source of error in our SS-MRPT results (especially in
the context of Br2) is the exclusion of the relativistic effects.
Additionally, a proper and good description of the electronic
structure of the X2 must involve an improvement of
construction of the zero-order wave function. Our findings
demonstrate that the SS-MRPT approach can indeed accom-
modate most of the effects responsible for binding in the
F2, Cl2, Br2, and BH molecules. This paper presents an effort
toward the ongoing research to produce the accurate spec-
troscopic parameters for F2, Cl2, Br2, and BH which one can
use in a variety of spectroscopic and chemical applications.
The present results should prove useful in the calibration of
new theoretical methods for bond breaking. In order to
achieve chemical accuracy for our computed spectroscopic
constants with respect to the experimental findings, incor-
poration of relativistic effects is an inevitable issue. Our
observations suggest that the SS-MRMPPT is a very reason-
able and useful variant of MRPT with comparable strengths,
and the corresponding wave function has sufficient flexibility
to model the large changes in electronic structure that can
occur during chemical reactions. As a final remark, we can
say that the success of the method ensures that a great deal
of additional work on the SS-MRPT programs is to be
expected in the days to come.
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Abstract: Standard empirical atom-atom potentials are shown to be unable to describe the
binding of polycyclic aromatic hydrocarbon (PAH) molecules in the variety of configurations seen
in clusters. The main reason for this inadequacy is the lack of anisotropy in these potentials.
We have constructed an anisotropic atom-atom intermolecular potential for the benzene
molecule from first principles using a symmetry-adapted perturbation theory based on density
functional theory (SAPT(DFT)), interaction energy calculations and the Williams-Stone-Misquitta
method for obtaining molecular properties in distributed form. Using this potential as a starting
point, we have constructed a transferable anisotropic potential to model intermolecular
interactions between PAHs. This new potential has been shown to accurately model interaction
energies for a variety of dimer configurations for four different PAH molecules, including certain
configurations which are poorly modeled with current isotropic potentials. It is intended that this
potential will form the basis for further work on the aggregation of PAHs.

1. Introduction

Polycyclic aromatic hydrocarbon (PAH) molecules have often
been invoked as intermediates in the chemistry of soot formation
and growth.1 The presence of stacked PAH molecular structures
in experimental high-resolution transmission electron micros-
copy (HRTEM) images of soot particles2-4 has led some to
suggest that the intermolecular binding of PAH molecules may
be responsible for particle inception. This hypothesis has
provoked a large number of theoretical studies on the stability
and the relative orientation of PAH molecules present in dimers
and larger stacks in flame environments.1,5-9 Currently, many
numerical simulations of soot formation in flames consider the
dimerization of molecules as small as pyrene (C16H10)

9,10 to
be the particle inception step, however, the validity of this
assumption is still debated.11

The aggregation of PAH molecules has traditionally been
modeled using atom-atom potentials, which approximate

the total interaction energy, U, as sum over all pairwise
atomic interactions between molecules:

Here Uab(Rab,Ωab) denotes an atom-atom interaction
potential. The indices A and B are for molecules, and the
indices a and b run over all the atomic sites within these
molecules. In general, the interaction potential depends upon
the atom-atom separation, Rab, and the relative molecular
orientation, described in some way by Ωab. Often, however,
orientational dependence is removed as a simplification, and
such potentials are ‘isotropic’, i.e., the atoms in a molecule
are considered to be spherically symmetric. Previous studies
into the intermolecular chemistry of PAHs have been largely
based on computationally convenient model potentials, such
as isotropic Lennard-Jones 12-6 (eq 2) and exp-6 potentials
(eq 3).1,12,13 Explicit electrostatic models are often added to
these forms, the simplest being based upon partial atom-
centered point charges, qa and qb (eq 4).
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In recent years, with the advance of computational power,
the theoretical understanding of intermolecular interactions
has developed significantly yet empirical potentials have
remained largely unchanged. Current isotropic literature
potentials have typically been parametrized to be applicable
to a wide range of organic molecules.14-17 Such potentials
are typically parametrized with heats of sublimation and
crystallographic data and, while transferable, are only ac-
curate for the configurations they were parametrized for, and
often fail at others. For example, consider two widely used
potentials: the Williams W99 potential15,16 based on the
exp-6 form and the 12-6 Lennard-Jones potential,14 both
including point charges (the latter parametrized from an
earlier form of the Williams potential). The performance of
these isotropic potentials has been examined for naphthalene
and anthracene dimer orientations shown in Figures 1 and
2. In Figures 3 and 4, we show cross sections of the potential
energy surface at these orientations, where separation, R, is
between the centers of mass of the monomers. The reference
energies are taken from ab initio SAPT(DFT) calculations
performed by Podeszwa and Szalewicz.18

The W99 potential performs remarkably well for stacked
PAH geometries, while the Lennard-Jones plus point charges
potential tends to overestimate well depths by 5-10 kJ
mol-1. However, both potentials show substantial errors for
the T-shape dimer with an error in equilibrium separation
of 0.3-0.4 Å and with an underbinding of as much as 7 kJ
mol-1 in the case of the W99 potential.

Being isotropic, the potentials cannot accurately model the
atom-atom interactions where there is significant anisotropy
in the electron distribution around constituent atoms, such
as in PAHs where there is significant π-bonding. These
potentials also suffer from being required to possess too large
a degree of transferability to make them sufficiently accurate
for the specific system of interest, and development of
anisotropic potentials empirically is precluded due to insuf-
ficient experimental data.

To accurately model dimers in all orientations either
accurate ab initio methods must be used directly (on-the-fly
methods) or new anisotropic atom-atom potentials are
required, parametrized using ab initio results. Currently, most
ab initio methods are prohibited due to high computational
expense. Density functional theory (DFT) is the only method
which is computationally feasible, but currently there are no
practical and quantitative functionals which correctly predict
intermolecular dispersion energies. In reality, the size of PAH
systems (which can consist of many hundreds of atoms) and
the complexity of the calculations restrict us to using model
atom-atom potentials. In the context of PAHs and investi-

gating soot structure at a molecular level, there are a number
of requirements for a potential:

• Accuracy: The potential is expected to be accurate for
the variety of dimer configurations which are expected to
be sampled in a flame environment. In particular, the
potential must correctly predict barriers on the potential
energy surface (PES) of the molecular cluster.

• Transferability: In a flame environment, typically large
ensembles of different PAH molecules exist of varying size
(C6-C400),

20 and consequently, it is very important that any
potential developed can be easily transferable to different PAHs.

• Simplicity: Large PAH clusters need to be studied requiring
extensive calculations. This will limit the functional complexity
of the potential expression used to model interactions.

In the context of PAHs, there have been several studies using
ab initio methods. For example, coupled cluster calculations at
CCSD(T) level have been used to study naphthalene dimers,21

while MP2 level calculations have been used to obtain dimer
interaction energies for various PAHs.10 However, Møller-Plesset
perturbation theory is inadequate to study intermolecular
interactions between systems with a significant amount of
π-bonding (such as PAH clusters). Compared to the more
reliable CCSD(T) calculations, MP2 calculations have been
shown to considerably overestimate attraction between mol-
ecules, in some cases by almost a factor of 2,21-23 throwing
into doubt some earlier studies of soot particle inception.10

However, CCSD(T) is computationally demanding and is not
ideally suited for potential development due to the inability to
decompose the overall interaction energy into physically
significant contributions. This makes it hard to parametrize

Uab
LJ ) 4εab[(σab

Rab
)12

- (σab

Rab
)6] (2)

Uab
exp-6 ) Babexp(-CabRab) -

Aab

Rab
6

(3)

Uab
elst )

qaqb

Rab
(4)

Figure 1. Naphthalene: (a) Slipped-parallel, symmetry C2h;
(b) Graphite-type, symmetry Ci; (c) T-shape, symmetry C2v;
(d) Crossed, symmetry D2d.

Figure 2. Anthracene: (a) Slipped-parallel, symmetry C2h; (b)
Graphite-type, symmetry Ci; (c) T-shape, symmetry C2v; (d)
Crossed, symmetry D2d.
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analytic potentials comprised of multiple terms, where each term
describes a different interaction, such as the dispersion or
repulsion.

By contrast, intermolecular perturbation theory provides
an ideal framework for the development of model potentials
because it provides the interaction energy as a sum of

Figure 3. Comparison of isotropic model potentials with SAPT(DFT) energies for different naphthalene dimers. A key to the
geometries is given in Figure 1. Model potential energies have been calculated using the Orient19 program.

Figure 4. Comparison of isotropic model potentials with SAPT(DFT) energies for different anthracene dimers. A key to the
geometries is given in Figure 2. Model potential energies have been calculated using the Orient19 program.
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physically significant contributions. This allows the separate
parametrization of different terms representing different
interactions within multi-term model potentials. The develop-
ment of symmetry-adapted perturbation theories has enabled
both long- and short-range interactions to be accurately
calculated, and the recent development of SAPT(DFT)24-31

has made possible highly accurate studies of intermolecular
interactions at a level comparable to CCSD(T),32,33 with
modest computational resources.

This methodology has already been used to develop
intermolecular potentials. Misquitta et al.34 have developed
an anisotropic potential to predict the crystal structure of the
1,3-dibromo-2-chloro-5-fluorobenzene (C6BrClFH2) mol-
ecule, giving results in excellent agreement with experiment.
Similarly, a potential derived from SAPT(DFT) interaction
energies has been used to study the potential energy surface
of the cyclotrimethylene trinitramine (RDX) dimer.35 A
benzene potential has been constructed using SAPT(DFT)
energy calculations of 491 dimer geometries.33 However, in
addition to the usual atomic sites, this potential also contains
off-atomic sites, and it is difficult to see how the parameters
for off-atomic sites can be transferred easily to larger PAHs.

The potential form we have chosen to use is

where the first term is a Born-Mayer term describing short-
range interactions, the second is an isotropic, damped dispersion
term, and the third term is an appropriate electrostatic model.
These terms will be described in detail later. This form of the
potential remedies two of the major deficiencies of the exp-6
potential in eq 3: (i) the short-range term now includes a shape-
function, Fab, that models the anisotropy of the interacting sites
through a dependence on the relative orientation, Ωab, of the
two sites, and (ii) the singularity in the dispersion term is
removed by the damping function, f6(Rab) (defined later). A more
elaborate potential functional form could have been chosen, for
example, we could have included higher order terms and
anisotropy in the dispersion model and the anisotropy in the
damping function, but the resulting potential would be unneces-
sarily computationally demanding and would not be usable in
most simulation programs without a significant degree of
modification.

We begin this article with a description of the methods
we have used to parametrize this potential for benzene. We
fit energies and molecular properties to the best ab initio
data provided by SAPT(DFT) and use the Williams-
Stone-Misquitta (WSM) method36-40 for determining dis-
tributed frequency-dependent polarizabilities needed for the
dispersion model (Section 2). In order to keep the parameters
physical, we have used a multistage fitting procedure to
obtain the parameters for the short-range part of the potential
(Section 3). The resulting parameter set then acts as a starting
point for the generalization of the potential to larger PAHs
(Section 4). In this stage, we have used SAPT(DFT)
interaction energies calculated by Podeszwa and Szalewicz18

for dimers of naphthalene (C10H8), anthracene (C14H10), and
pyrene, (C16H10) in a variety of configurations. Finally, we

conclude with an assessment of the accuracy of SAPT(DFT)
energies and possible directions for future applications of
the potential (Section 5).

2. Constructing the Benzene Dimer Potential

The basic strategy for constructing an analytic potential for
molecules consisting of more than two atoms has been
described in a recent review.41 The potential is logically
separated into long- and short-range parts (eq 5). The long-
range part depends upon molecular properties, such as
multipole moments, polarizabilities, and dispersion coef-
ficients. Long-range polarization, or induction, is expected
to be weak in molecules which do not possess strong
multipole moments, such as PAHs. We have, therefore,
omitted an explicit induction term in our model potentials.
The short-range energies include the exchange-repulsion, the
penetration energies (see below), and the second-order
induction effects (which make a small but significant
contribution). These energies all decay exponentially with
increasing separation. We have fitted the parameters of the
exponential terms via the density overlap model, using the
procedure described in ref 34 and outlined below.

2.1. Molecular Geometry and Basis Sets. The geometry
of benzene was obtained by in vacuo optimization using DFT
with the B3LYP functional and the 6-31G* basis set with
the Gaussian0342 program. The molecule was assumed to
be rigid. Calculated atomic coordinates are provided in the
Supporting Information. The D6h symmetry of benzene
allows us to identify just two unique atom types: a carbon
and a hydrogen. Symmetry was imposed during the calcula-
tion of the distributed properties and the subsequent fitting
process for the Born-Mayer parameters.

Interaction energies and molecular properties have been
calculated using the CamCASP43 program from molecular
wave functions obtained using the Dalton44 program. The
molecular wave functions were calculated with the asymp-
totically corrected PBE045 exchange-correlation functional
and the Sadlej-pVTZ46 basis. We have used the Tozer-Handy
asymptotic correction47,48 with a vertical ionization potential
of 0.3397 a.u., obtained from ref 49. The linear-response
DFT calculations needed for second-order SAPT(DFT)
energies were performed using a hybrid adiabatic local
density approximation (LDA) and coupled Hartree-Fock
kernel.27,38

All calculations have used the Sadlej-pVTZ basis46 set in
two basis types: (i) a ‘monomer-centered’ (MC) basis, which
includes basis functions on atomic sites only, and (ii) a
‘monomer-centered-plus’ (MC+) basis type, which addition-
ally includes basis functions placed in the bonding region
between the two molecules and on the atomic sites of the
partner molecule. The MC type of basis was used for
molecular properties and for the first-order interaction
energies (the electrostatic and exchange-repulsion energies)
and density-overlaps. This type of basis is not suitable for
calculations of the second-order interaction energies which
are slow to converge with basis set.50 For these, we have
used the MC+ type of basis with a 3s2p1d basis set for the
mid-bond functions, placed at a position determined by a
generalization of the weighting scheme described in ref 51.
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The CamCASP program uses density fitting in the evalu-
ation of interaction energies, molecular properties, and
density overlaps. We used two kinds of auxiliary basis sets
in our calculations: (i) the aug-cc-pVTZ auxiliary basis52 has
been used for the calculations of molecular properties and
SAPT(DFT) energies with the MC+ basis type, and (ii) the
smaller JK-TZVPP auxiliary basis52 has been used for the
calculation of the density overlap and the first-order SAPT-
(DFT) energies used in the first part of the fitting process.

2.2. SAPT(DFT) Dimer Energies. SAPT(DFT) interac-
tion energies for the benzene dimer were calculated at a
variety of dimer configurations so as to model the exchange-
repulsion, penetration, and induction energies as well as to
provide a set of reference dispersion energies for the
assessment of our dispersion models. Based upon an earlier
study,27,34 we used the following formulation of the SAPT-
(DFT) interaction energy:

where, Eelst
(1) (KS) and Eexch

(1) (KS) are the first-order electrostatic
and exchange-repulsion energies, Eind,tot

(2) is the total induction
energy defined as sum of the polarization and exchange
contributions,27 Eind,pol

(2) + Eind,exch
(2) , and likewise, Edisp,tot

(2) is the
total dispersion energy defined as Edisp,pol

(2) + Edisp,exch
(2) . The

second-order terms are calculated using Kohn-Sham linear
response theory. Terms of third- and higher-order in the
interaction operator have been omitted, as these are not
expected to be significant for systems without hydrogen
bonds.33,38

It is important to select the dimers so as to get a uniform
coverage of the space of physically important configurations.
We have done this by keeping one of the molecules of the
dimer fixed and centered at the origin and by translating and
rotating the other using the following algorithm:34

• Using a Sobol quasi-random sequence, generate a random
direction vector for the translation and, using Shoemake’s
uniform distribution algorithm,53 generate a quaternion for
rotation.

• Starting with both molecules centered at the origin, rotate
one using the quaternion. Using the standard van der Waals
radii,54 determine the distance of van der Waals contact R0

along the direction vector.
• Translate the rotated molecule along the direction vector

by a few (1-5) randomly selected distances chosen to lie
between R0 - ∆Rmin and R0 + ∆Rmax. We have used ∆Rmin

and ∆Rmax to be 1.5 and 1.2 a.u., respectively.
In addition to 500 benzene dimer configurations selected,

using the algorithm described above, we have used an
additional 27 energies that were calculated at specific dimer
orientations shown in Figure 5. Here the slipped-parallel and
crossed configurations represent stacked dimer configura-

tions, and the interaction energy has been calculated at a set
of interplanar spacings. Likewise, the T-shaped configuration
energies have been calculated at a set of separations of the
monomer centers of mass.

2.3. Molecular Properties. Ideally, when the effect of
electron density overlap is negligible, we would describe the
electrostatic interaction energy using a distributed multipole
model.55,56 Such models have had a lot of success in organic
crystal structure prediction.57 However, for the benzene
dimer, we have found that a simple point charge model
suffices, and the higher ranking multipole moments are not
so important. This is probably because of the absence of
strong directional moments, such as those seen in hydrogen-
bonding complexes. Additionally, there are few simulation
programs that can use distributed multipole models. Con-
sequently, we have used a distributed point charge model to
describe the electrostatic interaction at long range. This model
was calculated with the Gaussian0342 program using the
PBE0 functional and Sadlej-pVTZ basis using the Merz-
Singh-Kollman scheme,58 which fits the molecular elec-
trostatic potential to a set of atom-centered point charges.
In principal, the electrostatic term, which varies as 1/Rab

should be damped at short range to avoid the divergence as
Rab f 0. In practice however, the low power of Rab means
that this divergence is manifest only at very small separations,
and hence, damping can be ignored in many cases.

Frequency-dependent polarizabilities are needed to cal-
culate the dispersion coefficients with which we model the
second-order dispersion energies at intermolecular separa-
tions where orbital overlap effects can be neglected. These
polarizabilities need to be distributed in order to ensure rapid
convergence with rank of the multipole expansion; in fact,
even for a molecule the size of benzene, the single center
multipole expansion will not converge for the physically
important dimer configurations. Distributed frequency-de-
pendent polarizabilities of ranks one, two, and three for
carbon and hydrogen atoms have been obtained using the
WSM method. This distribution method has been shown to
result in models which exhibit very good convergence
properties, while resulting in a physically meaningful
partitioning of the molecular properties.

2.4. Dispersion Models. In the multipole expansion, the
second-order dispersion energy between two molecules, A
and B, is given by59

where the Cn
ab are the dispersion coefficients which are

orientationally dependent for non-spherically symmetric sites.
For interactions between spherically symmetric sites, the Cn

ab

coefficients contain no angular dependence and terms that
are odd in n are zero. The fn(Rab) are damping functions,59

which are needed to remove the divergence of the expansion
at small Rab. Here, we use the Tang-Toennies damping
functions:60

Figure 5. Benzene: (a) T-shape, symmetry C2v; (b) Crossed,
symmetry D6d; (c) Slipped-parallel, symmetry C2v.
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with an isotropic-damping parameter of � ) 2(2I)1/2, where
I is the vertical ionization energy in a.u.40 For benzene, using
the value of I presented above, we obtain � ) 1.6485 a.u.

The WSM method allows the calculation of a variety of
dispersion models from the simple isotropic C6 model to the
very elaborate anisotropic C12 model40 (a Cn model includes
all terms from C6 to Cn). We have calculated isotropic and
anisotropic C6, C10, and C12 models using the CamCASP43

program. In Figure 6, we present dispersion energies from
these models calculated with the Orient program and
displayed against SAPT(DFT) total dispersion energies,
Edisp,tot

(2) .
2.4.1. Refining the Isotropic C6 Dispersion Model. In

practice, elaborate anisotropic dispersion models are com-
putationally demanding, and few simulation programs are
able to use them. We have, therefore, created an effectiVe
damped isotropic C6 model in the manner described in ref
40.

The scatter plot shown in Figure 6 shows that deviation
of the model dispersion energies from the SAPT(DFT)
energies is approximately linear for all the dispersion models.
It, thus, becomes possible to introduce a scaling factor by
which the C6, iso model dispersion energies can be scaled to
recover more accurately the SAPT(DFT) energies. In order
to find the scaling coefficients, a function of the following
form was minimized

where i labels the configurations, and Edisp,tot is the total
SAPT(DFT) dispersion energy. The coefficient, �, is deter-
mined by a least-squares fit, and wi is a weight, which will
generally be energy dependent. In the general case, the
scaling coefficient would depend on the atom pairs, but in
this work, the simplest possible fit has been considered: all
configurations are weighted equally, and a single constant
of proportionality is used. The appropriate scaling factor for
the damped isotropic C6 model was found to be 1.372 for
the physically significant dispersion energies defined by the
range from -20 to 0 kJ mol-1. The root-mean-square (rms)
error for the damped and scaled C6, iso model over this range
is only 0.47 kJ mol-1. At small separations when total
dispersion energies are lower than -20 kJ mol-1, the
dispersion energy is overestimated, but at such short ranges,
repulsive interactions are expected to dominate. The disper-
sion is also overestimated at large separations, although it
should be noted that this is true of any effectiVe C6

representation of dispersion using only atomic sites.40

3. Short-Range Energies

The short-range energy is defined as the difference in the
total interaction energy (eq 6) and the energies calculated
with the multipole expansions for the electrostatics and the
dispersion. As mentioned above, since the long-range induc-

tion is expected to be weak in systems of PAH molecules,
we have not included a multipole expansion for the induction
energy. Therefore, we define the short-range energy is as:

where Eelst
(1) (ESP) is the electrostatic energy calculated using

the point charge model, Edisp,d
(2) (C6, iso) is the dispersion energy

calculated using the effectiVe damped C6, iso model, and Eelst,pen
(1)

is the electrostatic penetration energy defined implicitly
above. The induction is included as a short-range energy
because, in the absence of strong permanent multipoles, Eind,tot

is almost all due to orbital overlap effects. We could define
a penetration-like contribution from the dispersion energy,
Edisp,tot

(2) - Edisp,d
(2) (C6, iso), but this term is small and does not

exhibit an exponential dependence with distance; conse-
quently, we have omitted it here but have included it in the
final stage of the fitting process.

Unlike the exchange-repulsion energy, Esr
(2) is not always

positive, as there will be configurations for which the
penetration energiesswhich are generally negativesand the
(negative) induction energies will be larger in magnitude than
the corresponding exchange-repulsion energies. Neverthe-
less, this happens at very few dimer configurations, and when
it does, Esr

(2) tends to be small in magnitude. We have,
therefore, omitted such configurations. Furthermore, since
the penetration energy and exchange-repulsion energies both
arise from the overlap of the molecular wave functions, they
both exhibit an exponential dependence on intermolecular
separation. If we assume the same distance dependence for
all terms in eq 10, we can then fit the positive values of Esr

(2)

to the Born-Mayer term of eq 5:

The hardness of the interaction is described by Rab, and
G is a constant energy unit taken to be 10-3 a.u. The shape

fn(Rab) ) 1 - exp(-�Rab) ∑
k)0

n (�Rab)
k

k!
(8)

Λ ) ∑
i

wi[Edisp,tot
i + � ∑

a∈A,b∈B

f6(Rab)C6,iso
ab

Rab
6 ]2

(9)

Figure 6. Dispersion energies for the benzene dimer. Scatter
plot of dispersion energies calculated using the damped
dispersion models represented by Edisp,d

(2) (n) against Edisp,tot
(2)

calculated using SAPT(DFT). The dispersion models pre-
sented are anisotropic unless given the suffix ’iso’, in which
case they are isotropic.

Esr
(2) ) (Eelst

(1) - Eelst
(1) (ESP)) + Eexch

(1) + Eind,tot
(2) ) Eelst,pen

(1) +

Eexch
(1) + Eind,tot

(2) (10)

∑
a∈A

∑
b∈B

Gexp[-Rab(Rab - Fab(Ωab))] (11)
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functions, Fab(Ωab), have been assumed to be the sum of the
shape functions of the individual sites:59

where

and similarly for Fb(θb). Here the angle θa defines the angle
between the site-site vector from a to b and the z-axis in
the local axis system of site a. We have used an approximate
axial symmetry at each atomic site with the z-axis in the
local axis system pointing radially outward from the carbon
to the attached hydrogen (Figure 7). In this work, the shape
function for carbon included terms to rank two, and for
hydrogen, where anisotropy is less important, only terms up
to rank one were found to be necessary.

Rather than attempt a direct fit of eq 11 to the short-range
energies, we have performed the fitting in several stages.
One of the reasons for this is numerical stability. In general,
due to the highly coupled nature of the parameters in eq 11,
a direct fit tends to result in an unphysical parameter set and
is, therefore, best avoided, particularly if the parameters are
to be transferred to other, similar, systems. Another reason
is one of computational efficiency; if a first approximation
to the parameters can be obtained using low-level ab inito
data obtained at a low computational cost and subsequently
improved using a smaller set of higher quality ab inito data,
then the overall computational cost of the fitting process is
reduced.

3.1. Stage 1: Fit to Esr
(1) ) Eexch

(1) + Eelst,pen
(1) . In the first

stage, we have fitted the Born-Mayer terms to the first-
order contribution to the short-range energy:

Since the first-order energies constitute the major part of
the total short-range energy, the resulting Born-Mayer
parameters are a good starting point for the next stage of
the fitting process. Additionally, because these terms are
computationally inexpensive, we can calculate Esr

(1) at a fairly

large number of dimer configurations with a modest amount
of computational resource. We have computed Esr

(1) at 500
benzene configurations using the CamCASP43 program.
These calculations were performed using the MC Sadlej-
pVTZ basis together with the JK-TZVPP auxiliary basis.

We have used the method described in ref 34 to fit eq 11
to Esr

(1). As pointed out above, the parameters in eq 11, which
is a sum of exponential terms, tend to be highly coupled,
and a direct fit often leads to an unphysical parameter set. It
would be more appropriate to fit the exponential terms in eq
11 indiVidually, for each pair of sites, but to achieve this,
we need to partition the short-range energy Esr

(1) into contribu-
tions from pairs of atoms. While this partitioning cannot be
rigorously defined, a reasonable break-up of the short-range
energy can be obtained through the density overlap model61

in a manner outlined below and described in more detail in
refs 34 and 41.

The density overlap model postulates that the short-range
energy is nearly proportional to the overlap between the
molecular electron densities. The short-range energy is
generally taken to be the exchange-repulsion energy, but
here, we additionally include the first-order electrostatic
penetration energy. Therefore, we have

where, K0 and γ are constants, and if Fe
X is the electron

density of molecule X, then the density overlap is defined
as SF ) ∫Fe

A(r)Fe
B(r)d3r. For the asymptotically correct

densities we have used here, the exponent γ has been
shown62 to be exactly 1, so K0 is the only free parameter in
this model which can be determined by least-squares
minimization.

Now, if we partition the electron density into atomic
contributions, that is Fe

A(r) ) ∑a ∈ AFe
a(r), then we can define

a distributed density overlap SF
ab ) ∫Fe

a(r)Fe
b(r)d3r, and, hence,

a generalized form of the overlap model:41,63,64

where Kab are constants to be fitted, and the partitioned short-
range energy Esr

(1)(ab) is implicitly defined through the above
equation. The density partitioning is not unique and can be
achieved in a variety of ways. We have used density fitting
to achieve the partitioning, which is analogous to the
Gaussian multipole method of Wheatley.65 Details of weight-
ing schemes and constraints used in the fitting process are
described in ref 34.

Having obtained the atom-atom partitioned short-range
energy Esr

(1)(ab), it is now relatively easy to fit the contribu-
tions of individual pairs of sites to a single Born-Mayer
term from eq 11. These fits are well-defined and result in
physically sensible values for the parameters.

The various stages of the above process were performed
using the CamCASP43 and Orient19 programs, and the overall
weighted rms error for the fitted energies was 0.82 kJ mol-1.
Symmetry was taken into account at all stages in the fitting
process.

Figure 7. Schematic showing the axis system used to define
short-range anisotropy. The local z-axes for both the carbon
atoms and the attached hydrogen atoms point radially outward
along the carbon-hydrogen bonds.

Fab(Ωab) ) Fa(θa) + Fb(θb) (12)

Fa(θa) ) F00
a + F10

a cos θa + 1
2
F20

a (3cos2 θa - 1)

(13)

Esr
(1) ) Eexch

(1) + Eelst,pen
(1) (14)

Esr
(1) ) K0SF

γ (15)

Esr
(1) ) ∑

a∈A,b∈B

Esr
(1)(ab) ) ∑

a∈A,b∈B

KabSF
ab (16)
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3.2. Stage 2: Fit to Esr
(2). We now refine the parameter

set obtained in Stage 1, Section (3.1), against a smaller but
higher-quality data set of short-range energies, this time using
the second-order terms, as defined in eq 10. Esr

(2) was obtained
using SAPT(DFT) energies calculated at the first 100
configurations used in Stage 1 and the further 27 specific
dimers at the orientations shown in Figure 5. This time we
used the much larger MC+ basis type.

The relaxation of the parameter set was performed using
penalty functions of the form (pi - pi

0)2, where pi
0 is the

anchor value obtained from Stage 1. In this way, the fit was
refined while preventing the parameters from taking on non-
physical values. The final choice of parameters to be relaxed
and the weights given to the harmonic constraints were
chosen with an element of empiricism, although values of
Rab and F00, 00

ab were constrained more tightly than other
parameters. The final fit had a weighted rms residual error
of 0.75 kJ mol-1.

3.3. Stage 3: Final Fit to Relax all Parameters. In the
final step, we simultaneously refined the Born-Mayer
parameters and the dispersion coefficients (with harmonic
constraints imposed) to fit SAPT(DFT) energies calculated
in the MC+ basis at the 127 geometries used in Stage 2,
Section (3.2). The parameters in the electrostatic model were
kept fixed during this step. The SAPT(DFT) energies were
weighted so as to favor more negative energies to ensure
the potential well was accurately fitted. The weighting
scheme used has been adapted from that used in ref 66 and
is given by

where Θ(x) is the Heaviside step function. Eint
i are the

SAPT(DFT) energies, and the parameters E0 and η were set
to 3 and 0.1 mol kJ-1, respectively.

The parameters for the resulting benzene anisotropic
potential (BAP) are given in Table 1. It should be noted that
for the shape function coefficients, Flaκa, lbκb

ab , of a given atom
pair (i.e., C-C, C-H, or H-H) F00, 00

ab is defined to be the
sum of the rank 00 terms in eq 13, that is, F00, 00

ab ) F00
a +

F00
b , whereas the mixed-rank terms are defined as Fi0, 00

ab )
Fi0

a , and F00, i0
ab ) Fi0

b for i ∈{1, 2}.59

The weighted rms residual energy (Eint
i - Efit

i ) for the
benzene anisotropic potential, when compared with the 127
SAPT(DFT) energies, was found to be 0.49 kJ mol-1. Figure
8 shows the scatter of energies of the new potential compared
to SAPT(DFT) energies for the random benzene dimer
configurations and for some of the specific configurations
chosen. For comparison, the W99 potential has been
included, and the plot shows energies calculated with the
new potential are noticeably less scattered. The scatter which
remains for the new potential results is likely to be due to
the damped C6 isotropic dispersion model, which cannot be
further improved without going to a more detailed model.
Figure 9 shows a comparison of the new benzene potential
with SAPT(DFT) energies and the W99 potential for the
orientations shown in Figure 5. The new potential matches
the SAPT(DFT) results in all configurations, especially the
T-shaped configuration, where the W99 potential is notably
poor.

The shape function shown in eq 12 imposes certain
constraints on the parameters of the potential, e.g., F10, 00

HH )
F00, 10

CH . However, these conditions were not imposed during
the construction of the benzene anisotropic potential, and
instead, shape functions for individual atoms were allowed

Table 1. Parameters of BAP in a.u.a

atom pair laκa lbκb F R C6

CC 00 00 4.1780 1.8683 30.452
10 00 0.2535
20 00 -2.0390

CH 00 00 5.4242 1.7370 12.490
00 10 -0.4663
10 00 0.1472
20 00 -0.1422

HH 00 00 3.4400 1.5263 5.092
10 00 0.3611

a The pre-exponential factor, G, is 0.001 a.u., and the damping
factor, �, is 1.6485 a.u. The C6 coefficients quoted here include
the scaling factor of 1.372 (see discussion in Section 2.4.1). The
point charges used for carbon and hydrogen atoms are -0.1111
and 0.1111 a.u., respectively.

wi ) Θ(Eint
i - E0)( E0

Eint
i )2

+ [1 - Θ(Eint
i - E0)]exp[η(E0 - Eint

i )]

(17)

Figure 8. Comparison of the benzene anisotropic potential
(BAP) with SAPT(DFT) energies calculated for 100 random
benzene dimer orientations.

Figure 9. Comparison of BAP with SAPT(DFT) energies and
W99 potential for T-shaped (T), crossed (X) and slipped-
parallel (SP) dimer configurations.
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to vary depending on the specific atom pair considered. If
the constraints are imposed, then the reduced flexibility of
the functional form results in a poorer fit with a weighted
rms residual of 0.96 kJ mol-1.

4. Generalizing to Larger PAH Molecules

The shape function constraints given by eq 12 are probably
inconsequential if the potential is restricted to a single system,
but since they impose the idea of transferability,59 they are
needed if we wish to use the potential parameters on other,
related, systems as well. So when generalizing the benzene
potential to larger PAH molecules, we have imposed these
constraints. This results in a potential with fewer parameters,
but as shall be shown, it appears to perform remarkably well
for the larger PAH dimers.

As can be seen from Figures 11-14, the BAP parameters
transferred to the larger PAH molecules describe the interac-

tions reasonably well. However, they are not entirely
appropriate for a generalized transferable potential, as they
do not satisfy the shape-function constraints. Consequently,
we have used the benzene anisotropic potential parameters
with these constraints imposed as the starting parametrization
for the transferable anisotropic PAH potential. We have tuned
these potential parameters against 111 SAPT(DFT) dimer
energies, calculated by Podeszwa and Szalewicz,18 for the
naphthalene, anthracene and pyrene dimers at the orientations
shown in Figures 1, 2, and 10. Molecular geometries were
taken from ref 18, and ESP point charge models were
calculated for each molecule with the Gaussian0342 program
in the same way as described for benzene. The geometries
and partial atomic charges together with figures explaining
the axes systems used in the larger PAH molecules are given
in the Supporting Information. Also included in the Sup-
porting Information are the files used to define the local axes
systems in the Orient program.

The Orient program cannot simultaneously fit parameters
to multiple types of molecular dimers, so an iterative scheme
has been adopted. In this scheme, the initial benzene
parametrization is used as the starting point for fitting the
parameters for the naphthalene dimer; having obtained the
new set of parameters, these now become the starting point
for fitting to the anthracene dimer energies. This process is
then continued, cycling through each set of dimer energies
for each of the four PAH molecules. In order to converge to
a parameter set, the harmonic constraints used in the fitting
procedure were tightened after each iteration. Eventually the
parameters are so tightly constrained that they could not be
varied; this gave us the final parameter set. While this

Figure 10. Pyrene: (a) Slipped-parallel L, symmetry C2h; (b)
Graphite-type, symmetry Ci; (c) Slipped-parallel S, symmetry
C2h; (d) Crossed, symmetry D2d.

Figure 11. Comparison of the W99 potential, the BAP, and the PAH anisotropic potential (PAHAP) with SAPT(DFT) energies
for benzene dimers. Model potential energies have been calculated using the Orient19 program.
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procedure is by no means optimum, it has proved adequate
and resulted in a generalized parameter set that is not only

able to model the interactions of the larger PAH molecules
but also the 127 benzene dimer geometries.

Figure 12. Comparison of the W99 potential, the BAP, and the PAHAP with SAPT(DFT) energies for naphthalene dimers.
Model potential energies have been calculated using the Orient19 program.

Figure 13. Comparison of the W99 potential, the BAP, and the PAHAP with SAPT(DFT) energies for anthracene dimers. Model
potential energies have been calculated using the Orient19 program.
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Table 2 shows the set of parameters obtained for the
general PAH anisotropic potential (PAHAP) which, unlike
the initial benzene parametrization, satisfy the constraints
imposed by the shape function given in eq 12. A brief
comparison of the new PAHAP shape functions with the
equivalent W99 shape functions is given in the Supporting
Information. From Figures 11-14, we see that the PAHAP
parametrization is also a slight improvement over the benzene
parametrization for the larger PAHs, without a significant
loss of accuracy for the benzene dimer energies, although
the description of the crossed benzene configuration is poorer.
In particular, in contrast to the W99 potential, the PAHAP
potential correctly models the PAH interaction energies at
both the stacked as well as the T-shaped configurations. The
overall weighted rms residual error over the 238 dimer
configurations considered was found to be 0.73 kJ mol-1,
which is more than three times less than the error of 2.54 kJ
mol-1 incurred by the W99 potential.

5. Discussion

Using ab initio calculations, we have developed a transferable
anisotropic potential for polycyclic aromatic hydrocarbons
that surpasses some of the best empirically derived isotropic
potentials in accuracy. In particular, this potential accurately
predicts intermolecular interactions for both stacked and non-
stacked dimer configurations, such as the T-shape dimer. This
is important, while stacked configurations are generally
energetically more favorable for most PAH dimers, when
modeling clusters of PAHs, as in the context of nascent soot
particles, non-stacked configurations are also present.13,67

To assess the overall accuracy of our potential, we have
to consider the accuracy of both the fit and the SAPT(DFT)
energies. The accuracy of the former is shown by the
weighted rms residual error, which was calculated to be 0.73
kJ mol-1 over the 238 dimer configurations considered. To
determine the accuracy of the latter, comparison must be
made to other ab initio results. Highly accurate benzene
dimer energies have been obtained at CCSD(T) and QCIS-
D(T) levels by Janowski and Pulay.68 In this work, the largest
calculation at QCISD(T)/aug-cc-pVQZ level involved 30
correlated orbitals and 1512 basis functions. Of the three
benzene dimers configurations considered, only energy
calculations for the T-shape dimer are directly comparable
to our SAPT(DFT) calculations. At a separation of 4.989 Å,
the QCISD(T) binding energy extrapolated to infinite basis
is 11.23 kJ mol-1, whereas the corresponding SAPT(DFT)
binding energy calculated at a separation of 5.0 Å in our
MC+ basis is 10.33 kJ mol-1. This discrepancy is probably
due to the difference in basis sets. The MC+ basis used in
our SAPT(DFT) calculations comprises the Sadlej-pVTZ

Figure 14. Comparison of the W99 potential, the BAP, and the PAHAP with SAPT(DFT) energies for pyrene dimers. Model
potential energies have been calculated using the Orient19 program.

Table 2. Parameters of PAH Anisotropic Atom-atom
Potential in a.u.a

atom pair laκa lbκb F R C6

C C 00 00 5.8147 1.8615 30.469
10 00 0.0217
20 00 -0.2208

C H 00 00 5.1505 1.7756 12.840
00 10 -0.2718
10 00 0.0217
20 00 -0.2208

H H 00 00 4.4862 1.4312 5.359
10 00 -0.2718

a The pre-exponential factor, G, is 0.001, and the damping
factor, �, is 1.6485. The C6 coefficients quoted here are effective
coefficients and include an implicit scaling factor.
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basis for the monomer centered functions and the extra
3s2p1d midbond functions, but this combined basis is
considerably smaller than that used in QCISD(T) calculations
and is the likely cause for the underestimation of the binding
energy. Using larger basis sets would reduce the error but
would increase computational demands prohibitively. Thus,
at our chosen level of theory, the error is unavoidable, and
given the transferable nature of our PAH potential, we
believe this error to be quite acceptable.

The new transferable PAH anisotropic potential represents
a first step in our planned investigation of the intermolecular
chemistry involved in the clustering of PAHs, which is
thought to be an important step in the formation of nascent
soot particles. While this potential can be used in its own
right, it is hoped that it will also provide an accurate reference
against which we can produce a general coarse-grained PAH
potential, necessary for the study of large molecular clusters.
The potential may also find applications in other fields were
the effects of anisotropy could be important, such as organic
crystal structure prediction.69
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Abstract: An implementation is presented of an uncontracted Rys quadrature algorithm for
electron repulsion integrals, including up to g functions on graphical processing units (GPUs).
The general GPU programming model, the challenges associated with implementing the Rys
quadrature on these highly parallel emerging architectures, and a new approach to implementing
the quadrature are outlined. The performance of the implementation is evaluated for single and
double precision on two different types of GPU devices. The performance obtained is on par
with the matrix-vector routine from the CUDA basic linear algebra subroutines (CUBLAS) library.

1. Introduction

The evaluation of two-electron (2e-) repulsion integrals
(ERI) is a major computational step in determining the
electronic structure of molecules using ab initio quantum
chemistry and density functional theory (DFT) methods.1

Accelerating the integral calculations significantly reduces
the overall runtime of the direct Hartree-Fock (HF)2 and
the post-HF methods, e.g., many body perturbation methods.3

In 1951, Boys4 proposed using Gaussian functions as a
standard atomic basis set for quantum chemistry computa-
tions because the integrals over the Gaussian functions can
be evaluated efficiently in closed form. Since then, many
different algorithms have been developed to evaluate ERIs
over Gaussian functions. The Gauss quadrature method using
orthogonal Rys polynomials, developed by Dupuis, Rys, and
King (DRK),5 is a general algorithm that is applicable to a
wide range of integrals that arise in computational chemistry.
Besides the original Rys quadrature, other ERI algorithms
have been developed by, for example, Pople and Hehre
(PH),6 McMurchie and Davidson (MD),7 Obara and Saika
(OS),8 and Head-Gordon and Pople (HGP).9 Some of the
modifications to the original DRK algorithm are due to
Lindh, Ryu, and Liu (LRL)10 and Dupuis and Marquez
(DM).11 Each of the developed schemes is more efficient

for particular cases of integrals, while less efficient or
inapplicable for other cases. In practice, quantum chemistry
codes, such as the general atomic and molecular electronic
structure system (GAMESS),12 include several different ERI
methods in order to take optimal advantage of the best
method for particular integral and angular momentum types.
The focus of the present work is on ERIs over higher (e.g.,
d, f) angular momentum functions.

Computationally the ERI calculations scale as ∼M3 to
∼M4, where M is the number of basis functions used in the
calculation, and the scalability range depends on the amount
of integral prescreening that can be applied. For the most
common calculations, M is typically less than a thousand,
while larger calculations could require thousands of basis
functions.

The ERI calculations are specific to the domain of
computational chemistry and the related fields. They are
much less common than general methods, such as Fourier
transforms and linear algebra kernels, and typically are not
as optimized as the basic linear algebra subroutines (BLAS)
libraries. A typical HF or DFT calculation requires both ERI
and linear algebra computations. However, ERI computations
tend to dominate the overall time, since they require more
floating point operations (flops). Moreover, unlike numerical
linear algebra kernels that exhibit well-defined memory
access patterns and simple long loop structures, ERI calcula-
tions have to account for many types of integral classes, and
therefore, iteration variables do not have a simple linear
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relationship to the data elements which must be accessed.
To help speed up the time needed to complete the ERI
calculations, a general graphical processing unit (GPU)
programming model has been implemented. The goal is to
implement high angular momentum uncontracted ERIs in
this scheme.

2. Electron Repulsion Integrals

Gaussian functions are taken as the standard basis for most
ab initio methods. The Cartesian form of a primitive
uncontracted one-electron Gaussian basis function with the
center located at the origin takes the form of eq 1:

where R is the Gaussian exponent that governs the spatial
extent of the function, r measures the distance from the
atomic origin, and ax, ay, and az are local quantum numbers
that determine the net angular momentum La by eq 2:

Individual Gaussian functions, like those described in eq
1, are generally called “primitive” functions. Especially for
lower angular momentum functions (e.g., s and p functions),
the actual basis functions are taken to be linear combinations
(“contractions”) of primitive Gaussians:

On the other hand, functions with higher angular momentum
(e.g., d, f, and g functions) are typically uncontractedsthe
focus of this work.

An uncontracted ERI in terms of these one-electron
functions can be expressed as:

A contracted ERI can be constructed from a series of
uncontracted ERIs (eq 5):

The angular momentum La specifies the shape of the
function and is denoted by the letters s, p, d, f, etc., for
angular momentum values of 0, 1, 2, 3, etc., respectively.
Functions with the same angular momentum that differ only
in ax, ay, and az indices belong to the same shell. Grouping
functions into shells allows the ERIs to be evaluated more
efficiently. The size (i.e., the number of functions) of a shell
with angular momentum La is

and the size of an ERI shell block is

where

is the binomial coefficient evaluated as n(n - 1)/2, and La,
Lb, Lc, and Ld are the angular momenta of the four atomic
orbitals in the ERI.

Note that the individual ERIs have an eight-fold symmetry,
since (ij|kl) ) (ji|kl) ) (ij|lk), etc.; however, the ERIs are
computed as shell blocks, rather than individual integrals.
So generally, the eight-fold symmetry is only relevant
between blocks, not within a block.

2.1. Rys Quadrature. The Rys quadrature proposed by
DRK is efficient for higher order integrals (integrals with a
higher order angular momentum) that are required for very
accurate calculations that include electron correlation. How-
ever, it is less efficient for lower order highly contracted
integrals. An attractive feature of the Rys quadrature is that
it is very stable numerically, an important advantage for
higher order integrals. Unlike other methods mentioned in
the Introduction Section, it has a very low memory footprint,
making it amenable for architectures with smaller caches,
such as the GPUs of interest in this work.

The basic idea of the Rys quadrature is to evaluate the
integral using a numerical Gaussian quadrature based on a
set of orthogonal Rys polynomials. Equation 4 can be
expressed, using i, j, k, l to denote functions of a primitive
uncontracted ERI shell block (ab|cd), in the form

As suggested in eq 8, X depends on the Gaussian
exponents and centers. Equation 6 can be written as eq 11:

where PL is a polynomial of degree L, eq 10, with the
coefficients Cm in eq 6. Equation 11 can be evaluated exactly
by an N-point (where N is an integer greater than L/2)
Gaussian quadrature:

φ(r) ) xax yay zaz exp(-Rr2) (1)

La ) ax + ay + az (2)

φa(r) ) ∑
k

K

Dkaφk(r) (3)

(ab|cd) ) ∫ ∫ φa(1)φb(1)
1

r12
φc(2)φd(2)dr1dr2 (4)

(ij|kl) ) ∑
a

K

∑
b

L

∑
c

M

∑
d

N

Dai Dbj Dck Ddl (ab|cd) (5)

(La + 2
2 )

(La + 2
2 )(Lb + 2

2 )(Lc + 2
2 )(Ld + 2

2 )

(n
2 )

(ij|kl) ) ∑
m)0

L

CmFm(X) (6)

Fm(X) ) ∫
0

1

t2mexp(-Xt2)dt (7)

X ) F(rA - rB)2

rA ) (Riri + Rjrj)/A
rB ) (Rkrk + Rlrl)/B

(8)

F ) AB/(A + B)
A ) Ri + Rj

B ) Rk + Rl

(9)

L ) La + Lb + Lc + Ld (10)

(ij|kl) ) ∫
0

1

exp(-Xt2)PL(t)dt (11)

(ij|kl) ) ∑
ω)1

N

Wω PL(tω) (12)
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The WR and tR are weights and roots of the Rys
polynomial, respectively. For example, a (dd|dd) block will
have L ) 2 + 2 + 2 + 2 ) 8 and N ) 8/2 + 1 ) 5, and a
(gg|ff) block will have L ) 4 + 4 + 3 + 3 ) 14 and N )
14/2 + 1 ) 8. Separation of variables allows the terms of
the PL polynomial, which are integrals over dr1dr2 (see eq
4) to be written as a product of three two-dimensional (2-D)
integrals Ix, Iy, and Iz over dx1dx2, dy1dy2, and dz1dz2,
respectively.

The overall ERI formula becomes

The 2-D integrals of a shell block have array dimensions
(in FORTRAN/MATLAB notation, where commas delimit
dimensions and colons specify the range) as shown below:

The first or leading dimension in eq 16 corresponds to
the number of roots, and the last four dimensions correspond
to Cartesian exponents for each function in a shell block.
When constructing the ERI block, the 2-D integrals will be
reused multiple times, hence, the computational and memory
advantage of calculating ERIs as a block. For example, to
construct the first six integrals of the (pp|pp) shell block,
the following 2-D Cartesian integrals are used (multiplication
by a constant factor is implied):

The roots and weights of the Rys polynomials can be
evaluated by polynomial approximations13 or by using a
general Stieltjes procedure.14 The 2-D Cartesian integrals are
evaluated efficiently using recurrence and transfer relation-
ships. The recurrence relationships generate 2-D integrals
with all angular momenta shifted to centers i and k from
(ss|ss) 2-D integrals, and transfer relationships shift the
angular momentum to centers j and l to generate the desired
2-D integrals. For the details of these relationships, the reader
is referred to the original DRK paper.5

The quadrature step itself, i.e., the summation over the
roots, eq 15, is the time-consuming step of the ERI shell
calculation, requiring:

flops, where the factor of 3 is from the two multiplications
and an addition in each step. The transfer relationships scale
as N(La + 1)(Lb + 1)(Lc + 1)(Ld + 1), requiring many fewer
operations than the quadrature step as the angular momentum
increases. The recurrence relationships and root evaluation
require even fewer flops than the transfer relationships for
higher order integrals. Therefore, since an efficient imple-
mentation of the quadrature step determines the overall
performance of the algorithm, the main topic of this paper
is the efficient parallel implementation of the quadrature.
Unlike the recurrence and transfer equations, which have
predictable memory access patterns and can be expressed
as simple vector operations, the quadrature step has complex
memory access patterns which span a large data set and
depend on the particular ERI class being evaluated. For
example, the evaluation of the (ff |ff) ERI block requires
3N(La + 1)(Lb + 1)(Lc + 1)(Ld + 1) ) (3)(7)(4)(4)(4)(4) )
5376 floating point (FP) numbers for three 2-D integral arrays
(X, Y, Z) and 104 ) 10000 FP numbers for the final integral.
For double precision numbers, the overall memory would
be 123008 Bytes, well beyond the size of a typical L1 data
cache.

Algorithm 1 outlines the basic structure of the Rys
quadrature. Its simplicity obscures the fact that the Cartesian
indices do not have a simple relationship to the iteration
variables and must be either tabulated or each case must be
programmed specifically for a particular ERI class.

Algorithm 1: Rys Quadrature

3. Graphical Processing Units

GPU technology has emerged as a viable computing platform
for general purpose application programming, also known
as general purpose computation on graphical processing units
(GPGPU). The GPUs offer high-density arithmetic units at
the expense of larger cache sizes and control units. In terms
of linear algebra kernels, the GPUs can approach 20 and 70
giga floating point operations per second (GFLOPS) for
matrix-vector and matrix-matrix routines, respectively, on
current double precision (DP) capable devices15 that have a
theoretical peak of around 90 GFLOPS.

3.1. Compute Unified Device Architecture. Among the
current GPGPU technologies, the NVIDIA compute unified
device architecture (CUDA)16 language environment is
available for several GPU devices and is the target imple-
mentation choice. CUDA is a unified hardware computing
architecture and programming model for graphics as well

N ) L/2 + 1 (13)

PL(t) ) 2(F/π)1/2Ix Iy Iz (14)

(ij|kl) ) 2(F/π)1/2 ∑
ω

Ix(tω)Iy(tω)Iz(tω)Wω (15)

Iq()x,y,z)(N, 0:La, 0:Lb, 0:Lc, 0:Ld) (16)

(pxpx|pxpx) ) ∑
ω

Ix(ω, 1, 1, 1, 1)Iy(ω, 0, 0, 0, 0)Iz(ω, 0, 0, 0, 0)

(pypx|pxpx) ) ∑
ω

Ix(ω, 0, 1, 1, 1)Iy(ω, 1, 0, 0, 0)Iz(ω, 0, 0, 0, 0)

(pzpx|pxpx) ) ∑
ω

Ix(ω, 0, 1, 1, 1)Iy(ω, 0, 0, 0, 0)Iz(ω, 1, 0, 0, 0)

(pxpy|pxpx) ) ∑
ω

Ix(ω, 1, 0, 1, 1)Iy(ω, 0, 1, 0, 0)Iz(ω, 0, 0, 0, 0)

(pxpy|pxpx) ) ∑
ω

Ix(ω, 0, 0, 1, 1)Iy(ω, 1, 1, 0, 0)Iz(ω, 0, 0, 0, 0)

(pypy|pxpx) ) ∑
ω

Ix(ω, 0, 0, 1, 1)Iy(ω, 0, 1, 0, 0)Iz(ω, 1, 0, 0, 0)

3N(La + 2
2 )(Lb + 2

2 )(Lc + 2
2 )(Ld + 2

2 )
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as general-purpose processors. The current CUDA device
architecture consists of a scalable array of streaming
multiprocessors (SM), see Figure 1. Each SM consists of
eight scalar processors (SP), a multithreaded instruction unit,
on-chip shared memory, one double precision unit, and two
special purpose transcendental functional units. Under the
CUDA programming model, the GPU is viewed as a highly
multithreaded compute device capable of executing many
threads in parallel. The threads execute a sequence of
instructions in a data parallel fashionssingle-instruction
multiple threads (SIMT).

Computationally demanding code paths of an application
are isolated into functions (kernels in NVIDIA terminology)
that are compiled into the instruction set architecture of the
GPU device. The CUDA programming interface is designed
with a minimal set of extensions to the C/C++ language. A
runtime library provides functions to manage the compute
device, to perform memory operations, and to run the device-
specific functions. The main goal of the programming
environment is to develop scalable and efficient parallel
programs.

A computational kernel is launched from the host and
executed by T threads (T is application specific) on the
device. The threads are hierarchically arranged as a grid of
blocks and as a block of threads, as shown in Figure 2
(adopted from the programmers manual).17 Each thread
within a thread block has a unique set of (x, y, and z) indices
that allow three-dimensional (3-D) data to be mapped onto

a thread block. Each thread block has unique x and y
coordinates, which map all the thread blocks onto a 2-D grid
of blocks.

The logical memory space seen by the threads can be
hierarchically arranged based on the data visibility (see
Figure 1). Each thread has access to its local registers on
the processor. Threads in a block can access and share data
via the parallel data cache, called shared memory. The
registers and the shared memory have a low latency and are
limited resources available to the threads. One of the biggest
challenges in designing the kernels lies in optimizing the
per-thread register and the shared memory usage. Each thread
also has access to a private local memory and a global

Figure 1. High-level architecture of a GPU.

Figure 2. Grid of blocks and block of threads (z-dimension
is implied).
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memory space that are both part of the device memory and
have high data access latencies. Apart from these, an
application can also use the read-only constant and the texture
memories that are cached.

Access to the main memory has a high latency, on the
order of hundreds of cycles. To achieve full bandwidth,
accesses to the main memory must be coalesced, meaning
consecutive threads access consecutive memory elements to
achieve full memory bandwidth. Coalescing ensures that
multiple memory requests are being served simultaneously
rather than served sequentially. Although only one thread
block can execute at any given time on a SM, multiple thread
blocks can be actiVe, thereby hiding the memory latency by
overlapping the computations and the communications. An
active block in CUDA terminology is a block that is ready
for execution whenever a SM becomes free, e.g., when the
current executing thread block starts fetching the memory.
The number of active thread blocks is limited by the register
and the shared memory usage.

The execution of a thread block is further batched into a
series of warps that are consecutively arranged based on the
thread number in batches of 32. To maximize the parallel
performance, all threads in a warp must execute an identical
GPU instruction, otherwise the warp is said to diverge, and
the differing instructions are executed sequentially.

4. CUDA Rys Quadrature Implementation

4.1. Related Work. Ufimtsev and Martinez18 evaluated the
ERIs of s and p functions on GPUs in single precision using
the MD algorithm. They later developed an entire Hartree-Fock
code that runs on a GPU and showed improved performance19

over the CPU code. Yasuda20 implemented the Rys quadrature
on a GPU in enhanced single precision for s and p integrals
(i.e., some double precision computations were emulated in the
software but still using single precision hardware). A new
interpolation formula was proposed for the roots and the
weights, and an error analysis for the quadrature was given.
Some work has also been done to implement ERI algorithms
on IBM CELL and FPGAs,21 however only for the rather
limited case of (ss|ss) ERIs.

To our knowledge there has not been a reported imple-
mentation of an ERI algorithm for d or higher angular
momentum functions on GPUs or on other accelerators. The
main difficulty seems to have been the limited amount of
fast memory and the amount of code that must be generated
for many cases involving higher angular momentum func-
tions. This is the focus of the present work.

4.2. Implementation Considerations. Since the ERI
computations are memory bound, the main consideration in
designing the CUDA Rys quadrature is to optimize the
memory access patterns and the data reuse. The 2-D integrals
are reused multiple times to construct different ERIs and
should, therefore, be loaded into shared memory. This also
implies that an ERI block should be mapped onto a single
thread block, as shared memory access and synchronization
is limited to thread block boundaries. The ERI blocks are
mapped onto the grid so that each thread block computes

one ERI block. For the purposes of discussion, block is used
to refer to both thread and ERI blocks.

Device memory loads and stores should be coalesced to
parallelize memory accesses with high latencies. Multiple
thread blocks should be active on a single SM in order to
hide memory latency by overlapping computation and
communication. In order to have multiple active thread
blocks, the shared memory and the registers should be used
sparingly. To illustrate hardware constraints, if a GPU has
only 1638 4-byte registers and 16 KB of shared memory,
then a kernel using 32 registers per thread and 2688 bytes
of shared memory per thread block has a limit of 512 threads
imposed by the register use and 6 active thread blocks per
SM due to shared memory availability.

Clearly, for the larger ERI classes, the entire set of 2-D
integrals cannot be kept in shared memory all at once but must
be loaded from the device memory as needed. The iteration
through the ERIs should be done so as to minimize the number
of device memory loads. If the ERIs are only computed on the
GPU but are not contracted right away, e.g., to form the Fock
operator, then there is no reuse of the final ERIs.

4.3. Implementation Design. The current CUDA capable
hardware imposes a limit of 512 or 768 maximum threads
per block, depending on the particular GPU device. Consider
the (dd|dd) ERI block case. The size of the entire block is
64 ) 1296 elements, exceeding the maximum number of
threads. However, it is possible to map multiple elements to
a single thread, e.g., by mapping i, j, and k indices,
corresponding to the first three shells of the block, to a unique
thread and iterating over the last index l. Since the thread
block is 3-D, the mapping of the i, j, and k shell index to a
thread is natural. Algorithm 2 outlines the general idea. The
algorithm is in Python-like pseudo code, with ## signifying
comments, and the indices and loops over the roots, N, are
implied.

Algorithm 2: CUDA Rys Quadrature, i, j, and k Mapping
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In terms of shared memory, i, j, and k mapping requires
all the 2-D integrals of a specific l index. For the (dd|dd)
ERI case, this means that the shared memory overhead for
each l iteration is N(La + 1)(Lb + 1)(Lc + 1) ) 5(33) ) 135
elements per 2-D integral block. Though three 2-D integral
blocks are needed per iteration, it is most likely that one of
the previous Cartesian indices will stay the same. This means
that the corresponding 2-D integral is already in the shared
memory, reducing the memory communication by a third.
For example, the construction of a d shell is outlined below.
The three rows correspond to Ix, Iy, and Iz Cartesian indices.
The indices marked with an asterisk represent load opera-
tions. Though there are a total of 18 indices, only 13 indices
must be loaded if the shell is arranged to minimize loads.

The above order may differ from the requirements of an
application, however, restoring the desired ordering is trivial.
In the (ff |ff) ERI case, mapping three indices to threads is
not possible, as it requires 1000 threads. However, we can
map the i and j indices and loop over the k and l indices in
a similar fashion, as outlined in Algorithm 3.

Algorithm 3: CUDA Rys Quadrature, i and j Mapping

The shared memory requirement for an (ff |ff) ERI is
N(La + 1)(Lb + 1) ) 7(42) ) 112 elements for each 2-D
memory block. The memory access can likewise be reduced
by a third, if the shells are reordered. Blocking of klz indices
was used, as outlined in Table 1 for a |ff) case. In the
example, the number of memory loads is 216. The first row
of Table 1 shows the data access pattern for x, y, and z 2-D
integrals when the canonical ERI ordering is used. There
are some block patterns that are visible in the x and z
dimensions. But these blocking patterns are not optimal from
the perspective of data reuse because the blocks are small.
To improve the overall memory performance, the integrals
can be reordered such that one of the 2-D integrals has a
well-defined block structure, for example, the z integral.

4.4. Template-based Code Generation. If the cases
described above are implemented in CUDA directly, then
the register usage is high. To reduce the register use, the
loops over the outer indices can be unrolled explicitly for
each possible case, e.g. for |pp), |pd), |pf), etc. Programming
all of the cases by hand is prohibitive, as it requires a large
amount of code. However, using a template-based approach,
all of the cases can be generated automatically from a single
template.

There exists a number of template engines, e.g., the
venerable m4 macro processor,22 but the Python-based21

Cheetah template engine24 is chosen for this project. In
Cheetah templates, the Python statements that control the
code generation are embedded directly in the source code,
similar to the manner in which traditional C preprocessor
directives are used. Other benefits of using Cheetah are the
ability to write complex support modules in Python and to
reuse existing Python utilities.

Since generating code from a template is straightforward,
the root summation loops were also explicitly unrolled. This
was done to allocate registers to store a single set of 2-D
integrals in registers rather than in shared memory. The
benefit of doing so is that the use of shared memory and the
bank conflicts are reduced. All of the shared memory is
arranged in banks; the number of banks for the current
hardware is 16, i.e., half-warp size. A bank conflict arises
when multiple threads in a half-warp access different memory
locations mapped onto the same bank, simultaneously
resulting in the serialization of threads in the half-warp.17

The bank conflicts occur often if the leading dimension (in
this case, the number of roots, N) is a divisor of the bank
size; accesses to an array with a leading dimension of 8
causes 8 bank conflicts. For other cases, the bank conflicts
occur much less often; a leading dimension of 7 causes only
one bank conflict. The bank conflicts lead to warp serializa-
tion, where the warp threads execute the instructions
sequentially rather than executing the same instruction in a
single instruction multiple thread (SIMT) or a lock-step
fashion. Warp serialization is highly undesirable, and bank

Ix

Iy

Iz
(0*
2*
0*

) f (0
0*
2*

) f (0
1*
1*

) f (1*
1
0*

) f (1
0*
1*

) f (2*
0
0*

)

Table 1. Index Ordering for |ff) Case
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conflicts are a serious performance issue, degrading the
overall performance by about 25%. The bank conflicts are
especially pronounced when the number of roots is even.

5. Results and Discussion

The performance of the implementation is evaluated on the
NVIDIA GeForce GTX 275 and the Tesla T10 processors.
The GTX 275 is a regular graphics card with a double
precision support, an 1 GB of device memory, and a clock
speed of 1.1 GHz. The Tesla T10 is a dedicated HPC
accelerator with double precision (DP) support, 4 GB of
device memory, and a clock speed of 1.35 GHz. The Tesla
processor is capable of delivering approximately 20 GFLOPS
on the level 2 BLAS double precision general matrix vector
(DGEMV) routine and 70 GFLOPS on the level 3 BLAS
double precision general matrix multiply (DGEMM) routine.
The GTX 275 is approximately 25% slower than the Tesla.

The basis set used was purely synthetic with exponents
of 1.5, which is representative of the values for higher angular
momentum functions. The quoted timings do not include the
GPU-CPU communication time.

The performance of the quadrature was evaluated by
counting the total number of quadrature operations given by

where nblock is the number of ERI/thread blocks. The above
metric also accounts for multiplication by a constant factor
that incorporates contraction coefficients and normalization
factors. For example, the (ff|ff) block requires a 21(104) )
210000 flop count. The total flop count is divided by the
execution time on the GPU to obtain the GFLOPS metric.
The execution time does not include the memory transfer
overheads between the host and the GPU. The transfer time
latency of the ERIs from GPU to host is several times longer
than that of the actual execution time.

The performance results on the GTX 275 and Tesla boards
are presented in Tables 2 and 3, respectively. As can be seen
from these tables, the performance depends to a large degree
on the ERI class. The larger ERI classes (i.e., higher
collective angular momentum) perform better on average than
the smaller classes. The computations with an odd number
of roots, cf., eq 13, e.g., (gg|dd), (ff|ff), etc., tend to have
fewer bank conflicts than those with an even number of roots,
e.g., (gg|ff), as discussed in Section 4. Consequently, the
performance of ERI classes with an odd number of roots is
higher, as much as 25% in an extreme case. The difference
between the single and double precision performance is
roughly a factor of 2, as previously predicted by Ufimtsev
and Martinez.25 One would expect this difference to favor
single precision even more strongly, since the number of
SP units is eight times the number of DP units. This suggests
that the computations are memory bound rather than compute
bound. The performance depends heavily on the mapping
used, cf., Section 4.3. As one would expect, the “larger” i,
j, and k mapping performs better than the i and j mapping
for cases with lower i and j angular momenta (such as the
(pp|ff) ERI block), since the shared memory reuse and

parallelism is much higher. The difference between the two
mappings for the same ERI class can be as high as a factor
of 5. However, when the i and j angular momenta are higher
(such as the (ff |pp) ERI block), the i and j mapping is only
slightly outperformed by the i, j, and k mapping. Interest-
ingly, comparing the best performance for the (pp|ff) and
(ff |pp) ERI block gives very similar performance. One could
use ERI index symmetry such as (ij|kl) ) (kl|ij) in these cases
to ensure that the first two indices are always lower, so the
i, j, and k mapping algorithm could always be used when
the memory is available.

The difference in performance between the generic GTX
GPU and the Tesla T10, presented in Table 4, is 25-30%
across the single and double precision performance. This is

flops ) nblock3N(La + 2
2 )(Lb + 2

2 )(Lc + 2
2 )(Ld + 2

2 )

Table 2. CUDA Rys Quadrature Performance on GeForce
GTX 275

GFLOPSSP
c GFLOPSDP

d

ERI blocksa flop countb mapijk
e mapij

e mapijk
e mapij

e

(gg|gg) 2000 2733750000 n/a 45.23 n/a 22.55
(gg|ff) 4000 2160000000 n/a 34.42 n/a 15.32
(ff |gg) 4000 2160000000 n/a 30.91 n/a 14.11
(gg|dd) 10000 1701000000 n/a 43.08 n/a 21.05
(dd|gg) 10000 1701000000 n/a 23.63 n/a 16.35
(gg|pp) 40000 1458000000 n/a 36.53 n/a 17.08
(pp|gg) 40000 1458000000 34.23 6.93 18.20 5.38
(ff |ff) 10000 2100000000 n/a 40.43 n/a 20.11
(ff |dd) 20000 1296000000 n/a 37.54 n/a 18.29
(dd |ff) 20000 1296000000 37.69 23.32 16.53 15.04
(ff |pp) 80000 1080000000 27.43 31.46 15.23 17.05
(pp|ff) 80000 1080000000 32.23 6.21 17.45 4.84
(dd |dd) 60000 1166400000 31.10 20.17 16.38 13.67
(dd |pp) 200000 777600000 19.71 20.25 11.54 11.70
(pp|dd) 200000 777600000 20.18 5.16 11.11 3.85
(pp|pp) 750000 546750000 11.93 4.79 8.43 3.76

a Blocks are the number of ERI blocks evaluated. b Flop count
is the total floating point operations. c GFLOPSSP is the single
precision performance. d GFLOPSDP is the double precision
performance. e Map is the ERI to thread mapping; the best
performing mapping is shown in bold.

Table 3. CUDA Rys Quadrature Performance on Tesla
GPU

GFLOPSSP
c GFLOPSDP

d

ERI blocksa flop countb mapijk
e mapij

e mapijk
e mapij

e

(gg|gg) 2000 2733750000 n/a 55.97 n/a 27.34
(gg|ff) 4000 2160000000 n/a 42.07 n/a 18.67
(ff |gg) 4000 2160000000 n/a 37.70 n/a 17.19
(gg|dd) 10000 1701000000 n/a 53.39 n/a 25.34
(dd |gg) 10000 1701000000 n/a 31.71 n/a 19.87
(gg|pp) 40000 1458000000 n/a 45.15 n/a 20.65
(pp|gg) 40000 1458000000 42.42 7.78 22.09 6.19
(ff |ff) 10000 2100000000 n/a 50.19 n/a 24.46
(ff |dd) 20000 1296000000 n/a 46.15 n/a 22.44
(dd |ff) 20000 1296000000 45.71 28.46 19.71 18.29
(ff |pp) 80000 1080000000 33.86 39.38 18.54 20.10
(pp|ff) 80000 1080000000 40.33 7.02 21.46 5.63
(dd |dd) 60000 1166400000 38.74 23.38 19.78 15.62
(dd |pp) 200000 777600000 24.67 25.00 14.20 14.33
(pp|dd) 200000 777600000 25.22 7.67 13.73 4.33
(pp|pp) 750000 546750000 14.17 5.37 10.00 4.30

a Blocks are the number of ERI blocks evaluated. b Flop count
is the total floating point operations. c GFLOPSSP is the single
precision performance. d GFLOPSDP is the double precision
performance. e Map is the ERI to thread mapping; the best
performing mapping is shown in bold.
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consistent with the higher clock speed of the Tesla compute
device. In terms of registers and shared memory, Tesla does
not have an advantage over the generic GTX GPU. This is
reflected in the same mapping on both GPUs having the best
performance for a particular ERI case. The performance of
the Rys quadrature is on par with the performance of the
(S/G) DGEMV routines in the CUBLAS library. In terms
of the peak theoretical performance, it is possible to achieve
approximately 30% in the best case. The poor-performing
lower angular momentum ERI classes utilize the hardware
at 10% efficiency in the worst case. However, the two
mapping implementations (ijk and ij) are not specifically
optimized for these ERI classes.

Previous work in this field focused on s and p integrals,
which produce small, highly contracted integral blocks that
can be performed entirely in shared memory and registers.
Therefore, the ratio of computation to memory traffic is high.
Moreover, on Telsa and older architectures, there is a ratio
of 8:1 for single vs double precision floating point units. For
higher angular momentum integrals, computation cannot be
done entirely in shared memory and registers, so partial
values must be read and stored in global memory. This helps
to explain the difference in performance between this work
and previous work.

The difference in performance between the GPU and the
CPU, which is also presented in Table 4, is very promising.
The Rys quadrature used in GAMESS, which was also used
as a benchmark by Ufimtsev and Martinez, is a legacy
FORTRAN implementation that underperforms on modern
CPUs. As can be seen from Table 4, the original Rys
quadrature implementation is only 15% efficient at best on
a modern 8 GFLOP processor. In order to achieve good
performance on both CPU and GPU, the algorithm must be
implemented in a way suitable for instruction level parallelism.

6. Conclusions and Future Work

This work has demonstrated the ability to obtain comparable
or better performance to that of an optimized DGEMV
routine for a Rys quadrature implementation of two-electron

integral computationssa core computation for electronic
structure algorithms. Since the focus of this work is on higher
angular momentum integrals, the use of the double precision
units on the GPU is also highlighted. In order to achieve the
best performance, memory access patterns and data reuse
have been optimized. The code implementation has been
greatly facilitated by using the template-based code generator.
Not only does it allow for fast prototyping of various
algorithms, it also provides a developer-friendly framework
for the developer to focus on the main issues associated with
the algorithm and allows the details associated with the many
angular momenta and single vs double precision cases to be
handled automatically. The use of templates could eventually
be taken one step further, so that the generated code could
be optimized further, depending on the GPU architecture.
However, this may prove to be impractical as the NVIDIA
compiler is refined to take advantage of different GPU
architectures.

Some improvements are still possible with respect to data
reuse, but the gains are unlikely to be high. The improve-
ments would be due to more aggressive memory caching
and memory access pattern reordering. The greatest overall
improvement will come from reusing the ERI blocks as soon
as they are formed on the GPU, e.g., to construct the Fock
matrix. The 2-D Fock matrix is formed from 4-D ERI blocks;
so, if computed on the GPU device, then the memory transfer
would just be that of the Fock matrix (of order M2 where M
is the number of basis functions) rather than those of all the
ERI blocks. Therefore, the computation of the Fock matrix
on the GPU increases the flop count and reduces the amount
of memory to be transferred to the host, resulting in overall
greater performance.17 The direct use of the ERIs on the
GPU device is necessary, as the memory transfer of the raw
ERIs between GPU and host is several times longer than
the computation itself. The amount of data that must be
transferred from the host to the GPU to start the computation
is small; moreover, since it is small, it can be transferred
asynchronously while the computation is running.

Table 4. GTX 275, Tesla, and GAMESS Performance Comparison

GFLOPSSP
c GFLOPSDP

d GLFOPSe

ERI blocksa flop countb GTX 275 Tesla GTX 275 Tesla GAMESS

(gg|gg) 2000 2733750000 45.23 55.97 22.55 27.34 1.36
(gg|ff) 4000 2160000000 34.42 42.07 15.32 18.67 1.29
(ff |gg) 4000 2160000000 30.91 37.70 14.11 17.19 1.32
(gg|dd) 10000 1701000000 43.08 53.39 21.05 25.34 1.09
(dd |gg) 10000 1701000000 23.63 24.03 16.35 29.88 1.21
(gg|pp) 40000 1458000000 36.53 45.15 17.08 20.65 0.82
(pp|gg) 40000 1458000000 34.23 42.42 18.20 22.09 0.98
(ff |ff) 10000 2100000000 40.43 50.19 20.11 24.46 1.19
(ff |dd) 20000 1296000000 37.54 46.15 18.29 22.44 0.94
(dd |ff) 20000 1296000000 37.69 45.71 16.53 19.71 1.03
(ff |pp) 80000 1080000000 31.46 39.38 17.05 20.10 0.75
(pp|ff) 80000 1080000000 32.23 40.33 17.45 21.46 0.78
(dd |dd) 60000 1166400000 31.10 38.74 16.38 19.78 0.79
(dd |pp) 200000 777600000 20.25 25.00 11.70 14.33 0.63
(pp|dd) 200000 777600000 20.18 25.22 11.11 13.73 0.66
(pp|pp) 750000 546750000 11.93 14.17 8.43 10.00 0.48

a Blocks are the number of ERI blocks evaluated. b Flop count is the total floating point operations. c GFLOPSSP is the single precision
performance. d GFLOPSDP is the double precision performance. e Map is the ERI to thread mapping; the best performing mapping is shown
in bold.
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The contracted ERIs and the ERIs of small angular
momentum functions have not been addressed directly in
this work. The implementation of the Rys quadrature roots
recurrence and transfer relationships is also not discussed
explicitly but will be presented in a future publication. The
accuracy and utility of single precision vs double precision
computations will be considered in future work. In addition,
future work will include the incorporation of the ERIs into
modern algorithms for full electronic structure theory
calculations.
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Abstract: The electronic structure of the three representative isomers of the ionized uracil dimers
is characterized by high-level electronic structure calculations. Noncovalent interactions between
the fragments lower the vertical ionization energies by 0.13-0.35 eV, the largest drop being
observed for the stacked and the T-shaped isomers. The initial hole is delocalized in the stacked
and the H-bonded isomers and is localized in the T-shaped one. The ionization induces significant
structural relaxation and increases the binding energies. The stacked dimer cation relaxes to
the symmetric structure bound by 22.7 kcal/mol. The T-shaped dimer cation has a binding energy
of 25.1 kcal/mol. Thus, the relative order of the stacked and T-shaped isomers is reversed upon
ionization. Finally, the H-bonded isomer, which relaxes to the proton-transferred structure, is
bound by 37.0 kcal/mol. The electronic spectra of all three isomers characterized at the vertical
and the relaxed geometries show different patterns, which may be exploited in spectroscopic
probing of ionization-induced dynamics in these species.

1. Introduction

The ionization-induced changes in DNA, which are respon-
sible for oxidative and radiative damage of the genetic
material, involve complicated coupled electron-nuclear
dynamics.1–6 The hole migration is facilitated by thermal
fluctuations, which affect the ionization energies (IEs) of the
individual bases, and is coupled to proton transfer. Under-
standing how the local environment modulates the electronic
properties of nucleobases is the first step toward developing
a mechanistic picture of these processes.

Gas-phase studies of small nucleobase clusters reveal the
intrinsic properties of these species and allow one to quantify
different effects present in realistic environments.7 Nucleo-
base dimers are convenient model systems on which the
effects of different types of noncovalent interactions (i.e.,
π-stacking, H-bonding, and electrostatics) on the electronic
structure and ionization-induced dynamics can be studied by
combination of state-of-the art experimental techniques and
high-level theoretical methods. While the IEs of the nucleic
acid bases in the gas phase have been characterized both

experimentally8–14 and computationally,15–18 much less is
known quantitatively about the effects of different interac-
tions on the IEs in realistic environments.

Our recent combined theoretical and experimental
study19 of the homo- and heterodimers of adenine and
thymine demonstrated that noncovalent interactions lower
the vertical IEs by as much as 0.4 eV and that the effect
is larger for thymine than for adenine. Thus, these
interactions reduce the differences between the IEs of the
purines and pyrimidines and promote hole migration. The
magnitude and origin of the effect are different for
different isomers. The largest drop in IEs was observed
in the symmetric stacked and nonsymmetric H-bonded
dimers. In the former case, the IE is lowered due to the
hole delocalization over the two fragments and the change
depends on the overlap between the fragments’ molecular
orbitals (MOs). In the latter case, the overlap does not
play an important role: the hole, which is localized on
one of the fragments, is stabilized by the electrostatic
interactions with the “neutral” fragment. The magnitude
of the IE drop is determined by the magnitude and relative
orientation of the dipole moment of the spectator fragment.
The changes of the IEs due to H-bonding in the symmetric
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H-bonded dimers were found to be smaller.19 A similar
trend was observed for H-bonded cytosine dimers.20

Similar effects of π-stacking and H-bonding on the vertical
IEs of the uracil dimer have been characterized in our
previous work using high-level electronic structure calcula-
tions.21 Earlier studies of the effects of π-stacking on the
IEs of nucleobases include Hartree-Fock and DFT estimates
using the Koopmans theorem22–26 and MP2 (Møller-Plesset
perturbation theory) and CASPT2 (perturbatively corrected
complete active space self-consistent field) calculations.15,17,27

In agreement with simple MO considerations, ionization
changes the bonding in the dimers, resulting in significant
structural relaxation. Ionization increases the binding energy,
yields tighter structures, and changes the relative stability
of different isomers. Moreover, in H-bonded dimers it may
initiate barrierless (or almost barrierless) proton transfer,
which is believed to be coupled to hole hopping.4–6,19,22,28–30

While the ionization-induced dynamics may be very complex
and its modeling requires full-dimensional coupled nuclear
and electronic dynamics calculations (e.g., as in the recent
study of uracil),18 the key features of these processes can be
learned from analyzing differences in the electronic states
and structural parameters at the initial and the relaxed
geometries (i.e., equilibrium structures of the neutral and the
cation, respectively). The focus of this work is on the
ionization-induced changes in the structures, binding ener-
gies, and electronic states of representative isomers of the
uracil dimer. We also discuss spectroscopic signatures of the
relaxation, which may be exploited in time-resolved
experiments.

An interesting feature of the noncovalent dimers is the
appearance of strong so-called charge-resonance (CR)
bands31 in their electronic spectra upon ionization.32–34 These
bands correspond to the transitions between the dimer
molecular orbitals (DMOs) that are in-phase and out-of-phase
combinations of the fragment molecular orbitals (FMOs) and
are unique to the ionized dimers. Thus, they can be used as
a spectroscopic probe of the ionized dimer formation.
Moreover, their energies and intensities depend strongly on
the overlap of FMOs and are, therefore, very sensitive to
the relative orientation of and the distance between the
fragments. Thus, these bands can be exploited for obtaining
structural information, including ionization-induced dynam-
ics. Other electronic transitions, which correlate with the
transitions in the monomers and are called local excitations
(LEs), can provide additional information. Recently, we
characterized the electronic spectra in several benzene dimer
isomers,35,36 water dimers,37,38 and two isomers of the uracil
dimer.21 While the CR bands are most intense in the
symmetric dimers with favorable orbital overlap (e.g., the
sandwich benzene dimer or stacked uracil dimer), they also
appear in the isomers with nonequivalent fragments and more
localized states (e.g., some water dimers or the T-shaped
benzene dimer) where they acquire partial charge-transfer
character.

Nucleobase dimers form numerous isomers.39–42 We
consider three representative isomers of the uracil dimer:
H-bonded, π-stacked, and T-shaped isomers. On the neutral
potential energy surface (PES), the H-bonded isomer is the

lowest in energy, followed by the π-stacked and the T-shaped
isomers. As demonstrated below, ionization changes the
binding energies and relative ordering of the isomers. On
the cation PES, the lowest energy structure corresponds to
the proton-transferred H-bonded dimer, followed by the
T-shaped and stacked dimers. The symmetric H-bonded
cation does not have a stable minimum and undergoes
barrierless proton transfer. We analyze the differences
between the isomers as well as their spectroscopic signatures
by using qualitative molecular orbital and electrostatic
considerations, i.e., within the dimer molecular orbital-linear
combination of fragment molecular orbitals (DMO-LCFMO)
model.35,37

The structure of the paper is as follows. In section 2, we
discuss the theoretical methods and computational details.
In section 3 we discuss the electronic structure of the ionized
dimers (section 3.1) and their equilibrium geometries (section
3.2), energetics (section 3.3), and electronic spectroscopy
(section 3.4). Our concluding remarks are given in section
4. The benchmark results for density functional theory (DFT)
with long-range corrected functionals augmented by empiri-
cal dispersion terms are presented in the Appendix.

2. Theoretical Methods and Computational
Details

Electronic structure calculations of dimer cations are chal-
lenging owing to the open-shell character of these species.
The wave function methods that are based on open-shell
doublet references are often plagued by symmetry breaking
and spin contamination of the underlying open-shell
Hartree-Fock (HF) reference.43,44 DFT calculations suffer
from self-interaction error,45,46 which results in artificial
charge delocalization.

Within the wave function formalism, these systems are
best described by the equation-of-motion coupled-cluster
method for ionization potentials, EOM-IP-CCSD or simply
IP-CCSD,36,47–50 and by its less expensive configuration
interaction approximation, IP-CISD.51 EOM-IP-CCSD and
IP-CISD describe problematic doublet wave functions as
ionized states derived from a well-behaved closed-shell wave
function; i.e., the target open-shell wave functions are
generated by a Koopmans-like excitation operator R acting
on the reference wave function:

where Ψ0(N) is the wave function of the N-electron neutral
system and R consists of 1h and 2h1p (one hole and two
hole one particle, respectively) operators generating (N -
1)-electron determinants from the N-electron reference. In
the more accurate IP-CCSD method, Ψ0 is a correlated
CCSD wave function, whereas Ψ0 in IP-CISD is just a single
Slater determinant. The amplitudes of R are found by
diagonalization of the similarity-transformed (IP-CCSD) or
bare (IP-CISD) Hamiltonian.

In the DFT methods, self-interaction error can be mitigated
by including long-range Hartree-Fock exchange.52–54 We
employed the ωB97X-D functional,55 which also includes
empirical dispersion terms.56 The empirical dispersion terms

ΨEOM-IP(N-1) ) R
∧

Ψ0(N) (1)
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partially mitigate the effects of basis set superposition error
(BSSE) when used with an adequate basis set.

Throughout this work, we use the following notations for
the isomers: HU2, SU2, and TU2 refer to the H-bonded,
stacked, and T-shaped isomers, respectively. For the hydrogen-
bonded cations, we distinguish between the symmetric
structure, which is a transition state (TS), and a proton-
transferred one (PT) corresponding to the true minimum. The
definitions of the inter- and intrafragment structural param-
eters for the stacked, T-shaped, and H-bonded isomers are
given in Figure 1. The values of these parameters in the
neutral and ionized systems are summarized in Tables 7 and

8. The changes in the structures induced by ionization are
visualized in Figure 2.

We used EOM-IP-CCSD in calculations of the IEs,
electronic spectra, and dissociation energies of the dimers,
whereas for geometry optimizations and frequencies we
employed IP-CISD and ωB97X-D. IP-CISD with the
6-31(+)G* basis57 was used to optimize the SU2

+ and HU2
+

(TS) structures. The TU2
+ and HU2

+ (PT) structures were
optimized with ωB97X-D and the 6-311(+)G** basis set.58

For both the IP-CISD and DFT-D optimizations, tight
convergence criteria were enforced: the gradient and energy
tolerance were set to 3 × 10-5 and 1.2 × 10-4, respectively,

Figure 1. Definitions of the intra- and interfragment geometric parameters for uracil dimer isomers.

Figure 2. Geometries of the cations versus the respective neutrals for the three uracil dimer isomers.
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and the maximum energy change was set to 1 × 10-7. To
ensure the accuracy of the DFT-D optimizations, we
employed the extrafine EML(99,590) grid.

We use the best available geometries for calculations of
energy differences. The choice of the geometries is described
below. In calculations of vertical properties (i.e., at the
equilibrium geometries of the neutral dimers) we used the
geometries from the S22 set of Hobza and co-workers.59 The
geometry of the T-shaped isomer was optimized with DFT-D
as described above. To assess the possible effect of the BSSE
on the structures, our study of adenine and thymine dimers19

compared the B3LYP-D/6-31+G(d,p)-optimized structure of
the stacked AT dimer versus that from the S22 set.59 We
found that the interfragment distance differs from the BSSE-
corrected RI-MP2/TZVPP value59 by only 0.076 Å. The
increase of the basis set from 6-31G(d,p) to 6-311++G(2df,2pd)
results in a 0.004 Å increase in interfragment separation. Thus,
we do not expect significant BSSE effects on our optimized
structures.

In the monomer calculations, we used the structures of
the uracil cation and the neutral optimized by IP-CISD/6-
31(+)G* and RI-MP2/cc-pVTZ, respectively, with the
standard convergence thresholds (the gradient and energy
tolerance were 3 × 10-4 and 1.2 × 10-3, and maximum
energy change was 1 × 10-6). In all optimizations of the
symmetric structures [i.e., all isomers, except for TU2

0, TU2
+,

and HU2
+ (PT)] the symmetry was enforced. For the stacked

dimer cation we carried out an additional DFT-D optimiza-
tion without the C2 symmetry constraint that showed that
the minimum indeed corresponds to the symmetric structure.
In addition, vibrational analysis was performed.

For accurate energy estimates, single-point calculations
were carried out at the geometries obtained as described
above. The IP-CCSD method with the 6-311(+)G** basis
was employed. For benchmark purposes, we also present
ωB97X-D/6-311(+)G**/EML(99,590) estimates calculated
at the respective DFT-D minima. The performance of
different methods is discussed in the Appendix.

While the BSSE corrections can be substantial for weakly
bound systems when compact basis sets are employed,27,59,60

using augmented triple-� bases reduces the BSSE consider-
ably. Moreover, empirical dispersion correction in DFT-D
methods mitigates the BSSE. For example, the counterpoise
correction for the binding energy in the stacked adenine-
thymine dimer at the B3LYP-D/6-311+G(2df) level is only
1.4 kcal/mol.19,61

For the neutral stacked uracil dimer, the ωB97X-D and
CCSD values of De are 10.5 and 11.1 kcal/mol (with the
6-311(+)G(d,p) basis set), in good agreement with the
CCSD(T)/CBS value of 9.7 kcal/mol.62 Thus, the BSSE
effects are relatively small at the ωB97X-D/6-311(+)G(d,p)
level even for the most problematic neutral stacked dimers.
In the ionized systems, which are much more strongly bound,
the effect of BSSE on the binding energy is even smaller.
To quantify this effect, we computed the counterpoise
correction for the stacked uracil dimer cation. The computed
BSSE is 1.3 kcal/mol as estimated at the ωB97X-D level
with the 6-311(+)G(d,p) basis set.

To obtain the standard thermodynamic quantities and the
ZPE corrections, we performed vibrational analysis at the
ωB97X-D/6-311(+)G**/EML(99,590) level for all com-
plexes at the respective reoptimized geometries.

The electronic spectra of the dimer cations were obtained
with IP-CCSD/6-31(+)G* at the cation and neutral geom-
etries described above.

All open-shell DFT-D calculations employed the spin-
unrestricted references. In these calculations, the spin
contamination of the doublet Kohn-Sham determinant was
low with typical 〈S2〉 values of 0.76-0.78.

All electrons were correlated in all the optimizations; in
the single-point energy and spectral calculations the core
electrons were frozen unless otherwise stated. The optimized
geometries, corresponding reference energies, and frequen-
cies are provided in the Supporting Information.

3. Results and Discussion

3.1. Molecular Orbital Framework. The character of the
electronic states and the bonding patterns in ionized nonco-
valent dimers depend strongly on the relative orientation of
the fragments.19,21,35–37 Orbital overlap and electrostatic
interactions are the most important factors determining the
degree of hole delocalization, changes in bond strength due
to ionization, and subsequent nuclear dynamics. When the
two fragments are equivalent by symmetry, as in sandwich
benzene dimers35 or stacked C2 nuclear base dimers,19,21 the
dimer states are derived from in-phase (bonding) and out-
of-phase (antibonding) combination of the fragments MOs,
and the initial hole is equally delocalized between the two
fragments. The changes in IE due to dimerization depend
on the orbital overlap; e.g., larger changes are observed for
the states derived from ionizations of π orbitals.19,21,35

Ionizations from antibonding orbitals increase the formal
interfragment bond order and produce more tightly bound
structures, whereas ionizations from the bonding orbitals
result in dissociative states.

The orbital picture, changes in the vertical IEs, and initial
hole delocalization are similar in symmetric hydrogen-bonded
dimers; however, the ionization-induced dynamics is more
complex and involves proton transfer.19,20 The changes in
the vertical IEs are smaller for most of the states due to a
less favorable overlap. In dimers with nonequivalent frag-
ments, the MOs (and, consequently, the initial hole) become
more localized; however, changes in the IEs and wave
functions can also be explained by overlap considerations
within the DMO-LCFMO framework.36,37 Finally, in non-
symmetric H-bonded dimers electrostatic interactions become
more important than orbital overlap. For example, we
observed large changes (0.4-0.7 eV) in the IEs and binding
energies in some nonsymmetric hydrogen-bonded dimers of
thymine and cytosine.19,20 In these dimers, the hole localized
on one of the fragments is stabilized by the dipole moment
of the neutral fragment.

The electronic structure of the stacked and symmetric
H-bonded uracil dimers at the respective neutral geometries
was discussed in detail in ref 21. Below we focus on the
T-shaped isomer. The principal difference between the
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T-shaped and the stacked or H-bonded structures is that in
the former the two fragments are not equivalent by symmetry,
which affects the electronic structure. The 10 lowest ionized
states of the T-shaped uracil dimer and the corresponding
MOs are presented in Figure 3. As in the stacked and
H-bonded systems, the dimer MOs are formed from the MOs
of the fragments, and the ionized states of the dimer correlate
well with the states of the monomer (i.e., no mixing of the
MOs of different character is observed). For example, the
two highest lying MOs are the linear combinations of the πCC

MOs of the fragments. However, the MOs of the T-shaped
dimer are more localized. For example, the lp(O) MO of
the dimer is a localized lp(O) orbital of one of the fragments.
For the four delocalized dimer orbitals [formed by the πCC

and lp(O) + lp(N) fragment orbitals] the distribution of
electron density is also uneven. Owing to a less favorable
overlap between the fragment MOs, the splitting between
the pairs of ionized states in the T-shaped dimer is smaller.
The largest splitting of 0.14 eV was observed for the dimer
states derived from the π-like lp(O) + lp(N) fragment
orbitals.

Despite less efficient overlap and smaller splittings be-
tween the pairs of states derived from the same FMOs, the
absolute changes in the IEs in the T-shaped isomer are similar
to those in the stacked dimer. For example, the lowest IE of
this isomer is 9.13 eV. This value is red-shifted by 0.35,
0.22, and 0.01 eV relative to the first IE of the monomer
and symmetric H-bonded and π-stacked dimers, respectively.
This is similar to large changes in the IEs observed in the
nonsymmetric H-bonded dimers of thymine and cytosine,
where lowering of the IE was due to electrostatic stabilization
of the localized hole by the dipole moment of the “neutral”
fragment. The dipole moment of uracil is 4.19 D, which is
comparable to the dipole moment of thymine (4.11 D).

3.2. Ionization-Induced Structural Changes: Equilib-
rium Geometries of the Uracil Dimer Cations. Ionization
induces significant structural changes in the dimers, as can
be seen from Figure 2. In the analysis below, we distinguish
between the changes in the structures of the fragments (and
compare those to ionization-induced changes in the mono-
mer) and the interfragment relaxation. The definitions of the
parameters are given in Figure 1, and their values are

Figure 3. Ten lowest ionized states of the T-shaped uracil dimer at the neutral geometry calculated with IP-CCSD/6-311(+)G**.

Table 1. Values of the Optimized Structural Parameters (Å, deg) of the Fragments in the Stacked, H-Bonded, H-Transferred
H-Bonded, and T-Shaped Uracil Dimer Cationsa

param SU2
+ HU2

+ (TS) HU2
+ (PT), F1 HU2

+ (PT), F2 TU2
+, F1 TU2

+, F2 U+

C4-C5 1.461, +0.010 1.461, +0.011 1.461, +0.011 1.458, +0.008 1.431, -0.026 1.475, +0.024 1.457, +0.011
C5-C6 1.367, +0.018 1.352, +0.002 1.407, +0.057 1.337, -0.013 1.353, +0.011 1.392, +0.050 1.386, +0.043
C6-N1 1.330, -0.038 1.352, -0.017 1.310, -0.059 1.391, +0.022 1.357, -0.012 1.324, -0.045 1.316, -0.049
N1-C2 1.405, +0.023 1.379, +0.012 1.411, +0.044 1.332, -0.035 1.389, -0.002 1.429, +0.044 1.433, +0.053
C2-N3 1.368, -0.014 1.349, -0.022 1.363, -0.008 1.331, -0.040 1.401, +0.023 1.377, -0.003 1.357, -0.017
N3-C4 1.384, -0.017 1.399, -0.008 1.400, -0.007 1.438, +0.031 1.365, -0.032 1.384, -0.007 1.387, -0.010
C4-O2 1.198, -0.024 1.190, -0.028 1.204, -0.014 1.194, -0.024 1.257, +0.041 1.206, -0.014 1.195, -0.020
C2-O1 1.182, -0.034 1.208, -0.023 1.216, -0.015 1.287, +0.056 1.195, -0.012 1.190, -0.017 1.178, -0.034
C4-C5-C6 119.3, -0.5 119.5, -0.1 119.4, -0.2 120.4, +0.7 118.4, -1.1 119.5, +0.3 119.7, -0.1
C5-C6-N1 121.0, -0.9 121.1, -1.5 123.1, +0.6 121.8, -0.7 121.9, +0.2 120.1, -1.8 119.4, -2.6
C6-N1-C2 124.3, +0.8 123.4, +0.9 120.1, -2.4 121.0, -1.5 123.7, +0.2 124.9, +1.4 125.5, +2.0
N1-C2-N3 113.8, +0.8 115.4, +1.1 118.2, +3.9 118.8, +4.5 112.9, -0.6 113.5, +0.4 113.6, +0.8
C2-N3-C4 126.9, -1.2 126.3, -1.8 125.5, -2.6 125.5, -2.6 126.2, -1.1 127.0, -0.4 126.2, -2.4
N3-C4-C5 114.7, +1.3 114.3, +1.4 113.7, +0.8 112.5, -0.4 116.9, +2.5 114.7, +0.2 115.7, +2.4
∑(angles) 719.9, +0.3 720.0, +0.0 719.7, +0.1 720.0, +0.0

a The differences (Å, deg) with respect to the equilibrium geometry of the respective neutral complex are also given, showing the
ionization-induced changes in the geometry. See Figure 1 for the definitions of the parameters.
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summarized in Tables 1 and 2. Only the symmetry-unique
parameters are given.

First, let us consider the effect of ionization on the
intrafragment parameters (see Table 1) and compare the
monomer and the symmetric dimer cation data. The mag-
nitude of relaxation in the monomer is larger than in the
stacked and H-bonded dimers. For instance, the C5-C6 bond
increases by 0.043 Å in the monomer versus 0.018 and 0.002
Å in the stacked and H-bonded dimers, respectively. The
sign of the change in the monomer and the symmetric dimers
is the same for all the parameters, which is consistent with
the DMO-LCFMO picture. The magnitude of the changes
is smaller in the dimers because the hole is delocalized over
the two fragments.

In the nonsymmetric dimers, the fragments are not
equivalent and the orbital picture is more complicated. The
hole is distributed unevenly between the two fragments, such
that the positive charge is localized on one of them.
Comparing the data presented in Table 7 for the H-bonded
proton-transferred and the T-shaped dimer cations with those
of the monomer, we observe that the structural changes of
fragment 1 (F1) of HU2

+ (PT), fragment 2 (F2) of TU2
+,

and the monomer cation are very similar. For instance, the
C5-C6 bond increases by 0.057, 0.050, and 0.043 Å in
fragment 1 of HU2

+ (PT), fragment 2 of TU2
+, and the

monomer cation, respectively. Thus, one of the fragments
in nonsymmetric dimers relaxes similarly to the monomer
cation, while the other adjusts accordingly. This is similar
to what is found in the T-shaped benzene dimer.36

The ionization-induced changes in the interfragment
parameters (given in Table 2) and the MOs (shown in Figure
4) are consistent with the DMO-LCFMO predictions: the
fragments adjust their relative orientation to maximize the
overlap between their HOMOs (πCC).

The change in the MOs is illustrated in Figure 4 depicting
HOMOs at the neutral and the cation geometries. In the
stacked dimer, the two πCC FMOs give rise to efficient
overlap, lending a partial covalent character to the ionized
dimer. In the T-shaped dimer, the changes in the HOMO
are different. Upon relaxation, the hole becomes more
localized on the lower fragment, and the only contribution
to the overlap is due to the oxygen lone pair of the top
fragment pointing toward the πCC MO of the lower fragment.

Table 2. Values of the Interfragment Structural Parameters (Å, deg) of the Stacked, H-Bonded, H-Transferred H-Bonded,
and T-Shaped Uracil Dimer Cationsa

SU2
+ HU2

+ (TS) HU2
+ (PT) TU2

+

C5-C6 3.299 (-0.451) O1-H1 1.828 (+0.053) O1-H1 1.749 (-0.026) H2-O2 2.000 (+0.072)
O2-N1 3.116 (-0.175) O2-H1 1.828 (+0.053) O2-H1 1.018 (-0.757) O2-C5 2.178 (-1.099)

O2-C6 2.701 (-0.950)
R 18.4 (+5.6)
d 3.51 (+0.34)

a The differences (Å, deg) with respect to the equilibrium geometry of the respective neutral complexes are given in parentheses. See
Figure 1 for the definitions of the parameters.

Figure 4. Two highest occupied MOs of the three isomers of the uracil dimer at the neutral and cation geometries.
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The magnitude of the relaxation is quantified by Table 3,
which presents the differences in the total energies between
the relaxed and vertical structures of the dimer cations
calculated by EOM-IP-CCSD/6-311(+)G**. For the T-
shaped, stacked, and H-bonded isomers, ∆ECCSD is -12.71,
-6.48, and -0.64 kcal/mol, respectively. Such a large
relaxation effect in the T-shaped cation is somewhat surpris-
ing, as from Figure 4 the FMOs overlap more efficiently in
the stacked dimer. The reason is the electrostatic interaction
of the lone pair on the oxygen of fragment 1 and the hole
on fragment 2, which stabilizes the T-shaped structure.19

The interfragment parameters presented in Table 2 are
consistent with the MO changes. In the stacked dimer cation,
the fragments slide with respect to each other, so the overlap
of FMOs centered on the C5, C6, N1, and O2 atoms increases
(see Figure 4). The C5-C6 and O2-N1 distances decrease
by 0.451 and 0.175 Å, respectively. Surprisingly, the distance
between the centers-of-masses of the fragments increases by
0.34 Å in the cation with respect to the neutral. This
illustrates that the average geometric parameters in poly-
atomic systems can be misleading.

In the T-shaped cation, the fragments move to minimize
the distance between the lone pair on O2 of the top fragment
and the πCC MO of the bottom fragment. The characteristic
parameters in this case are the O2-C5 and O2-C6 distances,
which decrease by 1.099 and 0.950 Å, respectively.

In the symmetric H-bonded dimer, the structural changes and,
consequently, relaxation energy are small. As one can see from
Figure 4, there are also no significant changes in the MOs upon
relaxation due to unfavorable orbital overlap. Moreover, this
symmetric structure is a transition state, as shown by the
vibrational analysis discussed later. Much larger stabilization
is achieved by a proton transfer, which lowers the total energy
by 15.7 kcal/mol, making the proton-transferred H-bonded
isomer the lowest energy structure on the cation’s PES.

3.3. Binding Energies of the Neutral and Ionized
Uracil Dimers: Potential and Free Energy Calculations.
3.3.1. Potential Energy Profile. Figures 5 and 6 present the

relative ordering and binding energies of the neutral and
ionized uracil dimers calculated by IP-CCSD and ωB97X-D
with the 6-311(+)G** basis. In the neutral, the symmetric
H-bonded uracil dimer is the minimum energy isomer, with
the stacked and T-shaped dimers lying 6.8 and 8.8 kcal/mol
higher in energy. Excluding the proton-transferred dimer, the
lowest energy cation structure is the T-shaped one. The
energy spacing between the T-shaped and the stacked and
H-bonded cations is 4.4 and 8.4 kcal/mol, respectively. Upon
proton transfer the total energy of the H-bonded cation is
lowered by 15.8 kcal/mol, so that it lies 7.4 kcal/mol below
that of the T-shaped cation.

The calculated binding energies for the H-bonded, stacked,
and T-shaped neutral dimers are 17.9, 11.1, and 9.1 kcal/
mol, respectively. The DFT-D and CCSD values are within
1 kcal/mol of each other. The De values for the stacked and

Table 3. Total (Etot, hartrees) and Dissociation (De,
kcal/mol) Energies of the Four Isomers of the Uracil Dimer
in the Neutral and Ionized States Computed by CCSD/
IP-CCSD with 6-311(+)G** a

complex Etot
CCSD De

CCSD ∆ECCSD

U0 -413.882 346
U+ -413.542 383 -5.41
UH+ -414.209 422
(U-H)0 -413.212 558
SU2

0 -827.782 419 11.1
SU2

+ -827.456 874 20.2 -6.48
HU2

0 -827.793 226 17.9
HU2

+ (TS)b -827.450 565 16.2 -0.64
HU2

+ (PT)c -827.475 648 32.0/33.7
TU2

0 -827.779 232 9.1
TU2

+ -827.463 991 24.6 -12.71

a The relevant total energies of the uracil monomer are also
given. The relaxation energies (∆E, kcal/mol) defined as the
difference in the total energies of the cation at the neutral and
relaxed cation geometries are also shown. For HU2

+ (PT)
dissociation energies corresponding to the U0 + U+/(U - H)0 +
UH+ channels are given. b Transition state. c Proton-transferred
structure, UH+ (U-H).

Figure 5. Binding energies (kcal/mol) of the three isomers
of the neutral uracil dimer calculated at two levels of theory:
CCSD/6-311(+)G** (shown in bold) and ωB97X-D/6-311(+)G**/
EML(99,590) (shown in italic).

Figure 6. Binding energies (kcal/mol) of the three isomers
of the uracil dimer cation calculated at two levels of theory:
IP-CCSD/6-311(+)G** (shown in bold) and ωB97X-D/6-
311(+)G**/EML(99,590) (shown in italic). For the proton-
transferred H-bonded uracil dimer cation, the binding energies
corresponding to the two dissociation limits are presented.
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H-bonded isomers are also in good agreement with the recent
CCSD(T)/CBS values of 20.4 and 9.7 kcal/mol from ref 62.

Note that the interaction of the fragments in the neutral
uracil dimers is much stronger than in the benzene dimers,
where the typical interaction energies lie in the range of
1.5-3.0 kcal/mol for all isomers.63,64 The binding energies
increaseuponionization, inagreementwith theDMO-LCFMO
predictions. In the T-shaped, stacked, and symmetric H-
bonded cations the fragments are bound by 24.6, 20.2, and
16.2 kcal/mol, respectively. For comparison, in the benzene
dimer cation the binding energies are 20 and 12 kcal/mol
for the sandwich and T-shaped isomers, respectively.35,36

However, the strongest interaction is observed in the proton-
transferred H-bonded cation, where the binding energy
corresponding to the U0 + U+ dissociation channel is 32.0
kcal/mol [this channel lies 1.8 kcal/mol below an alternative
(U-H)0 + UH+ channel].

In conclusion, when the uracil dimer is ionized, the
interaction between the fragments increases almost 2-fold
for the stacked and H-bonded isomers and more than 2-fold
for the T-shaped isomer. Such a strong increase in interaction
in the T-shaped structure is very different from that of the
benzene dimer cation and can be explained by electrostatic
interactions rather than orbital overlap considerations. The
H-bonded isomer is stabilized by the proton transfer.

3.3.2. Free Energy Profile. It has been argued that the
entropy contribution to the stability can be important in the
nucleobase dimer systems favoring stacked isomers over
H-bonded isomers.65 Thus, we performed vibrational analysis
using ωB97X-D. Moreover, we wanted to quantify the zero-
point energy (ZPE) corrections to the dissociation energies.
The calculated dissociation energies and the standard ther-
modynamic quantities for the dissociation of the neutral and
the ionized dimers are given in Table 4.

Among the neutral uracil dimers, only the H-bonded
isomer is predicted to be stable under the standard conditions
(∆G° ) 5.4 kcal/mol). Standard Gibbs free energies, ∆G°,
of the stacked and T-shaped isomers are -1.0 and -2.6 kcal/
mol, respectively. The data in Table 2 show that the entropy
contribution is similar for all three isomers: ∆S° of dissocia-
tion is 31.5, 38.1, and 29.6 cal/(mol K) for the stacked,
H-bonded, and T-shaped isomers, respectively. However,
more appropriate treatment including anharmonicities may
discriminate between the isomers more. The enthalpy
contribution is different: for the H-bonded uracil dimer the
enthalpy of dissociation is 16.8 kcal/mol, whereas the

corresponding values for the stacked and T-shaped isomers
are 8.4 and 6.2 kcal/mol, respectively.

Unlike neutrals, all of the dimer cation isomers are stable
under the standard conditions. The most stable isomer is the
proton-transferred H-bonded cation with a ∆G° of 18.7 kcal/
mol. In order of decreasing stability, the proton-transferred

Table 4. Dissociation Energies (kcal/mol) and Standard Thermodynamic Quantities of the Neutral and the Cation Uracil
Dimers Calculated at the ωB97X-D/6-311(+)G**/EML(99,590) Levela

reaction De D0 ∆H°, kcal/mol ∆S°, cal/(mol K) ∆G°, kcal/mol

SU2
0 f U0 + U0 10.5 9.8 8.4 31.5 -1.0

SU2
+ f U0 + U+ 24.4 22.7 20.9 40.4 8.8

HU2
0 f U0 + U0 19.4 18.2 16.8 38.1 5.4

HU2
+ (TS) f U0 + U+ 20.2 21.8 23.2 40.5 11.1

HU2
+ (TS) f HU2

+ (PT) 11.0 13.1 -8.8 2.7 -9.6
HU2

+ (PT) f U0 + U+ 31.2 30.6 -0.7 37.7 18.7
HU2

+ (PT) f (U - H)0 + UH+ 38.2 37.0 -1.3 38.6 24.2
TU2

0 f U0 + U0 8.3 7.6 6.2 29.6 -2.6
TU2

+ f U0 + U+ 27.0 25.1 23.0 38.8 11.4

a For the proton-transferred H-bonded cation the values corresponding to the two different dissociation limits are given.

Figure 7. Electronic spectra (top panel) of the stacked uracil
dimer cation at the neutral (solid black) and the cation (dashed
blue) geometries calculated with IP-CCSD/6-31(+)G* and the
electronic states corresponding to the three most intense
transitions (bottom panel).
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dimer is followed by the T-shaped, symmetric H-bonded
(TS), and stacked isomers. Again, the ∆S° values are very
close for all of the isomers, being 40.4, 40.5, 37.7, and 38.8
cal/(mol K) for SU2

+, HU2
+ (TS), HU2

+ (PT), and TU2
+,

respectively, whereas the ∆H° contributions are different.
Thus, we conclude that the enthalpy determines the relative

stability of the neutral and ionized uracil dimers to a high
degree, while the entropy contribution has a less pronounced
effect.

Lastly, the ZPE corrections lower the dissociation energy
estimates by 0.6-1.9 kcal/mol for all the neutral and ionized
dimers, except for the symmetric H-bonded dimer. In the
symmetric H-bonded dimer, the ZPE correction has the
opposite sign and increases the dissociation energy by 1.6

kcal/mol, because this structure is a transition state with one
imaginary frequency.

3.4. Electronic Spectra of the Uracil Dimer Cations.
This section presents the calculated electronic spectra of the
uracil dimer cations. The spectra of the stacked and H-bonded
isomers at the geometry of the neutral were described in a
detail in previous work;21 therefore, we focus on the effect
of geometry relaxation on the spectroscopic properties. For
the H-bonded dimer, we present the spectra of both the
symmetric (TS) and the proton-transferred structures.

Figures 7-9 present the electronic spectra of the stacked,
H-bonded, and T-shaped uracil dimers, respectively, calcu-
lated by IP-CCSD/6-31(+)G* at the neutral and the cation
geometries. Figures 7-9 also show the character of the

Figure 8. Electronic spectra (top panel) of the H-bonded uracil dimer cation at the neutral (solid black), symmetric transition
state (dashed blue), and proton-transferred cation (dashed-dotted pink) geometries calculated with IP-CCSD/6-31(+)G* and
the electronic states corresponding to the three most intense transitions (bottom panel).
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electronic states corresponding to the three most intense
transitions in each spectrum. The transition energies, transi-
tion dipole moments, and oscillator strengths are provided
in Tables 5-8.

The spectrum of the stacked dimer at the neutral geometry
is dominated by three intense lines at 0.5, 3.5, and 3.8 eV
(see Figure 7). The first peak is the CR band, which is unique
to the dimer, while the others are the LEs between the states
of the cation with the various π-orbitals singly occupied.
Upon geometric relaxation, the spectrum shifts to higher
energies by approximately 0.8 eV, so the lines appear at 1.2,
4.4, and 4.6 eV. The intensity of the charge resonance band
increases more than 2-fold upon relaxation.

The H-bonded dimer cation spectrum at the geometry of
the neutral (see Figure 8) features two intense lines at 0.1
and 3.6 eV and a small peak at 1.3 eV. As in the stacked
cation, these lines are the CR band and two LEs correspond-
ing to the transition between the π-orbitals of the cation (see
Figure 8). The CR band is less intense than in the stacked

cation, and the most intense transition is the LE at 3.6 eV.
The spectrum at the transition-state structure exhibits only
minor differences, i.e., 0.1 eV blue shifts in the peak positions
with the intensities remaining the same. However, the
spectrum and the character of the states change dramatically
upon proton transfer. A new band appears at 2.5 eV. The
localized character of the states and Cs symmetry make the
proton-transferred H-bonded cation spectrum very similar
to that of the uracil cation.

In the T-shaped cation spectrum at the neutral geometry,
the CR and the two intense LE transitions appear at 0.1, 3.5,
and 3.6 eV (see Figure 9). The spectrum is very similar to
that of the H-bonded isomer at the neutral geometry. As in
the stacked and H-bonded cations, the transitions between
the π-like orbitals are the most intense. However, the
character of the states is different: the states are more

Figure 9. Electronic spectra (top panel) of the T-shaped uracil
dimer cation at the neutral (solid black) and the cation (dashed
blue) geometries calculated with IP-CCSD/6-31(+)G* and the
electronic states corresponding to the three most intense
transitions (bottom panel).

Table 5. Excitation Energies (∆E, eV), Transition Dipole
Moments (〈µ2〉, au), and Oscillator Strengths (f) of the
Stacked Dimer Cation at the Geometry of the Neutral and
Cation (IP-CCSD/6-31(+)G*)

neutral cation

transition ∆E 〈µ2〉 f ∆E 〈µ2〉 f

X2B f 12A 0.524 7.2918 0.0935 1.248 7.4212 0.2269
X2B f 22B 1.023 0.0028 0.0000 1.799 0.0010 0.0000
X2B f 22A 1.081 0.1503 0.0040 1.809 0.0197 0.0009
X2B f 32B 1.349 0.1141 0.0038 2.190 0.0709 0.0038
X2B f 32A 1.406 0.5171 0.0178 2.362 0.4090 0.0237
X2B f 42B 1.906 0.0024 0.0001 2.798 0.0010 0.0000
X2B f 42A 1.952 0.0053 0.0003 2.800 0.0016 0.0001
X2B f 52B 3.573 0.3531 0.0333 4.390 0.7613 0.0819
X2B f 52A 3.844 0.9990 0.0875 4.622 0.2323 0.0263

Table 6. Excitation Energies (∆E, eV), Transition Dipole
Moments (〈µ2〉, au), and Oscillator Strengths (f) of the
Symmetric H-Bonded Dimer Cation at the Geometry of the
Neutral and Cation (IP-CCSD/6-31(+)G*)

neutral cation

transition ∆E 〈µ2〉 f ∆E 〈µ2〉 f

X2Au f 12Bg 0.113 27.4607 0.0763 0.121 28.7406 0.0849
X2Au f 12Bu 0.871 0.0000 0.0000 1.064 0.0000 0.0000
X2Au f 12Ag 0.915 0.0003 0.0000 1.123 0.0003 0.0000
X2Au f 22Bg 1.358 0.2527 0.0084 1.632 0.3048 0.0122
X2Au f 22Au 1.391 0.0000 0.0000 1.683 0.0000 0.0000
X2Au f 22Bu 1.867 0.0000 0.0000 1.954 0.0000 0.0000
X2Au f 22Ag 2.232 0.0000 0.0000 2.381 0.0000 0.0000
X2Au f 32Au 3.501 0.0000 0.0000 3.740 0.0000 0.0000
X2Au f 32Bg 3.615 1.3026 0.1154 3.835 1.2053 0.1133

Table 7. Excitation Energies (∆E, eV), Transition Dipole
Moments (〈µ2〉, au), and Oscillator Strengths (f) of the
H-Bonded Dimer Cation at the Optimized
Proton-Transferred Geometry (IP-CCSD/6-31(+)G*)

transition ∆E 〈µ2〉 f

X2A′′ f 12A′ 1.702 0.0004 0.0000
X2A′′ f 22A′′ 2.475 0.7690 0.0466
X2A′′ f 22A′ 2.782 0.0040 0.0003
X2A′′ f 32A′ 3.325 0.0024 0.0002
X2A′′ f 32A′′ 3.650 0.0605 0.0054
X2A′′ f 42A′′ 3.984 1.1704 0.1142
X2A′′ f 42A′ 4.493 0.0001 0.0000
X2A′′ f 52A′′ 5.343 0.0162 0.0021
X2A′′ f 52A′ 6.082 0.0039 0.0006
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localized. Upon relaxation, the spectrum changes completely,
as does the character of the states. The maximum intensity
increases 2.5 times, and new intense lines appear in the
1.7-3.0 and 4.5-5.0 eV regions. The orbital picture is now
much more complex: the DMOs become combinations of
several FMOs. Thus, the electronic transitions can no longer
be described as CR or LE excitations. The most intense bands
correspond to the transitions between the cation states with
the πCC orbital and the lp(O) orbital singly occupied and are
of charge-transfer character.

To summarize, the three isomers have distinctly different
spectra, which can be used to distinguish between them
experimentally. Moreover, significant changes upon relax-
ation may be exploited to monitor ionization-induced dy-
namics in a pump-probe experiment. Immediately upon
ionization, the isomers will exhibit intense lines in three
regions: 0.0-0.7, 1-1.5, and 3.0-4.0 eV. While the spectra
of the H-bonded and T-shaped dimers at the neutral geometry
are similar, the stacked cation can be distinguished by the
two peaks of moderate intensity in the 0.5-0.7 and 3.5-4.0
eV regions. Upon relaxation, the most intense CR band of
the stacked isomer shifts to 1.2 eV and acquires additional
intensity. The relaxation of the T-shaped cation manifests
itself by significant growth of intensity in the 2.5-3.0 eV
region. The hydrogen-bonded complex is more difficult to
distinguish because of the overlap of its spectral lines with
the stacked and T-shaped spectra. Still, the signature of
proton transfer is the 0.3-0.4 eV blue shift of the intense
transition in the 3.5-4.0 eV region.

4. Conclusions

We characterized the electronic structure of three representa-
tive isomers of the ionized uracil dimers: H-bonded, stacked,
and T-shaped. The interactions between the fragments lower
the vertical IEs by 0.13-0.35 eV, the largest drop in IE being
observed for the stacked and T-shaped isomers. Interestingly,
the character of the ionized states and the origin of the IE
change are different in these two isomers. In the stacked
dimer, the hole is delocalized between the two fragments
and orbital overlap determines the change in the IE. In the
T-shaped isomer, the hole is localized and the change in the
IE is due to electrostatic interactions between the “ionized”
and the “spectator” fragments. The change in the IE for the
symmetric H-bonded dimer is small, because neither overlap

nor electrostatic interactions can stabilize the hole; however,
larger changes are expected for the nonsymmetric H-bonded
dimers.19

The geometric relaxation is also different for the three
isomers. The stacked isomer relaxes to a tighter structure
with more efficient overlap between the FMOs, and the hole
remains delocalized between the fragments. The H-bonded
isomer undergoes proton transfer, forming the lowest energy
structure on the cation’s surface in which the charge and
the unpaired electron are localized on different moieties.
Finally, the T-shaped dimer relaxes to the structure with the
localized hole. The respective binding energies of the cation
isomers are 22.7, 37.0, and 25.1 kcal/mol.

Finally, we characterized the electronic spectra of the
cations at the neutral and the relaxed geometries. At the
neutral geometry, the H-bonded and stacked isomers feature
intense CR bands at 0.1 and 0.5 eV, respectively. The CR
band in the T-shaped isomer is less intense and appears at
the same energy as in the H-bonded dimer (0.11 eV). For
all three isomers, the spectra change dramatically upon
relaxation. In the stacked isomer, the intense CR band shifts
to higher energies (i.e., from 0.5 to 1.3 eV) and becomes
even more intense. In the H-bonded isomer, the CR bands
(present at the neutral geometry at 0.1 eV) disappear upon
proton transfer and the spectrum becomes very similar to
that of the monomer. In the T-shaped isomer, new intense
lines corresponding to charge-transfer transitions develop at
2.5-3.0 eV. Thus, the spectral evolution in these isomers is
rather different, which may be exploited for their experi-
mental determination.
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Appendix: Performance of ωB97X-D for the
Structures and Energetics of Noncovalent
Neutral and Ionized Dimers

Self-interaction-corrected functionals provide more a reliable
(although not fully satisfactory) description of the ionized
noncovalent dimers than the standard functionals. To inves-
tigate the performance of the ωB97X-D functional55 as an
inexpensive alternative to more reliable wave function
methods, we benchmarked this functional using the stacked
uracil isomer. We compared the intra and interfragment
structural parameters of the ωB97X-D/6-311(+)G**-opti-
mized geometries of the neutral and the cation with the best
available geometries. For the neutral system, the geometry
from the S22 set of Hobza and co-workers was used as a
benchmark.59 For the cation, we compared against the IP-
CISD/6-31(+)G*-optimized geometry. The average absolute
errors and the standard deviations for the bond lengths and
angles in the DFT-D-optimized geometries were calculated.
In the neutral, the average absolute error and the standard

Table 8. Excitation Energies (∆E, eV), Transition Dipole
Moments (〈µ2〉, au), and Oscillator Strengths (f) of the
T-Shaped Dimer Cation at the Geometry of the Neutral and
Cation (IP-CCSD/6-31(+)G*)

neutral cation

transition ∆E 〈µ2〉 f ∆E 〈µ2〉 f

X2A1 f 22A1 0.108 18.4996 0.0488 1.866 0.5715 0.0261
X2A1 f 32A1 0.725 0.1761 0.0031 2.384 0.7506 0.0438
X2A1 f 42A1 0.841 0.0436 0.0009 2.622 1.8376 0.1180
X2A1 f 52A1 1.031 0.1376 0.0035 2.750 0.0428 0.0029
X2A1 f 62A1 1.176 0.5961 0.0172 2.945 1.1927 0.0861
X2A1 f 72A1 1.609 0.0095 0.0004 3.324 0.0042 0.0003
X2A1 f 82A1 1.776 0.0261 0.0011 3.584 0.3711 0.0326
X2A1 f 92A1 3.561 0.6475 0.0565 4.757 0.6759 0.0788
X2A1 f 102A1 3.613 0.6276 0.0555 5.539 0.0295 0.0040
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deviation for the bond lengths were 0.004 and 0.003 Å,
respectively; the average absolute error and standard devia-
tion for the angles were 0.247 and 0.182°. In the cation, the
corresponding values were 0.010 and 0.005 Å and 0.377 and
0.233°. As for the interfragment parameters, in the neutral
the DFT-D parameters (C5-C6 and O2-N1) differ by less
than 0.05 Å from the geometry from the S22 set, while in
the cation DFT-D overestimated them by 0.15 Å relative to
the IP-CISD/6-31(+)G* value. Given the tendency of IP-
CISD to overestimate the interfragment distances in weakly
bound systems by 0.2-0.3 Å (as compared to the more
accurate IP-CCSD),51 the DFT-D geometry of the cation may
be more accurate than the IP-CISD geometry. We conclude
that the ωB97X-D structures are fairly accurate, which
validates the use of this method for geometry optimizations
of the ionized dimers.

To assess the performance of the ωB97X-D functional for
the energetics, we computed the dissociation energies for
all isomers of the neutral and cation dimers and compared
them to the IP-CCSD/6-311(+)G** values. The results are
summarized in Figures 4 and 5. ωB97X-D predicts the
correct relative ordering of the neutral and cation isomers.
Quantitatively, the DFT-D errors in dissociation energies with
respect to the IP-CCSD values are in the 1-2 kcal/mol range
for the neutral dimers and in the 1-5 kcal/mol range for the
cations. The errors in De are nonsystematic. Therefore,
DFT-D with the ωB97X-D functional provides a correct
qualitative picture for the energetics; the quantitative predic-
tions are of moderate accuracy, so a more reliable approach
should be employed.

Supporting Information Available: Optimized geom-
etries, corresponding reference energies, and frequencies
(TXT). This material is available free of charge via the
Internet at http://pubs.acs.org.
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Abstract: A density matrix based soft-computing solution to the quantum mechanical problem
of computing the molecular electronic structure of fairly long polythiophene (PT) chains is
proposed. The soft-computing solution is based on a “random mutation hill climbing” scheme
which is modified by blending it with a deterministic method based on a trial single-particle density
matrix [P(0)(R)] for the guessed structural parameters (R), which is allowed to evolve under a
unitary transformation generated by the Hamiltonian H(R). The Hamiltonian itself changes as
the geometrical parameters (R) defining the polythiophene chain undergo mutation. The scale
(λ) of the transformation is optimized by making the energy [E(λ)] stationary with respect to λ.
The robustness and the performance levels of variants of the algorithm are analyzed and
compared with those of other derivative free methods. The method is further tested successfully
with optimization of the geometry of bipolaron-doped long PT chains.

1. Introduction

Exact solutions of the Schrodinger equation for many-
electron systems are impossible to obtain analytically. The
solutions are therefore obtained by various approximation
methods, which are still rather complicated for applications
to large systems. With rapid and spectacular advances in
digital computing, computational methods of electronic
structure calculations have attracted serious attention in recent
years.1-3 These methods have become practically essential
for understanding large systems at the microscopic level.
Finding efficient algorithms for handling large quantum
systems even at an approximate level has become a chal-
lenging issue. Traditional electronic structure algorithms
calculate eigenstates associated with discrete energy levels,
and this leads to a diagonalization problem of the Hamilto-
nian matrix. The computational effort in traditional diago-
nalization methods scales as N3, where N is the dimension
of the basis space. Usually one is interested in finding the
lowest energy structure so that one has to simultaneously
search the potential energy surface E(R) for locating the

global minimum while diagonalizing the Hamiltonian matrix
H(R) at different geometries (R).

In the present paper we have proposed a novel nondeter-
ministic algorithm for locating the minimum energy struc-
tures of neutral or doped PT chains of 100, 150, and 200
thiophene rings. To be specific, we have proposed a variant
of the “directed random mutation hill climbing (DRMHC)
method”,14,15 which works with a randomly generated string
of all the geometrical parameters (nuclear position variables,
R) required to compute the energy and therefore the fitness
of a neutral or doped PT molecule within the framework of
a modified SSH effective π-electron Hamiltonian model.12,13

The geometry string {Ri} is allowed to undergo directed
random mutations. The string of mutated geometry variables
{Ri′} is used to define the Hamiltonian H({Ri′}), which acts
as the generator of a unitary transformation, U(λ,{Ri′}).
U(λ,{Ri′}) transforms a trial one-electron density matrix (P(0))
into a “mutated” one-electron density matrix (P(0)′), which
is used to compute the “energy” of the mutated structure
and hence the fitness of the structure coded by the mutated
geometry string. The parameter λ fixes the scale of the
transformation which is optimized at each random mutation
hill climbing step by making the energy stationary with
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respect to λ. We note here that there have been a number of
earlier attempts to calculate the one- and two particle-density
matrices using similar unitary transformations8-10 on a trial
density. We have, to the best of our knowledge, tried for
the first time to blend it with an otherwise stochastic approach
for computing the one-electron density matrix. We have
compared the λ-optimized DRMHC algorithm with several
alternative soft-computing methods of solving the problem.
The algorithm is elaborately tested on long polythiophene
chains, undoped as well as doped, and the results are briefly
analyzed.

The outline of the paper is as follows. In section 2 we
present the algorithm in detail, while the results of the
applications are described in section 3. Section 4 presents
the concluding remarks.

2. Method

Polythiophene (PT) oligomers have attracted the widespread
attention of experimentalists and theoreticians because these
molecules and their derivatives are capable of displaying
metallic conduction under electron or hole doping.4-7,11-13

Neutral PTs are chemically stable, can be synthesized easily,
and can be doped with dopants such as ClO4 and AsF5. The
stability remains intact even after doping.

The UV photoelectron spectrum5 of neutral PT shows the
existence of two π-bands in the system, and the Fermi level
is ∼1.2 eV above the valence band (VB). There are two
nondegenerate classical resonating forms of PT in which the
2pz orbitals of the carbon atoms and the 3pz orbitals of the
sulfur atoms interact to form a π-band, half of which is
occupied by the electrons. Had the two forms been isoen-
ergic, a solitonic mode of conduction would have been viable
as the solitons have a tendency to separate because the
structure between the defects is isoenergic with the structure
outside. However, in PT, the degeneracy is weakly lifted,
and as a consequence the solitonic mode of conduction is
ruled out. It turns out that polarons and bipolarons are the
most important excitations and charge-storage configurations
in doped PT.6

While PT is a semiconductor with a band gap of about 2
eV, hole doping reduces the gap, and at high doping levels

PT begins to show metallic properties. It is important
therefore to understand how the electronic structure of neutral
PT evolves under doping. It is expedient in this context to
have algorithms that can locate the global minimum energy
structures on the potential energy surface of PT oligomers,
undoped or doped. There are several deterministic method-
ologies, mostly based on a gradient search, which have been
explored for locating the minimum energy structures of
PTs.6,7 Rarely, however, nondeterministic techniques have
been explored in this context.11 Our primary concern here
is to introduce such a hybrid technique of geometry
optimization and calculation of electronic structure and test
its workability with undoped and doped PTs as examples.

PT is treated as a conjugated polyene and described by a
tight binding model of the π-electronic system that includes
only the nearest neighbor hopping interactions. The lattice
dynamics is treated classically. This leads to a modified SSH
effective π-electronic Hamiltonian H where12,13

The π-electronic Hamiltonian (He
π) is expressed as

and the lattice Hamiltonian (the σ-electronic framework
Hamiltonian) is defined as

Rn is the self-energy of the carbon 2pz electron (3pz electron
of sulfur) at the nth site, and Vnm represents the hopping
interaction between the nth and mth sites. Vnm is parametrized
in the form7,11

with two parameters, A and B. Rnm is the distance separating
the nth and mth adjacent sites. We use frozen core ap-
proximation so that the kinetic energy of the lattice is zero,
i.e.

where

A, B, and Dnm are parameters of the model and Rnm
0 is the

standard length of the n-m bond.7,11

We start by guessing randomly the M number of bond
lengths required to describe the Nr-ring chain, forming and
diagonalizing the N-dimensional (N ) 5Nr) π-electron
Hamiltonian He

π in the N-dimensional basis of the carbon
2pz and sulfur 3pz atomic orbitals of all the carbon and sulfur
atoms of the chain. The diagonalization generates a set of N
π molecular orbitals {φi}, Noc of which are occupied by the

Figure 1. Fragment of the thiophene chain: (a) C-C bridging
bond, (b) C-S single bond, (c) C-C double bond, (d) C-C
single bond.

Table 1. Parameters in the SSH Hamiltonian (for
Polythiophene) Used in These Calculations

param value description

A 123.6 eV Hamiltonian parameter
B 0.3776 au Hamiltonian parameter
D 7.814 au-1 Hamiltonian parameter
R(C-C)

0 1.557 au C-C single bond length
R(C-S)

0 1.782 au C-S bond length
R(C-C)B

0 1.557 au C-C bridging bond length

H ) He
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π ) ∑

n

Rnan
†an + 1

2 ∑
n,m

Vnman
†am + hc (2)
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n

pn
2

2Mn
+ 1

2 ∑
n,m

f(Rnm) (3)

Vnm ) -Ae-Rnm/B (|n - m| ) 1)

) 0 (otherwise)
(4)

Hl
σ ) 1

2 ∑
n,m

f(Rnm) (5)

f(Rnm) ) -ADnm(Rnm - Rnm
0 + B)e-Rnm/B
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π-electrons in pairs (Noc ) 3Nr). In general, we can write
the π MOs {φi} as linear combinations of the atomic basis
orbitals (�p), where

εi
π represent the binding energies of the π molecular electrons.

The linear expansion coefficients {cpi
} define the elements

of the charge density bond order matrix P through the relation

so that the starting density matrix is defined as

P(0) satisfies the following constraints:

where Ne is the number of electrons. The ground-state
π-electronic energy EG

π is given by

qn
0 is the electronic charge density at the nth site (diagonal

elements of P(0) formed in the atomic orbital basis). The total
energy of the π-electron system including the elastic
deformation energy of the σ-electronic framework is given
by

Our purpose is to find the set of {Rnm} values that globally
minimize the ground-state energy ET(R) and calculate the
corresponding charge density bond order matrix (P) that encodes
the equilibrium charge distribution in the ground state. We
suggest the following strategy for solving the problem.

Let the geometrical parameters {Rnm} defining the PT chain
form a string s(R1, R2, R3, ..., Rk, ..., Rm, ..., RM), where M is the
total number of bonds in the system. The π-electronic Hamil-
tonian He

π(R) for the guessed geometry coded by the string s(R)
is diagonalized in the basis of the 2pz orbitals of the carbon
atoms and 3pz orbitals of the sulfur atoms, and a trial
density P(0)(R) is generated. We choose one of the
parameters, say the kth parameter, randomly with a

Figure 2. Energy evolution profiles of PT chains in the λ-optimized density matrix based DRMHC method (the inset figures
display the fitness evolution between 15000 and 30000 generations in all the cases of 100-, 150-, and 200-ring PT chains): (a)
for the 100-ring chain, (b) for the 150-ring chain, (c) for the 200-ring chain.

φi ) ∑
p)1

N
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probability pm for mutation. The mutation induces a small
change in the chosen parameter (Rk) in the following
manner:16

where l is a random integer, r is a random number in the range
(0, 1), and ∆m is a directed mutation intensity17 (see later). The
mutated string s(R1, R2, R3, ..., Rk′, ..., Rm, ..., RM) is used to
generate the π-electron Hamiltonian He

π(R′), which in turn
generates the unitary transformation matrix

where λ defines the scale of the transformation. The mutated
density matrix P(1)(R′) is generated by transforming P(0)(R) with
Uλ in the following manner:18

Expanding the exponentials in powers of λ, we have (up to
second order in λ)

In eq 14, [A, B] represents the commutator of matrices A and
B. The problem now is to fix the scale parameter λ. We do
that by estimating the electronic energy εel

π(λ) and making it
stationary with respect to variations in λ. Thus, using P(1) to
estimate εel

π(λ), we have, up to second order in λ

Setting

then leads to

where

Figure 3. For a PT chain containing 100 rings: (a) evolution of λr in the λ-optimized density matrix based DRMHC scheme (the
inset figure displays the evolution of λr between 30000 and 45000 generations), (b) evolution of ∆m in the DRMHC scheme, (c)
(i) energy evolution profiles in the DRMHC method at fixed λ ) 0.1 (in the inset the evolution between 15000 and 30000 generations
is shown to emphasize the different rates of the evolution in the convergence region), (ii) energy evolution profiles in the RMHC
method at fixed ∆m ) 0.05 (the inset shows the evolution profile between 15000 and 30000 generations).
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If the total energy of the mutated structure ET′ (R′) ) εe
′π + εσ′

computed with λopt is lower (or the absolute value of ET′ (R′),
which we call fitness, is higher) than the premutation energy
ET(R), the mutated geometry string s{Ri′} replaces the old string
s{Ri}. If the condition is not satisfied, a new mutation site is
chosen on the old string; thus, the algorithm avoids evolving
nonviable candidates. In either case, one generation is counted
to have elapsed. We may note here that P(1)(R′) of eq 13 is
strictly idempotent while P(1)(R′) of eq 14 may not be so because
of truncation. Also 2 Tr P(1)(R′) may deviate from the total
number of electrons. Therefore, these quantities are followed
throughout the evolution and corrective measures taken if
required (through standard trace purification or idempotency-
correcting routines).

The directed mutation scheme used in the present case17

uses a mutation intensity that is dynamically adjusted on the
basis of the degree of acceptability of mutation over a number
of past generations. Thus, if the number of accepted
mutations in the last 100 generations is less than 10, ∆m is
lowered to ∆m′ ) ∆m/(1 + r) (r is a random number between
0 and 1). It is enhanced to ∆m′ ) ∆m/(1 - r) if the number
of accepted mutations is greater than 20 in the last 100
generations. ∆m is kept unchanged otherwise.

The process is continued until the total energy stops
evolving further. The equilibrium ground-state structure is
represented by the geometry variables that the string
s(R1, R2, R3, ..., RM) corresponding to the converged energy
or fitness encodes. The same algorithm can be extended to
determine the electronic structure of doped PTs or other
similar molecules.

3. Results and Discussion

We have considered specific cases of polythiophene oligo-
mers containing 100, 150, or even 200 rings in a chain which
require 599, 899, and 1199 bond lengths or geometry
variables, respectively, to define the SSH Hamiltonian.12,13

The geometry strings s(R) encoding the structures of PT
oligomers are arrays containing 599, 899, and 1199 floating
point variables, respectively. We have experimented with
several variants of the algorithm proposed in section 2, a
few of which are reported here. The parameters of the SSH
Hamiltonian used in these calculations are reported in Table
1.

3.1. Geometry Optimization in Neutral Polythio-
phene Oligomers. Let us consider a 100-ring undoped PT
chain. In our λ-optimized DRMHC algorithm, we start with
a geometry string in which the geometry variables are
allowed to be distributed randomly over a predefined range.
The mutation probability pm is set to have a value pm ) 5/M,
where M is the total number of bonds in the system, and
held fixed throughout the evolution. The initial mutation
intensity or rate (∆m) is assumed to be 0.05. Empirically
Schaffer et al.19 found that the optimum mutation rate in a
genetic algorithm (GA) can be represented by the formula

where N ) size of the population, ∆m ) mutation rate, and
n ) length of the chromosome. Hesser et al.20 provided a

Figure 4. Comparison between the repeated diagonalization
based RMHC procedure in the case of a 100-ring PT chain
(a) and the λ-optimized density matrix based DRMHC method
(b) (the inset shows that up to 3000 generations the two
schemes perform in more or less the same way).

Figure 5. Bond length evolution profiles of 100-ring PT chains
in the λ-optimized DRMHC method: (a) C-C bridging bond,
(b) C-S single bond, (c) C-C double bond, (d) C-C single
bond.

Figure 6. Convergence profiles with different starting points
suggest that the λ-optimized density matrix based DRMHC
process is robust (the inset shows profiles in the region
between 9900 and 27000 generations). The molecule studied
is a 100-ring PT chain.

ln(N) + 0.93 ln(∆m) + 0.45 ln(n) ) 0.56 (19)
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heuristic argument in support of the empirical formula. The
initial value of ∆m chosen by us happens to be around half
of the empirically estimated value of ∆m (optimum) predicted
by eq 19 if we assume that n represents the number of
parameters present in a geometry string used here. The
π-electronic Hamiltonian (He

π) is diagonalized once after
every 2000 generations. The parameter λ of the unitary
transformation is optimized as outlined in section 2 (eq 16).

Figure 1 shows various bonds in the PT chain. Parts a-c
of Figure 2 show how energy evolves during the density
matrix based λ-optimized DRMHC search for the thiophene
chain containing 100, 150, and 200 rings, respectively. In
about 15000 generations, the search locates the gross features
of the equilibrium structure in each case. The typical
evolution pattern of λr (eq 18) for the representative case of
λ optimization in the case of a 100-ring neutral PT chain is
profiled in Figure 3a.

There are wide fluctuations in the scale parameter λr from
one generation to another. As the search converges to the
equilibrium structure the fluctuations get strongly damped
and λr f 0. Far away from the global minimum large λr is
predicted to have a large magnitude. In a sense, this amounts
to emphasizing the breadth search aspect of the algorithm.
As the search approaches the global minimum, λr f 0,
thereby emphasizing the depth search aspect. The corre-
sponding evolution profile of directed mutation intensities
is depicted in Figure 3b. To understand the role played by
λ-optimization, we have reported a second set of calculations
on 100-ring PT chains in which λr is kept fixed at λav ) 0.1
while all other parameters of the algorithm remain unaltered.
The search failed to converge to the desired level, indicating
the importance of λ-optimization in conjuction with a
DRMHC search (Figure 3c). Similarly, another set of
calculations were carried out with fixed mutation intensity

(∆m ) 0.05) to understand the role played by directed
mutation (Figure 3d). Again the search failed to hit the global
minimum energy structure. We have checked that the trace
of the density matrix and its idempotent character remain
conserved to the desired accuracy throughout the evolution.
Therefore, additional computational labor for purifying the
“trace” or restoring the idempotency of P(1)(R′) of eq 14 was
avoided. The transformation shown in eq 13 thus remains
unitary for all practical purposes after the truncation shown
in eq 14.

The performance of the λ-optimized DRMHC technique
has also been compared with that of the conventional
repeated diagonalization based procedure. Here He

π was
diagonalized following every successful mutation step, and
a new P(0) was calculated directly from the eigenvectors of
He

π, bypassing the construction of and transformation with
the unitary matrix U(λ,{Ri}). It can be seen that the repeated
diagonalization based RMHC procedure (Figure 4a) and
density matrix based λ-optimized DRMHC (Figure 4b)
algorithm perform more or less identically in the initial phase
of evolution (first 3000 generations or so). Beyond that point
density matrix based λ-optimized DRMHC performs better
(Figure 4). We may mention that the maximum number of
diagonalizations required in density matrix based λ-optimized
DRMHC is between 10 and 20, while the repeated diago-
nalization RMHC procedure requires between 40000 and
45000 diagonalizations. Even then, the repeated diagonal-
ization based RMHC procedure fails to hit the global
minimum energy structure. The results are summarized in
Table 2.

Parts a-d of Figure 5 display how the different geometry
variables evolve during a search in the density matrix based
λ-optimized DRMHC scheme for a PT chain containing 100

Table 2. Comparison of the λ-Optimized Density Matrix Based DRMHC Method with the Repeated Diagonalization Based
RMHC Procedure and Other Derivatives of the Density Matrix Based RMHC Scheme

scheme used energy (eV)
no. of generations

required comment

λ-optimized DRMHC -5141.137 37565 smooth and fast
DRMHC with fixed λ (λ ) 0.1) -5140.855 65201 gets stuck close to the global minimum
RMHC with fixed mutation intensity (∆m ) 0.05) -5140.320 49375 fails to find the global minimum structure
repeated diagonalization -5135.216 44752 fails to converge to the global minimum

Figure 7. Energy evolution profiles of 100-ring PT chains with (a) (i) the GA (the inset shows the profile in the region between
15000 and 30000 generations) and (ii) the restricted crossover GA (crossover operation is restricted up to 2500 generations)
(the inset shows the profile in the region between 15000 and 30000 generations) and (b) simulated annealing, with the inset
representing the profile in the region between 99900 and 199900 generations.
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rings. There are wide fluctuations in the bond lengths in the
initial phase, which gradually get damped as the search
converges.

To test the robustness and stability of the algorithm, the
calculations have been performed with widely different
starting geometries on the potential energy surface. The
performance was slightly worse or better in different runs
with different inputs (Figure 6), but convergence was
achieved in each case. The average performance level closely
matches with what has been reported in this paper.

3.2. Comparison with Other Soft-Computing Meth-
ods. The energy evolution of the density matrix based
λ-optimized DRMHC method has been compared with what
one actually observes with a density matrix based GA with
a population size of 4 and the density matrix based simulated
annealing method (SAM).18 The convergence profiles of
fitness/energy obtained with the GA and SAM are displayed
in parts a and c, respectively, of Figure 7 for the geometry
optimization of a 100-ring neutral PT chain. We note that
the λ-optimized DRMHC method outperforms the two other
soft-computing methods in terms of the number of steps

needed to reach the minimum energy structure. In the case
of the GA, the crossover operation is expected to help in
the achievement of faster convergence, which is indeed
noticed in the initial stages; however, the convergence to
the global minimum is delayed. We have also compared the
performance of a GA with restricted crossover (crossover
allowed initially up to a limited number of generations) with
that of the density matrix based λ-optimized DRMHC
procedure (Figure 7b). It is observed that the restricted
crossover GA provides approximately the same performance
as obtained with the λ-optimized DRMHC scheme. DRMHC
is nevertheless computationally economic as it needs only
one string evaluation per generation, whereas in the GA
fitness evaluation of a population of strings (four here) is to
be carried out in every generation. The performance statistics
are reported in Table 3. The scale optimized density matrix
based DRMHC method has also been used to compute the
global minimum energy structures of neutral PT chains of
150 and 200 rings. The predicted equilibrium geometrical
parameters are reported in Table 4. The predicted lengths
are practically identical. We did not enforce any symmetry
constraint on the chain. Every geometrical parameter was
allowed to evolve freely. The symmetry appeared naturally
as the search converged to the global minimum.

3.3. Geometry Optimization in Doped Polythiophene
Oligomers. Doping of PTs creates structurally favored
polaronic and bipolaronic defect states responsible for charge
storage and excitation. The distortion energies (Edis) of
formation for two polarons and one bipolaron are the same,
but the decrease in ionization energy is much more pro-
nounced in the case of bipolarons (2∆εbip) than for two
polarons (2∆εpol), making one bipolaron more stable than
two polarons in these systems.21

We have investigated the evolution of structures of
bipolaron-doped 100- and 150-ring PT chains containing up
to 12 bipolaronic defects. Since there is a large-scale
reorganization of geometry following doping, the doped
systems provide challenging examples for testing the power
of the new technique of geometry optimization introduced
here. Let us first inspect what happens when a bipolaronic
defect is incorporated into a 100-ring PT chain. Following
the creation of a defect (removal of the electron pair from
the HOMO), the chain is allowed to relax and the geometrical
parameters are globally optimized by using λ-optimized
DRMHC in the way mentioned in section 2. The starting
geometry is assumed to be identical with the neutral (PT)n)100

geometry. The relaxation causes the 2 units of positive charge
to spread over the constituent rings of the chain. The charge
distributions in neutral and one-bipolaron-doped PT chains
of 100 rings are compared in Figure 8a,b. The maximum
positive charge is seen to accumulate at the middle of the
chain and get distributed on the two sides with near perfect
Gaussian symmetry (Figure 8b). When a second bipolaronic
defect is incorporated into the 100-ring PT chain, the charge
distribution has a two-peak symmetric structure, as if the
two defects tend to get separated and localized in two
different regions of the chain (Figure 8c). The symmetry is
destroyed as more bipolarons are introduced (Figure 8d-f).
The one-bipolaron-doped 100-ring PT chain has four clearly

Figure 8. Density of electrons in the different rings of the
100-ring PT chain for bipolaron-doped structures: (a) 0-bipo-
laron-, (b) 1-bipolaron-, (c) 2-bipolaron-, (d) 4-bipolaron-, (e)
6-bipolaron-, and (f) 12-bipolaron-doped PT chains.

Table 3. Comparison of the Performance of the
λ-Optimized Density Matrix Based DRMHC Method and
Other Soft-Computing Methods

scheme used energy (eV)

no. of energy
evaluations or
iteration steps

required comment

simulated annealing
method

-5141.137 240000

genetic algorithm -5141.137 67638
genetic algorithm with

restricted crossover
-5141.137 35539 costly but

converges
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quininoid rings in the center containing about 68% of the
total charge carried by a bipolaronic defect (Figure 9a).
Beyond the 4 rings there is almost a continuous transition
to aromatic structure which persists over 13-14 rings.
Geometry optimization by the DRMHC procedure thus
predicts the expected pattern of evolution of the structures
of doped PTs.

The gradual increase in the doping level causes progressive
reduction in the band gap, which tends to get saturated at a
low but nonzero value (Figure 9b). Incorporation of a single
bipolaronic defect drastically brings down the band gap (∆ε),
and the Fermi level (εF) also moves into the valency band.
The reduction in the band gap is not so spectacular as the
doping level increases further. The lowest value predicted
is 0.57 eV for the 12-bipolaron-doped PT chain of 100 rings.
It would be of interest to find the optimized structures of
bipolaron-doped PTs of even larger chain lengths to test
whether our “λ-optimized DRMHC” performs well in this

situation. That the geometry optimization in doped PTs
proceeds smoothly is shown in representative cases in parts
a-d of Figure 10 for 150-ring PT chains with zero, two,
four, and six bipolarons, respectively. In each case we have
taken the geometry of the neutral PT chain of 150 rings as
one starting point which is far from the optimized geometry
searched out by our algorithm.

4. Conclusions

λ-optimized directed random mutation hill climbing can be
a viable strategy for locating minimum energy structures of
undoped as well as doped polythiophenes and their ana-
logues. The algorithm is generizable and can be used to
handle the global geometry optimization problem in large
molecules with complex potential energy surfaces.
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Abstract: A recently proposed double-hybrid functional called XYG3 and a semilocal GGA
functional (B97-D) with a semiempirical correction for van der Waals interactions have been
applied to study the potential energy curves along the dissociation coordinates of weakly bound
pairs of molecules governed by London dispersion and induced dipole forces. Molecules treated
in this work were the parallel sandwich, T-shaped, and parallel-displaced benzene dimer, (C6H6)2;
hydrogen sulfide and benzene, H2S ·C6H6; methane and benzene, CH4 ·C6H6; the methane dimer,
(CH4)2; and the pyridine dimer, (C5H5N)2. We compared the potential energy curves of these
functionals with previously published benchmarks at the coupled cluster singles, doubles, and
perturbative triplets [CCSD(T)] complete-basis-set limit. Both functionals, XYG3 and B97-D,
exhibited very good performance, reproducing accurate energies for equilibrium distances and
a smooth behavior along the dissociation coordinate. Overall, we found an agreement within a
few tenths of one kcal mol-1 with the CCSD(T) results across the potential energy curves.

I. Introduction

Nonbonded interactions strongly affect protein folding, DNA
structure, supramolecular assembly, and drug docking.1-4

Indeed, any attempt to perform simulations on condensed
matter systems is severely handicapped without an adequate
description of such interactions. While nonbonded interac-
tions are approximately described by empirical force field
methods, these methods are not always accurate for some
types of nonbonded interactions, including π-π stacking.5

Moreover, even ab initio methods can exhibit significant
errors for nonbonded interactions6-8 unless very large basis

sets are used in conjunction with highly correlated methods
such as coupled-cluster with perturbative triple excitations,
CCSD(T).9 Unfortunately, most popular density functional
approximations completely fail to describe long-range Lon-
don dispersion interactions.7,10,11

Numerous approaches have been advanced to overcome
these failures. Of the proposed solutions, the simplest
conceptually is to add a damped, empirical dispersion term,
yielding a method usually designated as DFT-D.12-16 This
approach seems to give reliable results for nonbonded
interactions in a variety of geometries.17,18 However, while
the approach is simple and cost-effective, the use of empirical
terms is theoretically unappealing, and the density is not
coupled to the dispersion interaction. Other workers have
tried reparametrization or extensions of existing types of
functionals19-23 with some success, but ultimately the
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physics of long-range dispersion is not captured by local or
semilocal functionals.10 More rigorous approaches include
the addition of nonlocal terms to the functional,24-26 and
the exchange dipole moment method of Becke and John-
son.27-29

Recently, Zhang, Xu, and Goddard have introduced a
“double hybrid” density functional, which mixes in Hartree-
Fock exchange as well as contributions from unoccupied
orbitals via second-order perturbation theory.30 Their empiri-
cal XYG3 functional uses a scheme of three parameters
similar to the B3LYP functional.31,32 Here, we examine the
performance of this double hybrid XYG3 functional for
potential energy curves of prototypical nonbonded interac-
tions, and we compare the performance of the XYG3
functional to that of the dispersion-corrected B97-D func-
tional introduced by Grimme.15 Assessing the quality of these
approximations across a range of intermolecular separations
is important because, in larger complexes, noncovalent
interactions between chemical groups will occur in a wide
variety of geometries, and the number of long-range contacts
will grow with respect to system size.

II. Theoretical and Computational Details

Density Ffnctional theory (DFT)33,34 proposes to solve
electronic structure problems using as a fundamental variable
the electron charge density, F(rb); formally, it is based on the
Hohenberg and Kohn theorems.35 In practice, DFT is applied
using the Kohn-Sham method (KS), using a mean-field
approach.36 The KS method represents the density as a linear
combination of the inner products of spin-orbital functions
F(rb) ) ∑i

Nele|ψi
KS(rb)|2, and the energy as a functional of F(rb)

as

where the first and second terms are the kinetic energy of
independent particles, T0[F], and the Coulomb interaction
energy, J[F] ) 1/2Adrb′ drbF(rb′)F(rb)/|rb′ - rb|. The term υext(rb)
is the external potential generated by the nuclei and felt by
the electrons, and VNN is the nuclear repulsion energy for a
fixed nuclear configuration. In eq 1, the contribution Exc[F]
is the exchange-correlation energy, which includes the
electron exchange interaction as well as the many-body
contribution to the kinetic and electron-electron repulsion
potentials (Vee[F]) that are not included in T0[F] or J[F], that
is, Exc[F] ) Vee[F] + T[F] - J[F] - T0[F]. The explicit
expression of Exc remains unknown, but there are many
approaches that have shown satisfactory results. Such ap-
proaches have been grouped according to their treatment of
the density into “generations” or “ladder’s rungs”.37 The most
used are based on the Local Density Approximation (LDA)
or Generalized Gradient Approximation (GGA).38 Although
some functionals have shown impressive results, those are
not totally transferable for every problem and especially fail
for the description of long-range interactions and excited
states. The origins of these difficulties are attributed to the
incorrect cancellation of electron self-interaction,39 and
incorrect treatment of dynamic correlation, among others.

There are many strategies to avoid these problems, some of
which involve the inclusion of explicit terms from wave
function theories (hybrid functionals),31,40 treatments with
optimized effective potentials,41-43 an adjustment to the
asymptotic correction exchange correlation potentials,44 and
the addition of empirical energy terms.

A. Double Hybrid Functionals. The (double) hybrid
functionalsemergefromtheadiabaticconnectionformalism31,45

where the exchange correlation functional is obtained solving
the follow equation:

The integrand Uxc
λ [F] is an exchange-correlation potential

energy, keeping fixed the υext(rb) and F(rb) of the physical
system, and depending on a dimensionless interelectronic
coupling-strength constant, λ, that switches smoothly between
a model of independent particles and one of interacting
particles around an interval 0 e λ e 1, using the KS orbitals
as the reference system.

The integrand of eq 2 can be expressed as Uxc
λ ) Vee

λ [F] -
J[F] + Tλ[F] - T0[F]; thus this potential depends on λ by
virtue of the Hellmann-Feyman theorem. Independently of
the form of Uxc

λ , it is possible to establish certain boundary
conditions. The lower integral limit represents the exact
exchange, Uxc

λ)0 ) Vee
λ)0[F] - J[F] + Tλ)0[F] - T0[F] ) Ex,

and its upper limit Uxc
λ)1 ) Vee

λ)1[F] - J[F] + Tλ)1[F] - T0[F]
) Exc, which could be one of the LDA or GGA exchange-
correlation energies represented by Uxc

λ)1[F] ≈ Exc
DFT[F].

Alternatively, invoking the perturbation scheme proposed
by Görling and Levy (GLPT),46,47 the correlation energy is
expanded in a power series around λ ) 0. The first order
corresponds to Ex and the second as Ec

GLPT; in this formula-
tion, the gradient at λ ) 0 is equal to (∂Uxc

λ /∂λ)λ)0 ) 2Ec
GLPT.

The Ec
GLPT correlation functional explicitly includes single

and double orbital transitions, written in Mulliken notation
for the electron repulsion integrals as

where i, j are defined as occupied and a, b as unoccupied
KS orbitals, and the exchange potential as υ̂x ) (δEx

DFT[F]/
δF).

Using a first-order interpolator pathway,48 the integrand
in eq 2 can be written as

To conciliate the boundary conditions and the correlation
formulated by GLPT, an ansatz is used with the parametrical
combination of the energy Ec

GLPT and Exc
DFT within the LDA

or GGA exchange-correlation functionals, so the constant b
in eq 4 is split into two parameters for the correlation, where
the final equation is given by

EDFT[F] ) T0[F] + J[F] + Exc[F] + ∫ d rb F( rb)υext( rb) +

VNN (1)

Exc ) ∫0

1
dλ Uxc

λ (2)

Ec
GLPT ) -∑

ai

|〈a|υ̂x|i〉 - ∑
j

(aj|ij)|2
εa - εi

-

1
4 ∑

ijab

[(ia|jb) - (ib|ja)]2

εa + εb - εi - εj
(3)

Uxc
λ ) a + bλ (4)
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The term Ec
PT2 is the correlation energy established from the

Møller-Plesset second-order perturbation theory, related to
second term in eq 3. The single excitations of Ec

GLPT are
neglected or simply absorbed by Ec

DFT.
The functionals like eq 5 are considered as a last generation

and are known as double-hybrid functionals, mainly due to
their direct dependence on the occupied and virtual KS
orbitals, which offer a way to include the dynamic correlation
explicitly, and were originally proposed by Grimme within
his B2PLYP functional.49 The potential generated by the
Ec

GLPT term acts as a multiplicative operator and can be
inserted into the mean-field equation solution via the
exchange correlation potential (υ̂xc

GLPT ) δExc
GLPT[F]/δF) using

an optimized effective potential scheme (OEP).50-53 How-
ever, in practice, the orbitals that are used to evaluate the
Ec

PT2 typically come from a mean-field procedure that
minimizes the energy for the rest of terms in eq 5.

Zhang, Xu, and Goddard have proposed30 a set of
empirical parameters for a double-hybrid functional called
XYG3.

In this case, they adopt the three empirical terms ax ) 0.8033,
a0 ) 0.2107, and ac ) 0.3211 in the same spirit as the
B3LYP functional, with values that best fit thermodynamical
data for the G3/99 set.54 The functionals Ex

B88 and Ec
LYP denote

an exchange functional by Becke55 and a correlation by Lee,
Yang, and Parr, respectively.56 The main difference with
respect to other reparametrizations such as B2K-PLYP,57

B2GP-PLYP,58 or B2-P3LYP,59 which also can produce
thermodynamical data and reactions barriers quite similar
to those from high-level methods, is that the XYG3
functional adjusts the gradient correction using the parameter
a0 in eq 6, adding the Ex

Slater exchange. The XYG3 functional
has been tested using the electron density and orbital
functions from B3LYP, and this approximation is already
capable of accurately reproducing heats of formation, energy
barriers, and noncovalent interactions with very good results,
and as shown below it can reproduce potential energy
surfaces of weak interactions. Although we focus on the
XYG3 double hybrid functional in this work, we also discuss
limited results for the original B2PLYP double hybrid49 as
well as its empirically corrected variant, B2PLYP-D.60

B. Semiempirical Dispersion Contribution. Standard
density functionals are local or at best semilocal, and hence
they neglect long-range electron correlations, which give rise
to attractive London dispersion forces. It has been proposed
to simply add an empirical term to account for the missing
dispersion energies, that is,

From observations, is well-known that the dispersion energy
contributes asymptotically to the potential energy in long-
range interactions as Udisp ≈ -R-6.61 Thus, modeling of the

dispersion energy as the interaction between pairs of atoms
was proposed:12-16

Here, the function f(Rij) acts as a damping function, with a
gradual transition around a scaled distance Rij

0, which is the
sum of individual atomic van der Waals radii, Ri

0 + Rj
0. This

function is modeled as a Fermi-Dirac-like distribution, f(Rij)
) {1 + exp[-R(Rij/Rij

0 - 1])}-1, under the control of a global
R parameter. The scalar s6 value in eq 8 weights the whole
contribution and is adjusted parametrically for each Exc

DFT

functional. Furthermore, C6
ij can be determined by an average

between the C6 of i, j atoms, frequently using a geometric
mean, C6

ij ) �(C6
i C6

j ).
In this work, we use the Exc proposed by Grimme15 known

as B97-D. This functional is based on a previous one
proposed by Becke.62 Essentially B97-D is a reparametri-
zation to coefficients of an expansion series with a gradient
correction factor inside a Exc

GGA. The coefficients are optimized
by a least-squares fitting procedure, including the term in
eq 8, to best reproduce heats of formation from the G2/97
set63,64 and other properties such as ionization potentials,
atomization energies, etc. Additionally, the B97-D functional
also attempts to improve the short-range description and
avoid the double-counting of electron correlation at medium
range distances when the dispersion correction is present.
Finally, a remarkable point is that B97-D does not have the
Ex

HF energy as B97 does, which allows a significant reduction
in computational effort, especially when using auxiliary fitted
basis functions65 to evaluate the two-electron integrals.

C. Computational Methods. Computations employed the
triple-� basis sets used during the development of the
functionalsconsidered,TZV2PforB97-Dand6-311+G(3df,2p)
for XYG3. We anticipate that the functionals will work best
when paired with these basis sets, which were used during
their parametrization. Limited tests indicate that the B97-D
results are fairly insensitive to basis set, and we found very
similar results when using the TZV2P basis or Dunning’s
aug-cc-pVTZ basis.66 Earlier work indicates that the typical
DFT-D methods are also rather insensitive to basis set
superposition error,15 making counterpoise correction67 un-
necessary. Our results here are not counterpoise corrected
unless otherwise noted. The double-hybrid functionals are
somewhat more sensitive to basis set and exhibit larger basis
set superposition errors because of the perturbation theory
term, as we discuss in more detail below.

Both functionals were implemented into the quantum
chemistry code NWChem.68 For the XYG3 functional, we
used for the second-order perturbation part the KS orbitals
that minimize the energy of the B3LYP functional. For
comparison purposes, some results are also obtained using
counterpoise-corrected second-order Møller-Plesset pertur-
bation theory (MP2) with an aug-cc-pVDZ basis.

Potential energy curves are evaluated for several prototype
dimers for which high-accuracy estimates quantum mechan-
ical benchmarks are available. The benchmark data were
obtained by extrapolating MP2 to the complete-basis-set

Exc ) axEx
HF + (1 - ax)Ex

DFT + b1Ec
PT2 + b2Ec

DFT

(5)

Exc
XYG3 ) axEx

HF + (1 - ax)Ex
Slater + a0∆Ex

B88 + acEc
PT2 +

(1 - ac)Ec
LYP (6)

EDFT-D ) EDFT + Edispersion (7)

Edispersion ) -s6 ∑
i)1

Nat

∑
j>i

Nat

f(Rij)
C6

ij

Rij
6

(8)
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(CBS) limit, and adding a higher-order electron correlation
correction evaluated as the difference between CCSD(T) and
MP2 using smaller basis sets. We will denote the basis set(s)
used for this “∆CCSD(T)” correction in parentheses, so that,
for example, CCSD(T)/CBS(∆ha(DT)Z) denotes an estimate
obtained from MP2/CBS binding energies, with a ∆CCSD
(T) correction evaluated as the difference between CCSD(T)
and MP2, both extrapolated to the CBS limit using a heavy-
aug-cc-pVDZ/heavy-aug-cc-pVTZ two-point extrapolation69

(and where “heavy-aug” indicates only non-hydrogen atoms
are augmented by diffuse functions). Recent work indicates
that such approximation schemes are very effective at
approaching the true CCSD(T)/CBS limit, especially when
it is possible to use basis sets larger than augmented double-�
for the ∆CCSD(T) correction.18

Here, we use previously published CCSD(T)/CBS esti-
mates as benchmarks for the following systems: the sand-
wich, T-shaped, and parallel-displaced configurations of
the benzene dimer,18 methane dimer,70 methane-benzene,18

H2S-benzene,18 the antiparallel sandwich pyridine dimer,71

and a T-shaped pyridine dimer.71

III. Results and Discussion

Potential energy curves (relative to infinitely separated
monomers) are presented in Figures 1-10 for B97-D, XYG3,
and estimated CCSD(T)/CBS. The benzene dimer figures
also include (counterpoise corrected) MP2/aug-cc-pVDZ
results for comparison. Table 1 presents the benchmark

CCSD(T)/CBS equilibrium intermolecular distances and
interaction energies for each system, and the errors in these
quantities for each of the approximate methods considered.
In general, both the B97-D and the XYG3 methods yield
quantitatively reliable potential energy curves. MP2/aug-cc-
pVDZ, by contrast, yields qualitatively correct but quanti-
tatively poor curves, which exhibit significant overbinding
for the sandwich and parallel-displaced configurations of the
benzene dimer. Larger basis sets lead to even greater
overbinding by MP2. Because of these fairly large errors,
MP2 results are not displayed for the remaining test cases
so that the range of the graphs makes the errors for B97-D
and XYG3 easier to see.

Figure 1. Potential energy curves for the sandwich benzene
dimer. CCSD(T)/CBS results from ref 18.

Figure 2. Potential energy curves for the T-shaped benzene
dimer. CCSD(T)/CBS results from ref 18.

Figure 3. Potential energy curves for the parallel-displaced
benzene dimer, with a vertical separation of 3.2 Å. CCSD(T)/
CBS results from ref 18.

Figure 4. Potential energy curves for the parallel-displaced
benzene dimer, with a vertical separation of 3.4 Å. CCSD(T)/
CBS results from ref 18.

Figure 5. Potential energy curves for the parallel-displaced
benzene dimer, with a vertical separation of 3.6 Å. CCSD(T)/
CBS results from ref 18.
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In the case of the benzene-methane complex (Figure 6),
we have examined the effect of counterpoise correction and
have compared the XYG3 double hybrid to the B2PLYP-D
empirically corrected double hybrid60 with the TZV2P basis
set. We also evaluated the original B2PLYP double hybrid
for this case (results not pictured), but B2PLYP-D performs
significantly better (the B2PLYP errors are around 0.8 kcal
mol-1 near equilibrium, as compared to around 0.1 kcal
mol-1 for B2PLYP-D). For this case, B2PLYP-D and XYG3
are nearly identical. Considering the effect of basis set
superposition error, B97-D is hardly affected by counterpoise
correction, but the counterpoise-corrected XYG3 curve is

significantly underbound and much less accurate than the
uncorrected XYG3. This suggests that XYG3 will perform
best when used without counterpoise correction and with the
6-311+G(3df,2p) basis set used during its parametrization.

Figure 6. Potential energy curves for the methane-benzene
complex. CCSD(T)/CBS results from ref 18. Curves labeled
(CP) include counterpoise correction. The XYG3 curve is
essentially coincident with the CCSD(T) curve to the left of
equilibrium, and coincident with the B2PLYP-D curve to the
right of equilibrium.

Figure 7. Potential energy curves for the H2S-benzene
complex. CCSD(T)/CBS results from ref 70.

Figure 8. Potential energy curves for the methane dimer.
CCSD(T)/CBS results from ref 70.

Figure 9. Potential energy curves for the antiparallel sand-
wich pyridine dimer. CCSD(T)/CBS results from ref 71.

Figure 10. Potential energy curves for a T-shaped pyridine
dimer. CCSD(T)/CBS results from ref 71.

Table 1. CCSD(T) Equilibrium Intermolecular Distances
(angstroms) and Interaction Energies (kcal mol-1), and
Errors for XYG3 and B97-D

CCSD(T) XYG3 B97-D

dimer R Eint ∆R ∆Eint ∆R ∆Eint

benzene dimer
sandwich

3.9 -1.701 -0.1 0.443 0.0 -0.151

benzene dimer
T-shaped

5.0 -2.698 -0.1 -0.106 -0.1 -0.340

benzene dimer
PD (3.2 Å)

1.9 -1.957 0.1 -0.301 0.0 -0.289

benzene dimer
PD (3.4 Å)

1.8 -2.643 0.0 -0.147 -0.1 -0.140

benzene dimer
PD (3.6 Å)

1.7 -2.654 0.0 -0.002 -0.1 -0.115

CH4-benzene 3.8 -1.439 -0.1 -0.011 -0.1 -0.111
H2S-benzene 3.8 -2.834 -0.1 0.004 -0.1 -0.026
CH4-CH4 3.6 -0.541 0.0 0.211 0.1 -0.069
pyridine dimer

sandwich
3.7 -2.948 0.0 0.208 0.0 -0.002

pyridine dimer
T-shaped

4.9 -2.954 0.0 -0.006 0.0 -0.156

mean deviation 0.0 0.029 0.0 -0.140
mean absolute

deviation
0.1 0.149 0.1 0.140
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For XYG3, the most noticeable errors are for the sandwich
benzene dimer and for the methane dimer. In the sandwich
benzene dimer, the XYG3 potential well is too shallow by
about 0.5 kcal mol-1, and it remains underbound by several
tenths of one kcal mol-1 at larger distances also. The methane
dimer, likewise, is underbound across the potential curve,
with errors around 0.2 kcal mol-1 near equilibrium; this error
decreases slowly as the intermolecular distance increases.
These errors are quite small, but they are perhaps significant
when compared to the total methane dimer CCSD(T)/CBS
interaction energy of -0.54 kcal mol-1 at equilibrium. XYG3
shows slight underbinding in the parallel benzene dimer at
small horizontal displacements (near the sandwich config-
uration, amouting to an error of about 0.3 kcal mol-1 at a
vertical separation of 3.6 Å), and for the antiparallel pyridine
sandwich, there is also a slight underestimation of the
intermolecular interation (by about 0.2 kcal mol-1 near
equilibrium). Although somewhat difficult to see from Figure
3, XYG3 is slightly overbound for the parallel-displaced
benzene dimer, with errors of around -0.3 kcal mol-1 for
intermediate horizontal displacements. For the other test
cases, the XYG3 potential curves lie very close to the
benchmark CCSD(T)/CBS curves. Overall, XYG3 performs
very well, with errors of a few tenths of a kcal mol-1 or less
across the potential curves.

The overall performance of B97-D is quite similar to that
of XYG3; it also yields binding energies that are within a
few tenths of one kcal mol-1 of CCSD(T)/CBS values across
the potential curves, but it tends to slightly overestimate
binding. B97-D is somewhat more reliable than XYG3 for
estimating interaction energies near equilibrium geometries
of several of the systems considered here (e.g., sandwich
benzene dimer, methane dimer, and the antiparallel sandwich
pyridine dimer), but it does not perform as well as XYG3 at
the equilibrium geometry of the T-shaped benzene dimer or
the T-shaped pyridine dimer. Overall, the mean absolute
errors in equilibrium interaction energies are very similar
for XYG3 and B97-D (0.15 and 0.14 kcal mol-1, respec-
tively; see Table 1). In a majority of the test cases, B97-D
slightly overestimates binding at intermediate to large
intermolecular distances.72 A typical error would be in the
range of 0-0.2 kcal mol-1, although it can be larger (e.g.,
around 0.3 kcal mol-1 for the sandwich benzene dimer at
an intermolecular separation of 5.0 Å).

Table 2 presents the statistics for the errors across the
potential curves considered. Although the more noticeable
errors for XYG3 in the figures correspond to a slight
underbinding, the mean error across all points considered is
actually very close to zero (about 0.01 kcal mol-1). The mean
absolute deviation across all points is 0.14, and the maximum
error is 0.47 kcal mol-1. As mentioned above, B97-D has a
slight tendency to overbind dimers, and this is reflected in
the negative mean error in interaction energies of -0.16 kcal
mol-1. The mean absolute deviation of 0.18 and the max-
imum error of 0.68 kcal mol-1 are both slightly larger than
those observed for XYG3 for the points considered. Overall,
then, XYG3 and B97-D appear to perform similarly for these
protoypes of nonbonded interactions, with the errors of
XYG3 being slightly smaller.

IV. Conclusions

The recent availability of benchmark-quality potential energy
curves for various weakly bound dimers makes it possible
to assess the quality of new theoretical methods for describ-
ing nonbonded interactions across a range of geometries.
Here, we compared the double-hybrid density functional
approximation XYG3 and the empirically dispersion-cor-
rected B97-D approach. Both methods performed very well
for the potential energy curves considered, with errors no
more than a few tenths of one kcal mol-1 along the curves.
B97-D with its recommended TZV2P basis tends to slightly
overbind the dimers considered, while XYG3 with its
recommended 6-311+G(3df,2p) basis overbinds about as
often as it underbinds. For the benzene-methane complex,
we also examined the empirically corrected double-hybrid
functional B2PLYP-D,60 which performed nearly identically
to XYG3. For this dimer, we also found that B97-D/TZV2P
is rather insensitive to counterpoise correction, whereas
counterpoise-corrected XYG3/6-311+G(3df,2p) results were
significantly less accurate than the uncorrected values.

The B97-D and XYG3 methods exhibited mean absolute
deviations of 0.18 and 0.14 kcal mol-1, respectively, across
all geometries considered. Such small errors are difficult to
achieve even when using high-level electronic structure
methods for these systems,18 and thus either approach
appears to be suitable for typical applications to weakly
interacting systems. It should be noted that double-hybrid
functionals have a significantly greater computational cost
as compared to pure DFT functionals, although in principle
this could be alleviated to some extent by using an auxiliary
basis and local correlation approaches.
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Table 2. Statistics for the Errors of Approximate Methods
across the Potential Energy Curves Considereda

XYG3 B97-D

curve Npts MD MAD MAX MD MAD MAX

benzene dimer
sandwich

17 0.27 0.27 0.47 -0.20 0.20 -0.41

benzene dimer
T-shaped

18 -0.05 0.10 -0.24 -0.15 0.22 0.57

benzene dimer
PD (3.2 Å)

37 -0.24 0.24 -0.33 -0.32 0.32 -0.41

benzene dimer
PD (3.4 Å)

37 -0.07 0.10 -0.15 -0.17 0.17 -0.24

benzene dimer
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errors (MAX) are given in kcal mol-1.
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(16) Jurečka, P.; Černý, J.; Hobza, P.; Salahub, D. R. J. Comput.
Chem. 2007, 28, 555–569.

(17) Hohenstein, E. G.; Chill, S. T.; Sherrill, C. D. J. Chem. Theory
Comput. 2008, 4, 1996–2000.

(18) Sherrill, C. D.; Takatani, T.; Hohenstein, E. G. J. Phys. Chem.
A 2009, 113, 10146–10159.

(19) Xu, X.; Goddard, W. A. Proc. Natl. Acad. Sci. U.S.A. 2003,
101, 2673–2677.

(20) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Phys. 2005,
123, 161103.

(21) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory
Comput. 2006, 2, 364–382.

(22) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101.

(23) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–
241.

(24) von Lilienfeld, O. A.; Tavernelli, I.; Rothlisberger, U.;
Sebastiani, D. Phys. ReV. Lett. 2004, 93, 153004–153007.

(25) von Lilienfeld, O. A.; Tavernelli, I.; Rothlisberger, U.;
Sebastiani, D. Phys. ReV. B 2005, 71, 195119.

(26) Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.;
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Abstract: Theoretical studies on the dimetallocenes Cp2M2 (M ) Os, Re, W, Ta) predict bent
structures with short metal-metal distances suggesting high-order metal-metal multiple bonds.
Analysis of the frontier bonding molecular orbitals indicates a formal Os-Os quintuple bond (σ
+ 2π + 2δ) in singlet Cp2Os2 and a formal Re-Re sextuple bond (2σ + 2π + 2δ) in singlet
Cp2Re2, thereby giving the metals in both molecules the favored 18-electron metal configurations.
Predicted low-energy triplet structures for Cp2M2 (M ) Os, Re) have formal quintuple bonds but
with only two δ one-electron “half” bonds (M ) Os) or a single δ two-electron bond (M ) Re)
and a second σ component derived from overlap of the d(z2) orbitals. A quintuple bond similar
to that found in triplet Cp2Re2 is found in singlet Cp2W2, giving both tungsten atoms a 16-electron
configuration. The formal Ta-Ta quadruple bond in the lowest energy singlet Cp2Ta2 structure
is different from that in the original Re2Cl82- in that it is a 2σ + 2π bond with no δ components
but only σ and π components.

1. Introduction

The chemistry of metal-metal multiple bonding1,2 dates
back to the pioneering work of Cotton and Harris3 in 1965
on the rhenium-rhenium quadruple bond in the binuclear
metal halide complex Re2Cl8

2-. This was not only the first
example of a metal-metal quadruple bond but also the
first example of a quadruple bond of any type. The highest
known formal metal-metal bond order in a stable
molecule then remained four for 40 years until the 2005
discovery by Power et al.4 of a binuclear chromium(I)
aryl of the type RCrCrR, with an extremely short
metal-metal distance, suggesting a formal quintuple bond.
This seminal discovery stimulated numerous theoretical

studies on high order metal-metal bonds.5-11 In addition,
various research groups reported further experimental
work on low oxidation state transition metal aryls of the
type RMMR12,13 as well as chromium(I) amidinate,14,15

2-aminopyridine,16 and diazadiene17 complexes, appar-
ently containing formal quintuple bonds.

Another key development in organometallic chemistry
in recent years has been the synthesis of formal Zn(I)
derivatives with direct Zn-Zn bonds.18,19 Such com-
pounds include dizincocene, CpZn-ZnCp (Cp ) η5-C5H5),
in which two CpZn units are linked by a direct zinc-zinc
single bond of length 2.305 Å to give both zinc atoms
the favored 18-electron configuration.18 Simple electron
counting guided by the 18-electron rule suggests that
analogous dimetallocenes of earlier transition metals could
provide interesting new examples of metal-metal multiple
bonding. The stability of Re2Cl8

2- with a formal rhenium-
rhenium quadruple bond3 suggests that the best candidates
for stable dimetallocenes with interesting metal-metal mul-
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tiple bonds might contain the heaviest transition metals,
particularly those of the third row.

These considerations led us to investigate dimetallocenes
Cp2M2 of the early transition metals of the third row (M )
Os, Re, W, Ta) as candidates for new types of molecules
with high order metal-metal bonds. In this connection, all
of these dimetallocenes were found by density functional
theory (DFT) to exhibit bent structures in contrast to the
coaxial structure found18 for Cp2Zn2 and the perpendicular
structures for late transition metal metallocenes predicted by
theory in 2005 (Figure 1).20

The theoretical studies of the dimetallocenes Cp2M2 (M
) Os, Re, W, Ta) discussed in this paper consist of two
phases: (1) optimizations of structures with singlet, triplet,
and quintet spin states using density functional methods and
(2) elucidation of the formal metal-metal bond orders in
the lowest energy optimized structures by analysis of the
highest occupied molecular orbitals (MOs). The MO studies
provide more direct evidence for the high order metal-metal
multiple bonds, already suggested by the relatively short
metal-metal distances. Thus, evidence is provided for the
formal osmium-osmium quintuple bond in Cp2Os2 required
to give both osmium atoms the favored 18-electron rare gas
configuration.

2. Theoretical Methods

Electron correlation effects were considered by employing
density functional theory (DFT), which has evolved as a
practical and effective computational tool, especially for
organometallic compounds.21-35 In this research, two DFT
methods, BP86 and MPW1PW91, were used. The BP86
method is a pure DFT method that combines Becke’s 1988
exchange functional with Perdew’s 1986 correlation func-
tional.36,37 The MPW1PW91 method38 is a so-called second
generation39 functional, which combines the modified
Perdew-Wang exchange functional with Perdew-Wang’s
1991 correlation functional.40 The MPW1PW91 method has
been found to be typically more suitable for geometry
optimization of the second and third row transition metal
systems,41,42 while the BP86 method usually provides better
vibrational frequencies with DZP basis sets.

For the third row transition metals, the large numbers of
electrons may increase exponentially the computational
efforts. In order to reduce the cost, effective core potential
(ECP) relativistic basis sets are employed. The SDD
(Stuttgart-Dresden ECP plus DZ)43 ECP basis set was used
for the Os, Re, W, and Ta atoms. For the C atom, the
double-� plus polarization (DZP) basis set was used. The
latter are the Huzinaga-Dunning contracted double-� sets44,45

plus a set of spherical harmonic d polarization functions with
an orbital exponent Rd(C) ) 0.75, designated as (9s5p1d/

4s2p1d). For H, a set of p polarization functions, Rp(H) )
0.75, was added to the Huzinaga-Dunning DZ set.

The geometries of all structures were fully optimized
using the two selected DFT methods with the SDD ECP
basis set. The vibrational frequencies were determined by
evaluating analytically the second derivatives of the energy
with respect to the nuclear coordinates at the same the-
oretical levels. The corresponding infrared intensities were
also evaluated analytically.

All of the computations were carried out with the Gaussian
03 program.46 The fine (75, 302) grid is the default for
evaluating integrals numerically, and the tight (10-8 hartree)
designation is the default for the energy convergence. The
finer grid (120, 974) was used for more carefully character-
izing small imaginary vibrational frequencies.

3. Results

3.1. Cp2M2 (M ) Os, Re, W, Ta) Structures.
3.1.1. Cp2Os2. Initially, we investigated the linear D5h and
D5d structures of Cp2Os2, which are similar to the experi-
mental Cp2Zn2 structure.18 However, these structures were
found to have four imaginary vibrational frequencies at 160i,
160i, 56i, and 56i cm-1 (for D5h) or 160i, 160i, 56i, and
56i cm-1 (for D5d). Following the corresponding normal
modes leads to the bent C2h structure Os-S, which lies below
the two linear structures by ∼49 kcal/mol.

The bent C2h singlet structure Os-S (Figure 2 and Table
1) is the global minimum. The Os-Os distance in Os-S is
predicted to be 2.333 Å (MPW1PW91) or 2.276 Å (BP86).
This is short enough to correspond to the formal quintuple
bond required to give both osmium atoms the favored 18-
electron configuration. Furthermore, the Os-Os distance in
Os-S is ∼0.5 Å shorter than the experimental Os-Os single
bond distance of 2.767 Å in (η5-Me5C5)2Os2(CO)2(µ-CO)2

determined by X-ray crystallography.47

The triplet structure Os-T for Cp2Os2 (Figure 2) is
predicted to lie only 0.1 kcal/mol (MPW1PW91) lower or
3.6 kcal/mol (BP86) higher in energy than the singlet
structure Os-S (Table 1). A small imaginary vibrational
frequency at 67i cm-1 is predicted by the MPW1PW91
method, while all real vibrational frequencies are predicted
by the BP86 method. The 67i cm-1 imaginary vibrational
frequency cannot be removed by using a finer integration
grid (120, 974). Following the corresponding normal mode
of the imaginary vibrational frequency leads to a C1 structure,
which only slightly deviates from the C2 structure Os-T.
The Os-Os bond length in Os-T is predicted to be
2.277 Å (MPW1PW91) or 2.255 Å (BP86).

The quintet structure Os-Q for Cp2Os2 (C2) is predicted
to have all real vibrational frequencies by both DFT methods
and lies 6.7 kcal/mol (MPW1PW91) or 17.0 kcal/mol (BP86)
higher in energy than the singlet structure Os-S (Table 1).
The Os-Os bond length in Os-Q is predicted to be
essentially the same as Os-T, namely, 2.281 Å (MPW1PW91)
or 2.290 Å (BP86), respectively. Note that all three Os-Os
distances are essentially the same for the three Cp2Os2

structures Os-S, Os-T, and Os-Q regardless of the spin
state.

Figure 1. Three types of dimetallocene structures.
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3.1.2. Cp2Re2. The global minimum of Cp2Re2 is predicted
to be a C2 triplet trans structure Re-T1 (Figure 3 and Table
2) with all real vibrational frequencies by the MPW1PW91
method but with a very small imaginary vibrational frequency
at 18i cm-1 by the BP86 method. This imaginary vibrational
frequency is removed by using a finer integration grid (120,
974), indicating that it is caused by numerical integration
error. The Re-Re distance in Re-T1 is predicted to be very
short at 2.323 Å (MPW1PW91) or 2.272 Å (BP86), sug-
gesting a metal-metal bond of high multiplicity. In this con-
nection, the formal RetRe triple bond in (η5-Me5C5)2Re2(µ-
CO)3 is found experimentally by X-ray diffraction48 to be
2.411 Å, suggesting on the basis of bond length a formal
bond order appreciably greater than three for the appreciably
shorter Re-Re bond in Re-T1. A related cis C2 triplet
Cp2Re2 structure Re-T2 (Figure 3 and Table 2) is also
predicted to be a genuine minimum, lying only 0.9 kcal/
mol (MPW1PW91) or 2.3 kcal/mol (BP86) above the global
minimum Re-T1.

A singlet Cp2Re2 structure Re-S (Figure 3 and Table 2)
is predicted at 8.0 kcal/mol (MPW1PW91) or 0.6 kcal/mol
(BP86) in energy above Re-T1 with all real vibrational
frequencies. The Re-Re distance in Re-S is predicted to
be even 0.08 Å shorter than the already very short Re-Re
distance in Re-T1. This is consistent with the requirement
in Cp2Re2 of a formal quintuple bond to give the rhenium
atoms in Cp2Re2 the 17-electron rhenium configurations in
the binuclear triplet Re-T1 but a formal sextuple bond for
the favored 18-electron rhenium configurations in the singlet
Re-S.

The C2h symmetry quintet Cp2Re2 structure Re-Q3 (Figure
3 and Table 2) is predicted to lie 2.3 kcal/mol (MPW1PW91)
or 8.8 kcal/mol (BP86) higher in energy than the global
minimum Re-T1. The MPW1PW91 method predicts all real
vibrational frequencies for Re-Q3(C2h), while a substantial
imaginary vibrational frequency at 142i cm-1 is predicted
by the BP86 method. Following the corresponding normal
mode of this imaginary vibrational frequency leads to
structure Re-Q1 (Ci, Figure 3), which is 1.2 kcal/mol (BP86)
lower in energy than Re-Q3 (Table 2). A cis Cp2Re2 quintet
C2 structure Re-Q2 (Figure 3 and Table 2) is predicted to
lie 0.9 kcal/mol (BP86) higher in energy than Re-Q1 (Ci).
The Re-Re bond lengths in Re-Q1 and Re-Q2 are almost
the same at 2.305 Å (BP86), whereas a slightly longer
Re-Re bond at 2.339 Å (BP86) is predicted for structure
Re-Q3. Since unstable electronic states could be the
computational results for the bimetallic systems and Re-Q1

and Re-Q2 are two prime candidates for this problem, we
checked the stability for these two structures. However, our
results confirm that they are both stable.

3.1.3. Cp2W2. The C2 singlet Cp2W2 structure W-S
(Figure 4 and Table 3) is predicted to be the global minimum
of Cp2W2 by the BP86 method. The triplet and quintet
structures of Cp2W2 are predicted by BP86 to lie 9.0 and
10.3 kcal/mol, respectively, higher in energy than W-S
(Table 3). However, the C2 quintet structure W-Q is
predicted tobe theglobalminimumforCp2W2 byMPW1PW91
at just 1.4 kcal/mol lower in energy than W-S. All four
Cp2W2 structures are found to have all real vibrational
frequencies by BP86. Whereas, the Cp2W2 structures W-S
and W-T1 (Figure 4, Table 3) are predicted to have small
imaginary vibrational frequencies at 22i cm-1 (W-S) or 32i
cm-1 (W-T1) with the MPW1PW91 method (Table 3).
These small imaginary vibrational frequencies are not
removed by the finer integration grid of (120, 974). Following
the corresponding normal modes (Cp ring rotations) of these
small imaginary vibrational frequencies led to C1 structures
with essentially unchanged W-W distances and energies
lower by only ∼1 kcal/mol. The triplet structures W-T1 and
W-T2 (Figure 4, Table 3) exhibit significant spin contami-
nation by the MPW1PW91 method, namely, 〈S2〉 ) 2.33 and
2.23 versus the ideal S(S + 1) ) 2, however, the BP86
method predicts less spin contamination (〈S2〉 ) 2.07 and
2.09) for these two triplet structures. The W-W distances
of Cp2W2 structures are predicted to fall in the range of
2.291 Å to 2.414 Å, consistent with higher order W-W

Figure 2. Optimized structures for Cp2Os2. Distances are reported in Å. The upper distances were predicted by the MPW1PW91
method and the lower distances by the BP86 method (same for subsequent figures).

Table 1. Total Energies (E, in Hartree), Relative Energies
(∆E, in kcal/mol), Numbers of Imaginary Vibrational
Frequencies (Nimag), Os-Os Bond Distances (Å), and
Spin Expectation Values 〈S2〉 for the Optimized Cp2Os2

Structures

Os-S (C2h) Os-T (C2) Os-Q (C2)

state 1Ag
3B 5A

MPW1PW91 E -568.42221 -568.42243 -568.41160
∆E 0.0 -0.1 6.7
Nimag 0 1(67i) 0
Os-Os 2.333 2.277 2.281
〈S2〉 0 2.02 6.03

BP86 E -568.71958 -568.71385 -568.69253
∆E 0.0 3.6 17.0
Nimag 0 0 0
Os-Os 2.276 2.255 2.290
〈S2〉 0 2.01 6.02
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multiple bonds. For comparison, the WtW triple bond
distance found by X-ray crystallography49 in Cp2W2(CO)2(µ-
Ph2PCH2PPh2) is 2.514 Å. This suggests formal bond orders
greater than three for the Cp2W2 structures.

3.1.4. Cp2Ta2. The global minimum of Cp2Ta2 is pre-
dicted to be a C2 triplet structure Ta-T, having all real
vibrational frequencies (Figure 5, Table 4) and a Ta-Ta
bond distance of 2.467 Å (MPW1PW91) or 2.480 Å
(BP86). In addition, trans and cis singlet Cp2Ta2 structures

Ta-S1 (C2h) and Ta-S2 (C2) are predicted to lie above
Ta-T by ∼5.7 kcal/mol or ∼11.2 kcal/mol by MPW1PW91

but ∼0.7 kcal/mol lower or ∼4.9 kcal/mol higher in energy
by BP86 (Figure 5, Table 4). These two singlet structures
are both predicted to be genuine minima, having all real
vibrational frequencies. The short Ta-Ta bond lengths

at 2.369 Å to 2.417 Å in the singlet Cp2Ta2 structures are
again consistent with higher order multiple bonds.

Figure 3. Optimized structures of Cp2Re2.

Table 2. Total Energies (E, in Hartree), Relative Energies (∆E, in kcal/mol), Numbers of Imaginary Vibrational Frequencies
(Nimag), Re-Re Bond Distances (Å), and Spin Expectation Values 〈S2〉 for the Optimized Cp2Re2 Structures

Re-S Re-T1 Re-T2 Re-Q1 Re-Q2 Re-Q3

(C2) (C2) (C2) (Ci) (C2) (C2h)

state 1A 3B 3B 5Ag
5A 5Bg

MPW1PW91 E -543.56593 -543.57860 -543.57723 -543.57497
∆E 8.0 0.0 0.9 2.3
Nimag 0 0 0 same as Re-Q3 (C2h) 0
Re-Re 2.247 2.323 2.317 2.355
〈S2〉 0 2.22 2.03 6.08

BP86 E -543.85837 -543.85931 -543.84719 -543.84579 -543.84579 -543.84533
∆E 0.6 0.0 2.3 7.6 8.5 8.8
Nimag 0 1(18i) 0 0 0 1(142i)
Re-Re 2.193 2.272 2.282 2.305 2.306 2.339
〈S2〉 0 2.04 2.01 6.03 6.08 6.03

Figure 4. Optimized structures of Cp2W2.
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The trans and cis quintet structures Ta-Q1 (C2h) and
Ta-Q2 (C1), respectively, are predicted to have all real
vibrational frequencies by BP86 (Figure 5, Table 4), while
a small imaginary vibrational frequency at 29i cm-1 for
Ta-Q1 is predicted by MPW1PW91. Following the corre-
sponding normal mode, which corresponds to Cp ring
rotation, leads to a Cs structure with an energy lower by only
∼0.2 kcal/mol. The two quintet Cp2Ta2 structures are
predicted to lie in energy above Ta-T by ∼6.0 kcal/mol
(MPW1PW91) or ∼10.5 kcal/mol (BP86). The Ta-Ta
distances in Ta-Q1 and Ta-Q2 are predicted to fall in the
range of 2.600 Å to 2.664 Å, which is ∼0.15 to ∼0.25 Å
longer than those for the singlet and triplet Cp2Ta2 structures.

3.2. Cp2M2 (M ) Os, Re, W, Ta) Molecular
Orbitals. The very short M-M bond distances in the Cp2M2

derivatives (M ) Os, Re, W, Ta) suggest metal-metal
multiple bonds of relatively high bond orders for practically
all of the predicted structures. For singlet Cp2Os2 and singlet
Cp2Re2, these metal-metal distances are even short enough
to suggest the formal quintuple and sextuple bonds, respec-

tively, required to give both metal atoms the favored 18-
electron configurations. In order to obtain further evidence
beyond simply very short M-M distances for these very
interesting metal-metal multiple bonds in the Cp2M2 deriva-
tives, their frontier molecular orbitals (MOs) were investi-
gated. The highest occupied molecular orbitals (HOMO) as
well as the (typically) five or six orbitals below the HOMO
were found to be localized mainly on the metal-metal bonds
with relatively little on the Cp rings. These frontier MOs
were used to characterize the metal-metal bonding in the
dimetallocenes Cp2M2 (M ) Os, Re, W, Ta). In this
connection, the formal bond order of the metal-metal bond
(FBOM-M) can be defined by the equation FBOM-M ) 1/2(nB

- nA) where nB and nA are the numbers of electrons in the
bonding and antibonding orbitals, respectively. The analyses
for the all of the optimized Cp2M2 structures discussed in
this paper are summarized in Table 5, along with the M-M
bond distances determined by the BP86 method, where data
for all of the structures are available. The MOs for the lowest
energy Cp2M2 structures exhibiting metal-metal quintuple

Table 3. Total Energies (E, in Hartree), Relative Energies (∆E, in kcal/mol), Numbers of Imaginary Vibrational Frequencies
(Nimag), W-W Bond Distances (Å), and Spin Expectation Values 〈S2〉 for the Optimized Cp2W2 Structures

W-S (C2) W-T1 (C2) W-T2 (C2) W-Q (C2)

state 1A 3B 3B 5A

MPW1PW91 E -521.13768 -521.12591 -521.12455 -521.13991
∆E 0.0 7.4 8.2 -1.4
Nimag 1(22i) 1(32i) 0 0
W-W 2.306 2.305 2.324 2.414
〈S2〉 0 2.33 2.23 6.05

BP86 E -521.40576 -521.39143 -521.38738 -521.38932
∆E 0.0 9.0 11.5 10.3
Nimag 0 0 0 0
W-W 2.291 2.291 2.293 2.413
〈S2〉 0 2.07 2.09 6.02

Figure 5. Optimized structures of Cp2Ta2.

Table 4. Total Energies (E, in Hartree), Relative Energies (∆E, in kcal/mol), Numbers of Imaginary Vibrational Frequencies
(Nimag), Ta-Ta Bond Distances (Å), and Spin Expectation Values 〈S2〉 for the Optimized Cp2Ta2 Structures

Ta-S1 (C2h) Ta-S2 (C2) Ta-T (C2) Ta-Q1 (C2h) Ta-Q2 (C1)

state 1Ag
1A 3B 5Ag

5A

MPW1PW91 E -500.97396 -500.96438 -500.98219 -500.97303 -500.97233
∆E 5.7 11.2 0.0 5.7 6.2
Nimag 0 0 0 1(29i) 0
Ta-Ta 2.369 2.378 2.467 2.664 2.608
〈S2〉 0 0 2.01 6.02 6.08

BP86 E -501.21582 -501.20683 -501.21469 -501.19919 -501.19673
∆E -0.7 4.9 0.0 9.7 11.3
Nimag 0 0 0 0 0
Ta-Ta 2.398 2.417 2.480 2.657 2.600
〈S2〉 0 0 2.01 6.01 6.02
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and sextuple bonding are discussed in detail below. A
complete set of the figures of the relevant frontier orbitals
of all of the optimized Cp2M2 structures is given in the
Supporting Information.

The M-M bond distances listed in Table 5 show a rough
correlation with the formal metal-metal bond order FBOM-M

as determined by the numbers of electrons in M-M bonding
and M-M antibonding orbitals. Thus, the unique structure
with a formal sextuple bond, namely, the singlet Cp2Re2

structure Re-S, has a Re-Re bond distance of 2.193 Å,
which is shorter than any of the other Cp2M2 derivatives by
0.06 Å or more. The Cp2M2 derivatives with formal M-M
quintuple bonds are predicted to have metal-metal distances
in the rather narrow range of 2.25 to 2.29 Å. Comparison of
these M-M distances with the 2.222 Å length of the Re-Re
quadruple bond in Re2Cl8

2- found experimentally50 suggests
that Cp ligands lead to longer M-M bonds of a given
multiplicity than chloride ligands. The formal M-M qua-
druple bonds in the Cp2M2 derivatives are predicted to fall
in the range 2.30 to 2.41 Å and thus are significantly longer
than the formal Re-Re quadruple bond in Re2Cl8

2-. The
TatTa triple bonds in the Cp2Ta2 derivatives Ta-T, Ta-Q1,
and Ta-Q2 are still longer at 2.48 to 2.66 Å.

The method of determining the formal bond orders is
illustrated for Cp2Os2 by the singlet structure Os-S (Figures
2 and 6). In this case, the seven highest energy occupied
MOs (HOMO down to HOMO-6) have their electron
densities concentrated on the metals rather than the rings
and thus may be assumed to be responsible for the metal-
metal bonding. The lower occupied MOs have most of their
electron density on the rings (HOMO-7 to HOMO-10 in
Figure 6 and further down) and thus may be related to
metal-ring bonding. Among the seven highest occupied
MOs, one (HOMO) is clearly antibonding and the other six
(HOMO-1 down to HOMO-6) are clearly bonding since

Table 5. Formal Metal-Metal Bond Order in the
Dimetallocene Structures Cp2M2 (M ) Os, Re, W, Ta) as
Determined by an Analysis of the Bonding Molecular
Orbitals

structure
bonding
electrons

antibonding
electrons

M-M bond
ordera (FBOM-M)

M-M distance,
Å (BP86)

Cp2Os2

Os-S 12 2 5 2.276
Os-T 12 2 42/2 2.255
Os-Q 12 2 5 2.290

Cp2Re2

Re-S 12 0 6 2.193
Re-T1 11 1 5 2.272
Re-T2 11 1 5 2.282
Re-Q1 10 2 4 2.305
Re-Q2 10 2 4 2.306
Re-Q3 10 2 4 2.339

Cp2W2

W-S 10 0 5 2.291
W-T1 10 0 42/2 2.291
W-T2 10 0 42/2 2.293
W-Q 9 1 4 2.413

Cp2Ta2

Ta-S1 8 0 4 2.398
Ta-S2 8 0 4 2.417
Ta-T 7 1 3 2.480
Ta-Q1 7 1 3 2.657
Ta-Q2 7 1 3 2.600

a The notation “2/2” refers to a pair of essentially degenerate
one-electron “half bonds.”

Figure 6. The frontier MOs for the singlet structure Os-S of Cp2Os2. (a) Top: The unoccupied LUMOs up to LUMO+4. (b)
Middle: The occupied HOMOs down to HOMO-6 relating to the osmium-osmium bonding. (c) Bottom: The next lower occupied
MOs (HOMO-7 down to HOMO-10), relating largely to the metal-ring bonding.
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there is no node between the metal atoms. This pattern of
the occupied MOs (six bonding orbitals and one antibonding
orbital) leads to a formal bond order of 1/2(12 - 2) ) 5, i.e.,
the formal quintuple bond needed to give both osmium atoms
the favored 18-electron configuration in Cp2Os2.

The bent nature of the diosmocene structure Os-S (Figure
2) makes less clear the nature of the components of the
osmium-osmium quintuple bond. However, the six bonding
orbitals HOMO-1 to HOMO-6 (Figure 6) appear to
correspond to two δ bonds, a σ(z2) bond, a π bond, a σ(s)
bond, and another π bond, respectively. The filled antibond-
ing orbital (HOMO) appears to be a σ*(z2) orbital, thereby
canceling out the σ(z2) bonding component and leaving the
five σ(s) + 2π + 2δ bonding components for the quintuple
bond, similar to the quintuple bond in the binuclear Cr(I)
aryl derivative RCrCrR of Power et al.4 Also, the shapes of
the MOs for Cp2Os2 (Figure 6) indicate the expected weaker
overlap in the two δ components HOMO-1 and HOMO-2
relative to the σ and π components.

A low energy triplet structure Os-T (Figure 2) is also
found for Cp2Os2. The frontier molecular orbitals for Os-T

are shown in Figure 7. The two MOs below the LUMO,
namely, SOMO and SOMO-1, contain only a single electron
corresponding to the triplet spin multiplicity of Os-T. Both
of these orbitals correspond to δ* antibonding orbitals. The
next six orbitals below SOMO-1, namely, HOMO-2
through HOMO-7, each contain electron pairs and cor-
respond to a δ bonding orbital, a σ(z2) bonding orbital,
another δ bonding orbital, two π bonding orbitals, and a σ
bonding orbital. Thus, the eight orbitals from SOMO down
to HOMO-7 correspond to an Os-Os quintuple bond
consisting of 2σ + 2π full bonds and two δ half bonds, i.e.,
a bond of order 42/2. This is analogous to the well-known
bond of order 12/2 in normal (triplet) dioxygen except that
in dioxygen the half bonds are π bonds rather than the δ
bonds in structure Os-T of Cp2Os2. Thus, both singlet
Cp2Os2 (Os-S) and triplet Cp2Os2 (Os-T) have metal-metal
bonds of order 5 to give the osmium atoms the favored 18-
electron configurations. In the singlet Os-S, the Os-Os
quintuple bond is of the type σ + 2π + 2δ with one σ bond
and two full two-electron δ bonds. However, in triplet Os-T,
the Os-Os quintuple bond is of the type 2σ + 2π + 2/2δ

Figure 7. The frontier MOs for the triplet structure Os-T of Cp2Os2. (a) LUMOs up to LUMO+3 are unoccupied orbitals. (b)
SOMO and SOMO-1 are osmium-osmium antibonding orbitals. (c) HOMO-2 to HOMO-7 are osmium-osmium bonding
orbitals. (d) Bottom: The next lower occupied MOs (HOMO-8 down to HOMO-11) relate largely to the metal-ring bonding.
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with two δ single electron “half” bonds and a second σ bond
based on overlap of the d(z2) orbitals. The predicted Os-Os
distances for these two types of quintuple bonds are within
0.02 Å of each other, namely, 2.276 Å for the singlet Os-S
and 2.255 Å for the triplet Os-T.

Dirhenocene, Cp2Re2, has two electrons less than diso-
mocene Cp2Os2. In the singlet structure Re-S (Figure 3)
for dirhenocene, the σ* antibonding HOMO of Cp2Os2

(Figure 6) is empty because of these “missing” two elec-
trons. Therefore, the Re-Re bond in Re-S has six compo-
nents, namely, two π components and four σ and δ com-
ponents. Because of the bending in Re-S, the σ and δ
components are not readily distinguishable. These six
components of the Re-Re bond in Re-S imply that the
sextuple bond required to give both rhenium atoms the
favored 18-electron configuration. Thus, six of the nine
orbitals in the sp3d5 manifolds of each rhenium atom are
allocated to the Re-Re sextuple bond leaving three orbitals
on each metal atom for the σ + 2π components of the
metal-ring bonds. A sextuple bond has been postulated for
the bare dimers M2 (M ) Cr, Mo, W) of the group 6
metals.51 Note that the d6 formal Re(I) in Cp2Re2 is
isoelectronic with the d6 formal M(0) in the group 6 metal
dimers (considering the Cp ring as Cp- with the favorable 6
π electrons). The formal sextuple bond in the Cp2Re2

structure Re-S is consistent with its predicted 2.22 ( 0.03
Å distance being ∼0.08 Å shorter than the formal Os-Os
quintuple bond distance of 2.30 ( 0.03 Å in the singlet
Cp2Os2 structure Os-S.

The lowest energy Cp2Re2 structure by either method is
not the singlet Re-S but the triplet Re-T1, which lies
marginally lower in energy (Figure 3 and Table 2). The

frontier MOs of Re-T1 are shown in Figure 8. The Re-T1

SOMOs, like those in the triplet Cp2Os2 structure Os-T
discussed above, contain only a single electron, yielding
triplet spin multiplicity. One of these half-filled orbitals
(SOMO) is a δ* antibonding orbital, whereas the other half-
filled orbital (SOMO-1) is a δ bonding orbital. Thus, these
two half-filled orbitals in Re-T1 make no net contribution
to the rhenium-rhenium bonding. The five orbitals below
the SOMOs, namely HOMO-2 to HOMO-6, inclusive
(Figure 8), all contain electron pairs and have most of their
electron density on the rhenium atoms rather than the Cp
rings. These five orbitals represent the five components of a
Re-Re quintuple bond thereby giving both rhenium atoms
the 17-electron configurations for a binuclear triplet. How-
ever, this Re-Re quintuple bond in Re-T1 has σ(s) + σ(z2)
+ 2π + δ components rather than the σ(s) + 2π + 2δ
components of the Os-Os quintuple bond in Os-S (Figure
6). The formal quintuple bond in the Cp2Re2 triplet Re-T1

is consistent with the predicted Re-Re distance of 2.30 (
0.03 Å, which is essentially identical to the Os-Os quintuple
bond distance in Os-S and longer than the Re-Re sextuple
bond distance of 2.22 ( 0.03 Å for singlet Re-S. The Re-T1

orbitals below HOMO-6 (e.g., HOMO-7 through HO-
MO-10 in Figure 8) have most of their electron density on
the Cp rings and thus may be related to the rhenium-ring
bonding.

Ditungstenocene, Cp2W2, has two electrons less than
dirhenocene. The lowest energy Cp2W2 structure is the singlet
W-S (Figure 4). The frontier MOs of W-S are shown in
Figure 9. The five highest lying filled MOs (HOMO down
to HOMO-4) have their electron densities concentrated on
the metal-metal bond and are all bonding orbitals. This

Figure 8. The frontier MOs for structure Re-T1 of Cp2Re2. (a) Top: The unoccupied LUMO up to LUMO+4. (b) Middle: The
occupied orbitals SOMO, SOMO-1, and HOMO-2 down to HOMO-6, relating to the rhenium-rhenium bonding. (c) Bottom:
The next lower occupied MOs (HOMO-7 down to HOMO-10), relating largely to the metal-ring bonding.
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indicates a formal quintuple W-W bond in W-S giving
both tungsten atoms a 16-electron configuration. This
quintuple bond has one δ component (HOMO), two σ
components (HOMO-1 and HOMO-2), and two π com-
ponents (HOMO-3 and HOMO-4) and thus is similar to
the Re-Re quintuple bond in the triplet Cp2Re2 structure
Re-T1. The predicted W-W quintuple bond distance in
W-S of 2.30 ( 0.01 Å is essentially identical with the
predicted metal-metal quintuple bond distances in the singlet
Cp2Os2 structure Os-S and the triplet Cp2Re2 structure
Re-T1.

Ditantalocene, Cp2Ta2, has two electrons less than ditung-
stocene. The frontier MOs of the lowest energy singlet
Cp2Ta2 structure Ta-S1 are shown in Figure 10. The four
highest lying filled MOs (HOMO down to HOMO-4) have
their electron densities concentrated on the metal-metal bond
and are all bonding orbitals. This indicates a formal quadruple
Ta-Ta bond in Ta-S1. This quadruple bond has two σ
components (HOMO and HOMO-3) and two π components
(HOMO-1 and HOMO-2). Thus, the two electrons lost in
going from singlet Cp2W2 to singlet Cp2Ta2 come from the
δ component of the metal-metal multiple bond. The
reduction in the formal metal-metal bond order from five
in singlet Cp2W2 W-S to four in singlet Cp2Ta2 Ta-S1 is

consistent with a lengthening of the predicted metal-metal
distance from 2.30 ( 0.01 Å in W-S to 2.38 ( 0.02 Å in
Ta-S1.

4. Discussion

Analysis of the metal-metal multiple bonding in the
dimetallocenes uses the 18-electron rule and variations
thereof to determine the formal metal-metal multiple bond
orders. Thus, the singlet structures of Cp2Os2 (Os-S in
Figure 2) and Cp2Re2 (Re-S in Figure 3) have the formal
metal-metal bond orders of five and six required by the 18-
electron rule. However, the lowest energy structure of Cp2Re2

(Re-T1 in Figure 3) is a triplet with a formal Re-Re bond
order of five giving the rhenium atoms the 17-electron
configurations required for a binuclear triplet. The triplet
structure of Cp2Os2 (Os-T in Figure 2) has the quintuple
bond required to give both osmium atoms an 18-electron
configuration. The triplet spin multiplicity in Os-T arises
from the two unpaired electrons in the δ components of the
Os-Os bond, which are only “half bonds” with single
electrons.

The 18-electron rule does not apply to the dimetallocenes
of tungsten and tantalum, since the required bond orders of
seven and eight require more bonding orbitals than are
available, after considering the three orbitals required for the

Figure 9. The frontier MOs for structure W-S of Cp2W2. (a) Top: The LUMOs up to LUMO+4. (b) Middle: The occupied HOMOs
down to HOMO-4, relating to the tungsten-tungsten bonding. (c) Bottom: The next lower occupied MOs (HOMO-5 down to
HOMO-8), relating largely to the metal-ring bonding.
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metal-ring bonding. The W-W bond in singlet Cp2W2

(W-S in Figure 4) is a formal quintuple bond, giving both
tungsten atoms 16-electron configurations. The Ta-Ta bond
in singlet Cp2Ta2 is a formal quadruple bond giving both
tantalum atoms the 14-electron configuration.

Metal-metal triple bonds are readily obtained in dimet-
allocene carbonyl chemistry, as indicated by the known stable
compounds Cp2V2(CO)5,

52,53 Cp2M2(CO)4 (M ) Cr,54-56

Mo57,58), and Cp2M′2(CO)3 (M′ ) Mn,59 Re60), all of which
have formal MtM triple bonds. Such MtM triple bonds
have one σ and two orthogonal π components, much like
the CtC triple bond in acetylene. In order to increase the
formal metal-metal bond order above three, it is necessary
to add either one or two δ components or a second σ
component constructed by overlap of d(z2) orbitals. The
original experimentally achieved examples of metal-metal
quadruple and quintuple bonds, namely Re2Cl8

2- (ref 3) and
ArylCrCrAryl (ref 4), respectively, supplement the σ + 2⊥π
triple bond with one or two full δ two-electron bonds,
respectively. In this respect, the formal Os-Os quintuple
bond in singlet Cp2Os2 (Os-S in Figure 2) is of the same
type, i.e., σ + 2π + 2δ, as the Cr-Cr quintuple bond in the
Cr(I) aryl derivatives ArylCrCrAryl.4

The δ components of metal-metal multiple bonds are
rather weak, as indicated by the chemistry of compounds
with metal-metal quadruple bonds,1 as well as the overlap
in the relevant bonding molecular orbitals. For example,
visual inspection of the two δ bonding orbitals HOMO-1
and HOMO-2 in singlet Cp2Os2 (Os-S in Figure 2) clearly
indicates weaker overlap than the corresponding σ and π

bonds (HOMO-4, HOMO-5, and HOMO-6). In the
formal W-W quintuple bond of the electron poorer singlet
ditungstocene W-S (Figures 4 and 9), there is only one δ
component arising from the HOMO. The other component
of this W-W quintuple bond is a second σ component from
overlap of the d(z2) orbitals (HOMO-1). In addition the
formal Ta-Ta quadruple bond in singlet Ta-S (Figures 5
and 10) does not have any δ components but consists of
two σ components and two π components.

None of the dimetallocenes discussed in this paper have
yet been synthesized. However, such dimetallocenes are
potentially accessible by the dehalogenation of CpMXn

derivatives by reagents such as alkali metals. In order to
stabilize these highly unsaturated Cp2M2 structures it might
be necessary to introduce bulky substituents on the Cp rings
in order to block further reactions of the metal-metal
multiple bonds. Such strategies have been used to prepare
unusual multiple bonds in main group element derivatives
such as GatGa triple bonds in [RGatGaR]2- (R ) bulky
aryl ligand),61 BdB double bonds in LfBHdBHrL,62 and
SidSi double bonds in LfSidSirL (L ) bulky carbene
ligand).63
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Theoretical harmonic vibrational frequencies for Cp2M2 (M

Figure 10. The frontier MOs for structure Ta-S1 of Cp2Ta2. (a) Top: The LUMOs up to LUMO+5. (b) Middle: The HOMOs
down to HOMO-3, relating to the Ta-Ta bonding. (c) Bottom: The next lower occupied MOs (HOMO-4 down to HOMO-7),
relating largely to the metal-ring bonding.
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) Os, Re, W, Ta) using the BP86 method. Tables S6-S24:
Theoretical Cartesian coordinates Cp2M2 (M ) Os, Re, W,
Ta) using the MPW1PW91 method. Figures S1-S18: The
frontier MOs for Cp2M2 (M ) Os, Re, W, Ta) using the
BP86 method. This information is available free of charge
via the Internet at http://pubs.acs.org/.
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Abstract: The accuracy of auxiliary basis sets derived from Cholesky decomposition of two-
electron integrals is assessed for excitation energies calculated at the state-average complete
active space self-consistent field (CASSCF) and multiconfigurational second order perturbation
theory (CASPT2) levels of theory using segmented as well as generally contracted atomic orbital
basis sets. Based on 196 valence excitations in 26 organic molecules and 72 Rydberg excitations
in 3 organic molecules, the results show that Cholesky auxiliary basis sets can be used without
compromising the accuracy of the multiconfigurational methods. Specifically, with a decomposi-
tion threshold of 10-4 au, the mean error due to the Cholesky auxiliary basis set is 0.001 eV, or
smaller, decreasing with increasing atomic orbital basis set quality.

1. Introduction

Given a Gaussian atomic orbital (AO) basis � and an
auxiliary basis �, density fitting (DF) consists of determining
a set of fitting coefficients C such that �µ(r) �ν(r) ≈
∑K Cµν

K �K(r). In the most common DF approach, this
amounts to the minimization of the following positive
semidefinite error matrix

where ( · | · ) is a two-electron integral in Mulliken notation.
Clearly, the error matrix can be made arbitrarily small, i.e.,
essentially exact, by a suitable choice of auxiliary basis set.

As an alternative to standard auxiliary basis sets, which
are preoptimized to reproduce specific energy contributions
(Coulomb, exchange, second-order dynamic correlation), we
have recently proposed to determine the auxiliary basis
functions on-the-fly by means of Cholesky decomposition
(CD) of the entire or parts of the two-electron integral matrix
in the AO basis.1-4 An upshot of this approach is that the
decomposition threshold directly specifies an upper bound
to the error matrix ∆µν in eq 1. In the full-CD approach,5,6

the entire molecular two-electron integral matrix is Cholesky
decomposed until all elements of the error matrix are below
the specified decomposition threshold. One-center CD (1C-
CD)1 differs from full-CD in that only those elements of
the error matrix for which �µ and �ν are centered on the same
atom are bounded by the decomposition threshold. The
atomic CD (aCD)1 auxiliary basis sets are constructed by a
decomposition of the atomic integral matrix, and like 1C-
CD, only one-center errors are bounded by the decomposition
threshold. Finally, the recently proposed atomic compact CD
(acCD)4 auxiliary basis sets are constructed from the aCD
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ones by reducing the number of primitive Gaussians in the
product functions. By removing the auxiliary functions with
the highest angular momenta, the aCD and acCD sets can
be brought to a size (number of auxiliary basis functions)
similar to the standard sets, thus mitigating the issues raised
concerning the efficiency of CD auxiliary basis sets.7 The
CD auxiliary basis sets offer several advantages such as
complete freedom in selection of the atomic orbital (AO)
basis set, an unbiased nature with respect to the wave
function or density functional model, and nearly arbitrary
control over the associated error. For a detailed discussion
of the CD approach, we refer to the recent review by
Pedersen et al.3

We have previously demonstrated the accuracy of the full-
CD, 1C-CD, aCD, and acCD auxiliary basis sets for
calculations of electronic ground state energies at the
Hartree-Fock (HF), second-order Møller-Plesset (MP2),
and hybrid as well as nonhybrid density functional theory
(DFT) levels of theory with a range of AO basis sets.8 Here,
we proceed with the accuracy assessment of the CD auxiliary
basis sets in conjunction with the complete active space self-
consistent field (CASSCF)9-11 and multiconfigurational
second order perturbation theory (CASPT2)12-14 approaches
to the computation of vertical electronic excitation energies.
Whereas the earlier investigation8 monitored the accuracy
of the CD auxiliary basis set in association with the ground
states of the closed-shell molecules in the G2/97 test suite,
the present investigation aims at measuring the accuracy of
excited electronic states. For this purpose, the Schreiber test
suite15,16 has been employed. Recalling that even in the
recent past AO basis sets beyond 300-400 functions were
prohibitive, a number of recent applications employing
1000-1500 Gaussian basis functions11,14,17-19 have clearly
demonstrated the computational advantage of the CD-based
CASSCF/CASPT2 approach. A major goal of the present
study therefore is to establish accuracy standards, i.e.,
decomposition thresholds, for future reference.

Hättig and co-workers20-23 have used auxiliary basis sets
optimized for dynamic correlation (at the MP2 level) for the
calculation of excitation energies and excited state properties
with the second-order coupled cluster (CC2) model,24 and
Pedersen et al.25-29 have used full-CD to calculate electric
dipole polarizability and optical rotation from the CC2 linear
response function which, formally, includes a summation
over all (singlet) excited electronic states. A major difference
between these two approaches is that in the CD case the
same auxiliary basis set is used in all stages of the calculation
including the computation of the HF reference function. That
is, the same CD auxiliary basis set is used for Coulomb,
exchange, and dynamic correlation contributions. At the DFT
level, studies of the performance of preoptimized auxiliary
basis sets for excitation energy calculations limited to the
nonhybrid BP86 functional30,31 have been reported by
Bauernschmitt et al. and Rappoport and Furche.32,33 Neese
and co-workers34,35 have extended these calibrations to a
hybrid DFT functional. However, as we can judge from the
technical details of the latter two studies, the RI approxi-
mation was not used in the ground state hybrid DFT
calculations. Nevertheless, in these studies, the performance

of auxiliary basis sets in accurately approximating the J and
K type MO integrals used in the time dependent DFT
(TDDFT) equations has been documented. To our knowl-
edge, no benchmark studies have been presented in which a
single auxiliary basis set has been calibrated with respect to
both the ground state DFT energies and TD-DFT excitation
energies using hybrid functionals. Considering the fact that
the same CD auxiliary basis set is used for Coulomb,
exchange, and static and dynamic correlation as modeled by
the CASSCF/CASPT2 approach, there are strong reasons to
believe that the results presented here can be directly
transferred to nonhybrid DFT functionals and other wave
function models used for excited state calculations.

2. Computational Details

The purpose of the present benchmark study is not to assess
the accuracy of the CASPT2/CASSCF method in comparison
with other quantum chemical models or experiments. Rather,
we wish to test that the CD auxiliary basis sets can in an
unbiased way be used to describe excited states, i.e., the
ability of the CD auxiliary basis sets to accurately represent
two-electron integrals involving virtual molecular orbitals.
We use the CASSCF/CASPT2 protocol as a successful
representative of the methods for computing excitation
energies. Two test suites are employed. The first was
designed by Schreiber et al.15 and includes 196 vertical
excitation energies, both singlet and triplet excited states,
for 26 organic molecules. The excitations are mainly of a
π-π* or n-π* nature with some σ-π* excitations. The
second set was designed to test for Rydberg states. These
calculations involve valence and Rydberg singlet and triplet
states for ethene, trans-1,3-butadiene, and formamide. Here,
we report statistics based on the 72 transitions involving the
Rydberg states.

For the first series, the details of the computations are as
follows: For molecules of high symmetry, the conventional
as well as DF-based CASPT2 method, as currently imple-
mented, fails to correctly preserve the degeneracy of states
belonging to multidimensional irreducible representations.
This would lead to reference data for degenerate states with
a small artificial symmetry breaking. Even when this has no
practical consequences for the interpretation of the excited
states, complications in the analysis of the CD auxiliary basis
set error are avoided by excluding the triazine and benzene
molecules from the original test suite in this work. Geom-
etries, active spaces, and other information needed to perform
the calculations were chosen exactly as in the work of
Schreiber et al.,15 although we have extended the study to
include four different AO basis sets. In addition to the
original TZVP36 basis set, the ANO-RCC-VXZP37,38 (X )
D, T, Q) AO basis sets were used. We note that, whereas
the TZVP basis set was designed for the HF method, the
ANO-RCC-VXZP sets were specifically designed in com-
bination with the CASSCF/CASPT2 paradigm. However, the
aim of this study is not to investigate the quality of the AO
basis set with respect to the accuracy of excitation energies
in comparison with experimental or “exact” excitation
energies. Rather, we will only comment on the ability of
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the CD auxiliary basis set to approximate integrals with the
four different AO basis sets used in this study.

For the second series of benchmark calculations (the
Rydberg benchmark), basis sets of the ANO-L type37

contracted to C, N, O [4s3p1d]/H [2s1p] were employed
(almost a full VTZP basis), supplemented by a set of 1s1p1d
diffuse functions centered in the molecular cation charge
centroid and whose exponents and coefficients were deter-
mined elsewhere.39-41 The employed active spaces included
the full valence π space (and the oxygen lone pair in
formamide) plus the nine 3s3p3d Rydberg orbitals, leading
to spaces (electrons,orbitals) (2,11), (4,13), and (6,13) for
ethene, trans-1,3-butadiene, and formamide, respectively.
The low-lying valence and Rydberg singlet and triplet states
were computed, including the Rydberg series π (HOMO)
f 3s3p3d and also n f 3s3p3d for formamide. The
multistate (MS) CASPT2 method42 was employed in order
to take into account the valence-Rydberg mixing effect
displayed at the CASSCF level of theory. The imaginary
level-shift technique43 was used with a parameter of 0.1 au
to prevent the presence of weakly coupling intruder states.
Geometries and basis sets were those used previously for
ethene,39 trans-1,3-butadiene,39 and formamide.40

Calculations have been performed in these two series with
the full-CD, aCD, and acCD auxiliary basis sets obtained
with decomposition thresholds of 10-3, 10-4, 10-5, and 10-6

au. The auxiliary basis set pruning technique (skipping higher
angular components, SHAC), as used in our previous
benchmark study,8 was explored too. While the 1C-CD has
been excluded from the present work for implementation
reasonssthe method has not been implemented for cases with
point group symmetrysthe aCD and acCD results should
be representative of 1C-CD, as they were in our previous
report on ground state energies.8 The computed total and
excitation energies were compared to reference energies
compiled with conventional CASSCF/CASPT2.13,44 For
uracil, cytosine, thymine, adenine, and octatetraene with
ANO-RCC-VQZP in the first test series, the numbers of AO
basis functions are 560, 590, 675, 700, and 740, respectively.
This number of functions is prohibitive for conventional
CASSCF/CASPT2 calculations. In these cases, full-CD
calculations with a Cholesky threshold of 10-10 au were used
as a reference.

All calculations were performed with the MOLCAS 7
program package45 using the CD-based implementations
described by Aquilante et al.11,14

3. Results and Discussion

The accuracy of the CD auxiliary basis sets that we aim to
establish should be compared to the accuracy of standard
preoptimized auxiliary basis sets. It has been shown with
TD-DFT calculations on 36 excited states for a set of small
molecules (the largest being benzene) that errors in adiabatic
excitation energies are not higher than 0.03 eV.33 These
results are in line with the earlier reported accuracy assess-
ment by Bauernschmitt and co-workers on 19 vertical
excitation energies.32 We note that the results of Bauern-
schmitt et al.32 and Rappoport and Furche33 are based on
the original TZVP auxiliary basis set of Eichkorn et al.,46

which was designed for ground state calculations with
nonhybrid DFT functionals. This auxiliary basis set was
subsequently augmented by “downward extrapolation” in-
cluding primitive Gaussians to improve the quality of the
results. We stress two major differences between these
benchmark studies and those of the current report. First, the
present CD auxiliary basis sets are designed on-the-fly in a
procedure with error control (in the sense of eq 1) via a single
parameter, the decomposition threshold. Second, whereas the
previous studies are based on nonhybrid DFT calculations,
the current test includes Coulomb and exchange as well as
correlation.

In the rest of this section, the accuracy of the CASSCF/
CASPT2 excitation energies as a function of the CD approach
and threshold, auxiliary basis set pruning, and AO basis set
saturation is analyzed. We report mean errors, mean absolute
errors, maximum errors, and standard deviations for excitation
energies at the CASPT2 and CASSCF levels of approximation
in Tables 1-8. The CASPT2 results are representative for the
CASSCF results; hence, the CASSCF results, Tables 5-8, are
included in the Supporting Information. Our findings and
observations can be summarized as follows.

Cancellation of Errors. In one of the earliest investiga-
tions into the accuracy of CD auxiliary basis sets,1 absolute
and activation energies of 20 reactions were analyzed. In
that study, we observed a favorable cancellation of errors
with respect to the activation energies. Typically, the
auxiliary basis set error was reduced by a factor of 2-4 in
these cases. For the computation of vertical excitation
energies, we would expect error cancellation to be at its
optimum. In Figure 1, results obtained with the TZVP basis
set and the full-CD, aCD, and acCD auxiliary basis sets are
displayed.

A reduction of the mean absolute error for the same CD
threshold of as much as 1 order of magnitude is observed
going from total energies to excitation energies (compare
the center and right panels of Figure 1). For total energies
we see significant differences with respect to the full-CD,
aCD, and acCD approximations as compared with the
excitation energies. Here, we also note that the difference
between the aCD and acCD auxiliary basis sets with and
without auxiliary basis set pruning (SHAC) is significant.
However, for the excitation energies, the discrepancy be-
tween the aCD and acCD auxiliary basis sets, with or without
SHAC, is nearly completely removed. These trends hold true
for any of the other AO basis sets in this study. Furthermore,
we note that the mean absolute errors of the excitation
energies are well below 0.01 eV already for the highest CD
threshold of 10-3 au. We also note that, while full-CD shows
an exponential decay of the mean absolute excitation energy
error as a function of the CD threshold, the aCD and acCD
auxiliary basis sets exhibit an error which is virtually constant
and on the order of 0.001 eV. This suggests that the CD
threshold can be increased by 1 order of magnitude when
calculating excitation energies compared to total energy
calculations.8 We also note that auxiliary basis set pruning
can be used in the computation of excitation energies, thus
speeding up the calculations by reducing the number of
auxiliary functions.
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AO Basis Set Convergence and CD Approximations.
It has previously been observed8 that the accuracy of the
CD auxiliary basis sets for a given set of CD parameters
(threshold and high angular momentum eliminations) im-
proves with increased AO basis set quality. In Figure 2, this
can be analyzed in the case of excitation energies for ANO-
RCC-VXZP.

Here, we again note that, as the AO basis set is improved
in the sequence X ) D, T, Q, the overall accuracy is
improved. While it is natural that this trend is less clear for
the full-CD results, it is significant that it occurs for the aCD
and acCD auxiliary basis sets. In particular, for the largest

AO basis set, a rather loose threshold for aCD can be used
without affecting the accuracy of the computed excitation
energy. Furthermore, in comparing the different CD ap-
proaches, it is noted that the aCD and acCD with a CD
threshold of 10-3 au can be used as a standard for all practical
purposes. At this level of approximation, the errors due to
the use of CD auxiliary basis sets can be ignored.

Pruned aCD and acCD Auxiliary Basis Sets. By
construction, the aCD and acCD auxiliary basis sets include
high angular momentum components. In an ad hoc pruning
of the auxiliary basis sets, based on the reasoning that the

Table 1. Mean Errors in eV for CASPT2 Excitation Energies as a Function of AO Basis Set, CD Threshold (in au), and CD
Auxiliary Basis Set (without and with pruning)

mean errors for CASPT2 calculations

(SHAC)

basis set CD-thres. full-CD aCD acCD aCD acCD

TZVP 10-3 au -3.7 × 10-3 -1.0 × 10-3 -1.2 × 10-3 3.4 × 10-3 3.2 × 10-3

10-4 au -7.6 × 10-4 -5.9 × 10-4 -5.9 × 10-4 3.8 × 10-4 4.3 × 10-4

10-5 au -1.1 × 10-4 -1.5 × 10-4 -1.5 × 10-4 5.4 × 10-4 5.4 × 10-4

10-6 au 6.6 × 10-6 -1.7 × 10-4 -1.7 × 10-4 5.5 × 10-4 5.5 × 10-4

ANO-RCC-VDZP 10-3 au -2.6 × 10-3 4.6 × 10-5 2.5 × 10-5 1.3 × 10-3 1.3 × 10-3

10-4 au 7.9 × 10-6 5.2 × 10-5 2.6 × 10-5 1.2 × 10-3 1.2 × 10-3

10-5 au -8.6 × 10-6 5.4 × 10-5 6.0 × 10-5 9.7 × 10-4 9.9 × 10-4

10-6 au -2.3 × 10-6 5.7 × 10-5 5.4 × 10-5 9.2 × 10-4 9.3 × 10-4

ANO-RCC-VTZP 10-3 au 3.9 × 10-3 4.2 × 10-5 1.2 × 10-5 1.6 × 10-4 1.4 × 10-4

10-4 au 1.2 × 10-4 3.1 × 10-5 -1.2 × 10-5 1.4 × 10-4 1.2 × 10-4

10-5 au 5.3 × 10-6 8.3 × 10-6 2.4 × 10-6 1.2 × 10-4 1.2 × 10-4

10-6 au -5.3 × 10-6 2.3 × 10-6 1.5 × 10-6 1.1 × 10-4 1.1 × 10-4

ANO-RCC-VQZP 10-3 au -1.7 × 10-3 9.4 × 10-6 -1.4 × 10-6 5.1 × 10-5 -2.5 × 10-5

10-4 au -5.2 × 10-4 2.2 × 10-7 -1.9 × 10-6 1.8 × 10-5 -2.8 × 10-5

10-5 au -3.1 × 10-5 9.7 × 10-8 1.2 × 10-6 1.7 × 10-5 1.6 × 10-5

10-6 au 2.6 × 10-6 2.3 × 10-7 1.0 × 10-7 1.5 × 10-5 1.4 × 10-5

ANO-L + Rydberga 10-3 au -6.6 × 10-4 1.5 × 10-5 7.2 × 10-6 -1.6 × 10-4 -4.6 × 10-5

10-4 au -4.2 × 10-5 1.5 × 10-5 1.7 × 10-5 -1.8 × 10-4 -1.3 × 10-4

10-5 au 9.2 × 10-6 1.4 × 10-5 1.5 × 10-5 -1.5 × 10-4 -2.0 × 10-4

10-6 au 7.9 × 10-6 2.1 × 10-5 2.0 × 10-5 -1.2 × 10-4 -1.5 × 10-4

a ANO-L C, N, O [4s3p1d]/H[2s1p] with explicit molecule-centered [1s1p1d] Rydberg functions.

Table 2. Standard Deviations in eV for CASPT2 Excitation Energies as a Function of AO Basis Set, CD Threshold (in au),
and CD Auxiliary Basis Set (without and with pruning)

standard deviations for CASPT2 calculations

(SHAC)

basis set CD-thres. full-CD aCD acCD aCD acCD

TZVP 10-3 au 4.7 × 10-3 1.1 × 10-3 1.1 × 10-3 7.0 × 10-3 6.7 × 10-3

10-4 au 5.7 × 10-4 4.1 × 10-4 4.1 × 10-4 7.8 × 10-4 8.2 × 10-4

10-5 au 1.2 × 10-4 2.3 × 10-4 2.2 × 10-4 6.4 × 10-4 6.4 × 10-4

10-6 au 4.2 × 10-5 2.2 × 10-4 2.2 × 10-4 6.4 × 10-4 6.4 × 10-4

ANO-RCC-VDZP 10-3 au 6.5 × 10-3 5.9 × 10-4 4.3 × 10-4 1.3 × 10-3 1.2 × 10-3

10-4 au 6.5 × 10-4 6.3 × 10-4 6.7 × 10-4 1.3 × 10-3 1.4 × 10-3

10-5 au 1.3 × 10-4 6.3 × 10-4 5.5 × 10-4 1.3 × 10-3 1.3 × 10-3

10-6 au 1.1 × 10-5 6.5 × 10-4 6.4 × 10-4 1.3 × 10-3 1.2 × 10-3

ANO-RCC-VTZP 10-3 au 4.4 × 10-2 5.0 × 10-4 1.3 × 10-4 5.0 × 10-4 1.6 × 10-4

10-4 au 1.5 × 10-3 3.6 × 10-4 9.5 × 10-5 3.6 × 10-4 1.5 × 10-4

10-5 au 6.0 × 10-5 1.0 × 10-4 4.0 × 10-5 1.3 × 10-4 9.5 × 10-5

10-6 au 8.4 × 10-5 2.2 × 10-5 1.3 × 10-5 8.0 × 10-5 8.0 × 10-5

ANO-RCC-VQZP 10-3 au 2.4 × 10-2 1.3 × 10-4 5.5 × 10-5 4.0 × 10-4 4.7 × 10-4

10-4 au 4.2 × 10-3 5.1 × 10-6 1.1 × 10-5 2.5 × 10-5 5.5 × 10-4

10-5 au 1.9 × 10-4 3.0 × 10-6 1.8 × 10-5 2.4 × 10-5 1.9 × 10-5

10-6 au 3.6 × 10-5 3.7 × 10-6 2.3 × 10-6 1.9 × 10-5 2.3 × 10-5

ANO-L + Rydberga 10-3 au 1.7 × 10-3 8.9 × 10-5 9.9 × 10-5 8.9 × 10-4 8.8 × 10-4

10-4 au 1.9 × 10-4 9.0 × 10-5 9.1 × 10-5 8.3 × 10-4 9.2 × 10-4

10-5 au 6.4 × 10-5 9.0 × 10-5 9.0 × 10-5 5.7 × 10-4 6.1 × 10-4

10-6 au 2.9 × 10-5 8.7 × 10-5 8.7 × 10-5 5.7 × 10-4 5.9 × 10-4

a ANO-L C, N, O [4s3p1d]/H[2s1p] with explicit molecule-centered [1s1p1d] Rydberg functions.
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high angular momentum components contribute insignifi-
cantly to the energy in most cases, the higher angular
components of the auxiliary basis set are eliminated. This
pruning technique (SHAC), originally suggested by Eichkorn
et al.,46 was explored in our previous benchmark study.8 It
was concluded that, although the pruning reduced the CD
auxiliary basis set convergence toward an exact representa-
tion of the two-electron integrals, this was of no consequence
in most quantum-chemical studies. While it was noted in
the first benchmark study on total ground state energies8 that
this technique indeed reduces the accuracy, the current
investigation on CASPT2 and CASSCF excitation energies

exhibits a close to perfect cancellation of errors. This
remarkable feature is demonstrated for all types of AO basis
sets and for both valence and Rydberg excited states (see
Figures 1-3). The conclusion is that, for excitation energies,
acCD auxiliary basis sets with a CD threshold of 10-3 au
introduce an error which is insignificant. With this procedure,
standard deviations in the computed excitation energies are
below 0.01 eV.

CASSCF vs CASPT2. It is well-known that the AO basis
set convergence of the CASSCF method is significantly
different from that of the CASPT2 method. While methods

Table 3. Maximum Errors in eV for CASPT2 Excitation Energies as a Function of AO Basis Set, CD Threshold (in au), and
CD Auxiliary Basis Set (without and with pruning)

maximum errors for CASPT2 calculations

(SHAC)

basis set CD-thres. full-CD aCD acCD aCD acCD

TZVP 10-3 au -2.0 × 10-2 -8.1 × 10-3 -7.5 × 10-3 3.0 × 10-2 2.9 × 10-2

10-4 au -2.2 × 10-3 -2.1 × 10-3 -2.1 × 10-3 2.6 × 10-3 3.0 × 10-3

10-5 au 7.5 × 10-4 -1.4 × 10-3 -1.4 × 10-3 2.2 × 10-3 2.2 × 10-3

10-6 au 3.2 × 10-4 -1.4 × 10-3 -1.4 × 10-3 2.2 × 10-3 2.2 × 10-3

ANO-RCC-VDZP 10-3 au -3.3 × 10-2 -7.1 × 10-3 -5.5 × 10-3 -7.1 × 10-3 -5.5 × 10-3

10-4 au -6.0 × 10-3 -8.2 × 10-3 -7.9 × 10-3 -8.2 × 10-3 -8.4 × 10-3

10-5 au -1.1 × 10-3 -8.2 × 10-3 -6.9 × 10-3 -9.4 × 10-3 -9.4 × 10-3

10-6 au -9.0 × 10-5 -8.7 × 10-3 -8.5 × 10-3 -8.7 × 10-3 -8.5 × 10-3

ANO-RCC-VTZP 10-3 au 5.9 × 10-1 6.9 × 10-3 1.6 × 10-3 6.9 × 10-3 1.7 × 10-3

10-4 au 1.6 × 10-2 5.0 × 10-3 -1.2 × 10-3 5.0 × 10-3 -1.2 × 10-3

10-5 au 5.6 × 10-4 1.4 × 10-3 5.4 × 10-4 1.4 × 10-3 5.4 × 10-4

10-6 au -1.1 × 10-3 3.0 × 10-4 1.3 × 10-4 3.3 × 10-4 3.6 × 10-4

ANO-RCC-VQZP 10-3 au -3.1 × 10-1 1.8 × 10-3 -6.7 × 10-4 5.5 × 10-3 -6.4 × 10-3

10-4 au -5.5 × 10-2 7.0 × 10-5 -1.2 × 10-4 2.2 × 10-4 -7.7 × 10-3

10-5 au -1.9 × 10-3 4.0 × 10-5 2.5 × 10-4 2.1 × 10-4 -6.1 × 10-5

10-6 au 5.0 × 10-4 4.8 × 10-5 3.0 × 10-5 -6.1 × 10-5 -1.7 × 10-4

ANO-L + Rydberga 10-3 au 4.7 × 10-3 -4.7 × 10-4 -4.6 × 10-4 -2.9 × 10-3 -2.9 × 10-3

10-4 au 5.9 × 10-4 -4.7 × 10-4 -4.4 × 10-4 -2.9 × 10-3 -3.5 × 10-3

10-5 au 4.9 × 10-4 -4.7 × 10-4 -4.7 × 10-4 -1.9 × 10-3 -2.0 × 10-3

10-6 au 2.4 × 10-4 -4.6 × 10-4 -4.6 × 10-4 -1.8 × 10-3 -1.9 × 10-3

a ANO-L C, N, O [4s3p1d]/H[2s1p] with explicit molecule-centered [1s1p1d] Rydberg functions.

Table 4. Absolute Mean Errors in eV for CASPT2 Excitation Energies as a Function of AO Basis Set, CD Threshold (in au),
and CD Auxiliary Basis Set (without and with pruning)

mean absolute error for CASPT2 calculations

(SHAC)

basis set CD-thres. full-CD aCD acCD aCD acCD

TZVP 10-3 au 4.4 × 10-3 1.1 × 10-3 1.3 × 10-3 6.3 × 10-3 6.0 × 10-3

10-4 au 8.4 × 10-4 6.1 × 10-4 6.1 × 10-4 7.2 × 10-4 7.7 × 10-4

10-5 au 1.3 × 10-4 2.0 × 10-4 2.0 × 10-4 7.0 × 10-4 7.0 × 10-4

10-6 au 1.7 × 10-5 2.0 × 10-4 2.1 × 10-4 7.0 × 10-4 7.0 × 10-4

ANO-RCC-VDZP 10-3 au 4.4 × 10-3 1.8 × 10-4 1.4 × 10-4 1.5 × 10-3 1.5 × 10-3

10-4 au 3.3 × 10-4 1.9 × 10-4 1.8 × 10-4 1.4 × 10-3 1.5 × 10-3

10-5 au 4.4 × 10-5 1.9 × 10-4 1.8 × 10-4 1.3 × 10-3 1.3 × 10-3

10-6 au 5.9 × 10-6 1.8 × 10-4 1.8 × 10-4 1.2 × 10-3 1.2 × 10-3

ANO-RCC-VTZP 10-3 au 5.2 × 10-3 4.5 × 10-5 2.3 × 10-5 1.7 × 10-4 1.5 × 10-4

10-4 au 2.4 × 10-4 3.5 × 10-5 1.4 × 10-5 1.6 × 10-4 1.5 × 10-4

10-5 au 1.9 × 10-5 9.6 × 10-6 7.0 × 10-6 1.3 × 10-4 1.3 × 10-4

10-6 au 1.0 × 10-5 2.9 × 10-6 2.5 × 10-6 1.2 × 10-4 1.2 × 10-4

ANO-RCC-VQZP 10-3 au 4.0 × 10-3 9.8 × 10-6 7.1 × 10-6 5.5 × 10-5 6.6 × 10-5

10-4 au 5.5 × 10-4 6.6 × 10-7 2.0 × 10-6 2.2 × 10-5 6.5 × 10-5

10-5 au 3.5 × 10-5 4.4 × 10-7 1.5 × 10-6 2.1 × 10-5 2.0 × 10-5

10-6 au 4.8 × 10-6 5.1 × 10-7 3.4 × 10-7 1.9 × 10-5 1.9 × 10-5

ANO-L + Rydberga 10-3 au 1.6 × 10-3 5.7 × 10-5 7.0 × 10-5 6.5 × 10-4 6.1 × 10-4

10-4 au 1.5 × 10-4 5.9 × 10-5 6.1 × 10-5 6.0 × 10-4 6.8 × 10-4

10-5 au 2.9 × 10-5 5.9 × 10-5 5.8 × 10-5 4.3 × 10-4 4.7 × 10-4

10-6 au 8.6 × 10-6 5.8 × 10-5 5.7 × 10-5 4.4 × 10-4 4.4 × 10-4

a ANO-L C, N, O [4s3p1d]/H[2s1p] with explicit molecule-centered [1s1p1d] Rydberg functions.
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like HF and CASSCF show close to AO basis set saturation
already for triple-� quality AO basis sets, correlated methods
like CASPT2 tend to need at least quadruple-� to achieve
the same. Does this fact impact the requirements of the
auxiliary basis sets? Looking at Figure 2 and comparing the

left and right panel columns, we note hardly any significant
accuracy difference in the computed CASSCF and CASPT2
excitation energies, with the possible exception that there is
a slightly lower accuracy for the CASPT2 vs the CASSCF
excitation energies for the ANO-RCC-VQZP basis set.

Rydberg vs Valence States. The accuracy assessments
related to the 72 Rydberg states are presented in Figure 3.

In this study, we have employed explicit Rydberg basis
sets39-41 placed in the center of the molecule. This technique
differs from that of adding atom-centered diffuse functions
to the standard atomic AO basis sets, and its ability to
accurately and conveniently reduce valence-Rydberg mixing
and aid in identifying the Rydberg states has been docu-
mented previously.41,42 We note that in the paper of
Bauernschmitt et al.32 the authors pointed out that the error
in the computed Rydberg state excitation energies was larger,
0.08 eV, initially and that ad hoc decontraction or addition
of diffuse auxiliary basis functions was required to achieve
an accuracy similar to that of the errors found in the valence
excitation energies, namely, 0.01 eV. In the full-CD, aCD,
and acCD approaches, the explicit Rydberg AO basis does
not require any special treatment as compared to any other
AO basis set. Comparing Figure 3 with Figure 2 for the
ANO-RCC-VTZP basis set, we note a slightly larger error
in the case of the Rydberg excitations in combination with
the aCD and acCD auxiliary basis sets. This is to some extent
expected, considering the diffuse character of the explicit
Rydberg basis and that these basis sets carry a lower
significance in the aCD and acCD procedures. However, this
can be completely ignored given that the mean absolute error
in the excitation energies of the Rydberg states is on the
order of 0.001 eV or better. For the full-CD approach, we
find no significant error when comparing valence and
Rydberg excitation energies. We conclude that, unlike the
conventional DF auxiliary basis sets, no particular care has
to be applied in the computation of Rydberg excitation
energies for the present approaches.

Distribution of Errors. Finally, we analyze the distribu-
tion of errors and their maximum. A typical display of these
is presented in Figure 4.

In particular, we note that the standard deviation in all
cases, with the possible exception of full-CD with a CD
threshold of 10-3 au, are below 0.01 eV. The same holds
true for the maximum error. Furthermore, for thresholds
tighter or equal to 10-4 au, standard deviations and maximum
errors equal to or below 0.001 eV are observed. The accuracy
here is certainly more than just in parity to assessments with
external auxiliary basis sets32,33

4. Timings

Finally, we conclude this calibration paper with some brief
notes on a typical representative case of an improvement in
timings due to the use of the CD approximation for the
CASPT2/CASSCF procedure. For this purpose, we have
chosen to report the performances on some of the CASPT2
calculations described in ref 47. These systems are important
intermediates from the reaction of O2 with a Cu(I)-R-
ketocarboxylate, and the accurate evaluation of the singlet-
triplet splitting in each species is essential to the understand-

Figure 1. Mean absolute errors for excitation energies, µ, at
the CASSCF (left panel) and CASPT2 (center panel) levels
of theory, and mean absolute errors, µ, of the total energies
at the CASPT2 level of theory (right panel) calculated with
the TZVP basis set, with and without skipping of higher
angular momenta (SHAC), as explained in section 3, plotted
as a function of the CD threshold, τ.

Figure 2. Mean absolute errors for excitation energies, µ,
computed at the CASSCF (left) and CASPT2 (right) levels of
theory with the ANO-RCC-VXZP, X ) D, T, Q, basis sets,
plotted as a function of the CD threshold, τ.

Figure 3. Mean absolute errors for excitation energies, µ, of
Rydberg states at the CASSCF (left panel) and CASPT2 (right
panel) levels of theory, with and without skipping of higher
angular momenta (SHAC), plotted as a function of the CD
threshold, τ.
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ing of the mechanism of activation of molecular oxygen by
copper coordination complexes.19 As described in detail in
the original publication,47 Cholesky-based CASSCF/CASPT2
calculations were perfomed with a decomposition threshold
of 10-5 using ANO basis sets of double-� quality. This
corresponds to a range of about 280 to 450 contracted
Gaussian basis functions, depending on the system (point
group symmetry not employed). In this range, the time spent
to generate the DF-vectors is nearly independent of the
particular choice of the Cholesky basis (full-CD, aCD, etc.),
and so are the subsequent steps. For the smallest calculation,
the CASPT2 step alone requires a wall-time of about 2 h
using conventional two-electron integrals, compared to the
1 h of the full-CD (10-5) implementation. The timings refer
to an architecture of the type Intel(R) Xeon(TM) 3.20 GHz
with 8 GB RAM and are those for the (8in8) choice of the
active space (nearly identical timings result from the singlet
or triplet calculation). Noticeably, the generation of the two-
electron integrals in the MO basis shows alone a much better
ratio: 85 vs 4885 s in wall-time (a factor 10 in CPU time).
As discussed in the implementation paper,14 the present DF-
CASPT2 algorithm differs from the conventional only in the
generation of the two-electron integrals in MO basis, whereas
other computationally heavy tasks are left unchanged. In the
above example, the task of solving the equations for the first-
order wave function requires roughly 1 h of wall-time (45
min CPU time), and that explains why the resulting speedup
is only a factor two. Moving toward the upper limit of 450
basis functions for our systems, the conventional calculations
can hardly be afforded due to the large disk-space require-
ments. When possible, the DF-CASPT2 alone outperforms
the conventional implementation by a factor of 5-8 in wall-
time and with effectively no loss of accuracy (computed S-T
splittings within 0.1 kcal/mol from conventional results). It
should be also pointed out that the preliminary DF-CASSCF
calculation can be performed at much lower costs than

conventional calculations, and if included in the counting
together with the integral/DF-vector generation, it gives rise
to overall speedups that are much largersnot uncommonly
1-2 orders of magnitude. As an example, the generation of
the Cholesky vectors for the smallest system requires only
5 min of wall-time, compared to 39 min needed to compute/
store the AO two-electron integrals. The DF-CASSCF step
is in this case about 4 times faster, 6 vs 25 min of wall-
time.

5. Summary
In this study, we have reported the first accuracy assessments
of the CD auxiliary basis set in association with the
evaluation of vertical valence and Rydberg excitation ener-
gies computed with the CASSCF/CASPT2 protocol. These
assessments clearly demonstrate the accuracy and flexibility
of the CD auxiliary basis sets, specifically: (i) CD auxiliary
basis sets offer excellent cancellation of errors. (ii) No
significant differences were detected in comparing the errors
associated with different AO basis sets. (iii) CD auxiliary
basis set pruning can be employed safely. (iv) CD auxiliary
basis sets give rise to essentially the same (insignificant) error
in conjunction with CASSCF and CASPT2 excitation energy
calculations. (v) The use of the CD procedure can reduce
CASPT2/CASSCF wall-time by a factor of 4 up to 1-2
orders of magnitude. (vi) No special treatment of the CD
auxiliary basis set is required in the computation of Rydberg
excitation energies. (vii) The standard deviation observed
by using the CD auxiliary basis sets in the computation of
vertical excitation energies is well below 0.01 eV. (viii) CD
threshold as high as 10-3 au can be used for calculating
vertical valence and Rydberg excitation energies, giving
mean and maximum errors in the range of 0.01 eV, and
finally, (ix) for tighter thresholds, the CD auxiliary basis sets
induce errors that are virtually completely insignificant.
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Abstract: The capabilities and limitations of the Becke-3-Lee-Yang-Parr (B3LYP) density
functional theory (DFT) for modeling proton coupled electron transfer (PCET) in the mixed-
valence oxomanganese complex [(bpy)2MnIII(µ-O)2MnIV(bpy)2]3+ (1; bpy ) 2,2′-bipyridyl) are
analyzed. Complex 1 serves as a prototypical synthetic model for studies of redox processes
analogous to those responsible for water oxidation in the oxygen-evolving complex (OEC) of
photosystem II (PSII). DFT B3LYP free energy calculations of redox potentials and pKa’s are
obtained according to the thermodynamic cycle formalism applied in conjunction with a continuum
solvation model. We find that the pKa’s of the oxo-ligands depend strongly on the oxidation
states of the complex, changing by approximately 10 pH units (i.e., from pH ∼ 2 to pH ∼ 12)
upon III,IV f III,III reduction of complex 1. These computational results are consistent with the
experimental pKa’s determined by solution magnetic susceptibility and near-IR spectroscopy as
well as with the pH dependence of the redox potential reported by cyclic voltammogram
measurements, suggesting that the III,IVf III,III reduction of complex 1 is coupled to protonation
of the di-µ-oxo bridge as follows: [(bpy)2MnIII(µ-O)2MnIV(bpy)2]3+ + H+ + e- f [(bpy)2MnIII(µ-
O)(µ-OH)MnIII(bpy)2]3+. It is thus natural to expect that analogous redox processes might strongly
modulate the pKa’s of oxo and hydroxo/water ligands in the OEC of PSII, leading to deprotonation
of the OEC upon oxidation state transitions.

I. Introduction
Understanding the thermodynamics of proton coupled
electron transfer (PCET) in oxomanganese complexes is
essential for elucidating the mechanism of oxygen evolu-
tion by water oxidation, as catalyzed by the oxygen-
evolving complex (OEC) of photosystem II (PSII).1-7 The
resulting insight on PCET is also necessary for the rational
design of artificial photosynthetic systems.8-11 This paper
addresses the PCET mechanism in the mixed-valence
oxomanganese dimer [(bpy)2MnIII(µ-O)2MnIV(bpy)2]3+ (1;
bpy ) 2,2′-bipyridyl), shown in Figure 1, as computa-
tionally characterized at the density functional theory
(DFT) level with the Becke-3-Lee-Yang-Parr (B3LYP)
hybrid density functional.12,13

Several oxomanganese complexes have been suggested as
biomimetic models of the OEC of PSII,8,14-19 including the
mixed-valence oxomanganese dimer 1 originally synthesized
by Nyholm and Turco20 and characterized by X-ray crystal-
lography by Plaksin et al.21 In addition, Wang and Mayer22

have studied an analogous complex with the 2,2′-bipyridyl
ligand substituted by 1,10-phenanthroline. The cyclic vol-
tammogram of 1 includes a reversible one-electron anodic
couple at E1/2 ) 1.26 V (vs Ag/AgCl), assigned to the
oxidation of the III,IV complex to the IV,IV state.17,23 In
addition, an irreversible one-electron cathodic wave with E1/2

) 0.77 V at pH ) 3.78 (Figure 1, top panel)18 is thought to
result from reduction of the mixed-valence III,IV complex
to the III,III state. Furthermore, the Pourbaix diagram shows
a linear dependence of E1/2 with pH in the range pH ) 3-9,

* Correspondingauthor.Fax:+12034326144,E-mail:victor.batista@
yale.edu.

J. Chem. Theory Comput. 2010, 6, 755–760 755

10.1021/ct900615b  2010 American Chemical Society
Published on Web 01/29/2010



with a ∼59 mV/pH slope consistent with the one-electron
one-proton couple:18

The availability of electrochemical and spectroscopic data
makes complex 1 ideally suited to investigate the capabilities
and limitations of the DFT B3LYP level of theory as applied
to studies of PCET in oxomanganese complexes. These
studies complement our earlier work where we assessed the
DFT B3LYP method as applied to the characterization of
structural, electronic, and magnetic properties of synthetic
oxomanganese complexes.8 Our previous studies included
Mn dimers, trimers, and tetramers where the metal centers
are bridged by oxo ligands as well as models of the OEC of
PSII analogous to the “3 + 1 Mn tetramer” model of the
OEC of PSII.8 Here, we extend these earlier studies to
analyze the PCET reaction in complex 1. Our investigations
are based on free energy calculations of pKa’s and redox
potentials, according to the thermodynamic cycle formalism
in conjunction with a continuum solvation model.24 Gas-
phase free energies are first calculated, and then their values
are corrected to account for solvation effects by using a
dielectric continuum model. Such a standard computational
procedure is one of the simplest approaches available to study
redox and acid-base reactions in solution.25-31

Several studies have explored the capabilities of DFT
methods for predictions of redox potentials of transition metal
complexes.24-41 Most of these earlier studies investigated
functionals based on the generalized gradient approximation
(GGA) such as BLYP,42 BP86,43 and PBE44 as well as
hybrid functionals (e.g., B3LYP12,13) originally developed

and parametrized without including transition metal com-
pounds in the reference data set. However, the description
of redox potentials of oxomanganese complexes and the
regulatory effect of oxidation state transitions on the pKa’s
of oxo ligands bridging the Mn centers remain to be
investigated. Exploring the capabilities and limitations of
these methods is crucial to gaining insights on PCET
mechanisms and to establishing the validity of currently
available computational tools for the rational design of
transition metal catalysts.

The paper is organized as follows. Section II outlines the
computational methods applied for calculations of pKa’s and
redox potentials. Section III presents our computational
results and direct comparisons with experimental measure-
ments. Concluding remarks and future research directions
are outlined in section IV.

II. Computational Methods

All electronic structure calculations were carried out using
the Jaguar suite of electronic structure programs.45 Minimum
energy configurations are obtained, as previously reported,8

in broken symmetry (BS) states where the R and � electronic
densities are localized on different metal centers. The B3LYP
exchange-correlation functional with unrestricted Kohn-
Sham wave functions (UB3LYP) yields ground state con-
figurations for the reduced and oxidized forms of complex
1 with antiferromagnetically coupled high-spin manganese
centers. Minimum energy configurations were obtained by
using a mixed basis set, including the LACVP basis set to
account for a nonrelativistic description of electron-core
potentials (ECP’s) for the Mn4+ and Mn3+ centers, the 6-31G
(d) and 6-31G (2df) basis sets for bridging O2- ions to
include polarization functions for µ-oxo species, and the
6-31G basis sets for the rest of the atoms. All optimizations
were followed by UB3LYP single point energy calculations
based on Dunning’s correlation-consistent triple-� basis
set46-48 cc-pVTZ(-f), including a double set of polarization
functions. We have also tested the cc-pVTZ(-f)++ basis set,
for which excellent agreement between calculated and
experimental redox potentials was previously reported for
other systems.28 Both basis sets gave very comparable results.

Half-cell standard reduction potentials were obtained by
computing the Gibbs free energy change ∆Gred(aq) due to
the reduction of 1 in aqueous solution, as follows:

with the Faraday constant F ) 23.06 kcal mol-1 V-1 and n
) 1 the number of electrons involved in the redox couple
[(bpy)2MnIII(µ-O)2MnIV(bpy)2]3+/ [(bpy)2MnIII(µ-O)(µ-OH)-
MnIII(bpy)2]3+. The values of ∆Gred(aq) were computed by
using the half-reaction of the Born-Haber cycle, depicted
in Figure 2, as follows:

Here, ∆Gred(g) ) ∆Hred(g) - T∆Sred(g) is the free energy
change due to the reduction of 1 in the gas phase, with

Figure 1. Cyclic voltammogram (top) for a 1 mM solution of
complex 1 (bottom) in phosphate buffer at pH 3.78 as reported
in ref 18.

[(bpy)2MnIII(µ-O)2MnIV(bpy)2]
3+ + H+ + e- f

[(bpy)2MnIII(µ-O)(µ-OH)MnIII(bpy)2]
3+ (1)

E0 ) -
∆Gred(aq)

nF
(2)

∆Gred(aq) ) ∆Gred(g) + ∆Gsol(III,III) - ∆Gsol(III,IV)
(3)
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∆Hred(g) ) ∆HEA(DFT) +∆HZPE + ∆HT. ∆HEA(DFT) is the
electron attachment enthalpy, obtained at the DFT level for
the complex in the gas phase, while the changes in the zero
point energy ∆HZPE and corrections for molecular entropy
changes ∆Sred(g) were based on vibrational frequency
calculations. The solvation free energies of 1 in the oxidized
and reduced forms, ∆Gsol(III,IV) and ∆Gsol(III,III), were
computed by using the standard self-consistent reaction field
(SCRF) approach,49,50 based on accurate solutions of the
Poisson-Boltzmann equation. Calculations were carried out
for gas-phase geometries employing a dielectric constant of
ε ) 80.37 (water) for the solvating continuum medium with
a solvent radius of 1.40 Å. The effect of hydrogen bonding
with solvent molecules or the coordination of buffer (phos-
phate) ligands to the metal centers is beyond the scope of
this first study and will be addressed in a follow-up
publication. Corrections due to changes in the thermal
enthalpy ∆HT were neglected.28 All redox potentials are
reported as relative potentials referenced to a silver chloride
electrode (Ag/AgCl). The Ag/AgCl potential is 0.199 V more
positive than that of the standard hydrogen electrode (SHE).
Considering that the absolute potential of the SHE has been
determined experimentally to be 4.43 eV,51 we have sub-
tracted 4.23 V from the absolute potentials to make direct
comparisons to experimental data referenced to the Ag/
AgCl.18

Our calculations of pKa’s were based on the following
equation:

where � ) (kBT)-1 corresponds to room temperature T )
298.15 K and kB is the Boltzmann constant. The free energy
change ∆Ga(aq) due to deprotonation of a µ-OH bridge for
1 in aqueous solutions was computed by using the half-
reaction of the Born-Haber cycle, depicted in Figure 3, as
follows:

where ∆Ga(g) ) ∆Ha(g) - T∆Sa(g) is the free energy change
due to deprotonation in the gas phase, with an enthalpy

change ∆Ha(g) ) ∆Ha(DFT) + ∆HZPE + ∆HT. Here,
∆Ha(DFT) is the energy change computed at the DFT level,
due to deprotonation of the complex in the gas phase. The
solvation free energies associated with the deprotonated and
protonated forms of the complex, ∆Gsol(µ-O, µ-O) and
∆Gsol(µ-O, µ-OH), were also computed according to the
SCRF approach,49,50 as described above. We take the
solvation free energy of a proton in water solvent to be
∆Gsol(H+) ) -260 kcal mol-1, as widely adopted in the
literature.51-53

III. Results

Figure 4 shows the thermodynamic free energy diagram for
PCET in complex 1 as obtained from DFT B3LYP/cc-
pVTZ(-f) calculations. As described in section II, the redox
potentials and pKa’s were obtained according to the
Born-Haber cycle method, applied in conjunction with a
continuum solvation model. Figure 4 shows that the reduced
III,III state of complex 1 is expected to be protonated at pH
< 11.7, with most of its population in the oxo-hydroxo form
[(bpy)2MnIII(µ-O)(µ-OH)MnIII(bpy)2]3+ (1red), while 1 is
protonated only at pH < 2. In addition, Figure 4 shows that
the oxidation of 1red is thermodynamically much easier when
the complex is deprotonated in the [(bpy)2MnIII(µ-O)2-
MnIII(bpy)2]3+ state (E0 ) 0.31 V) than when it is protonated
in the oxo-hydroxo state (E0 ) 0.88 V).

As shown in Figure 4, the protonated species 1red can be
oxidized via two possible pathways: (1) oxidation by a direct
ionization process (red), requiring a rather high free energy
of 0.88 eV, or (2) oxidation by a concerted removal of an
electron from the complex and a proton from the µ-hydroxo
bridge (green). The total energy requirement, thus, consists
of two parts: 0.69 - 0.059*pH eV for the deprotonation step,
and an extra 0.31 eV for subsequent oxidation of the
deprotonated species. In an acidic environment, the oxidation
related deprotonation steps are not spontaneous but driven
by the externally applied electric field in a cyclic voltam-
mogram (CV) experiment. Therefore, the CV peak position
accounts for the free energy changes due to both deproto-
nation and oxidation. Because the electron ionization energy
is constant, shifting of the potential for the redox reaction,
thus, reflects the linear pH dependence of the associated
deprotonation energy.

Figure 2. Born-Haber thermodynamic cycle for free energy
calculations of redox potentials.

Figure 3. Born-Haber thermodynamic cycle used for free
energy calculations of pKa’s.

pKa ) �∆Ga(aq) (4)

∆Ga(aq) ) ∆Ga(g) + ∆Gsol(µ-O,µ-O) + ∆Gsol(H
+) -

∆Gsol(µ-O,µ-OH) (5)

Figure 4. Thermodynamic energy diagram of PCET for
complex 1 in aqueous solutions at pH ) 0, as described by
DFT B3LYP/cc-pVTZ(-f) free energy calculations of redox
potentials and pKa’s based on the Born-Haber cycle method
applied in conjunction with a continuum solvation model.
Formal oxidation numbers are indicated as superscripts in
Roman numbers, and the spin populations obtained according
to the Mulliken population analysis are indicated as subscripts
in red.
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The results reported in Figure 4 indicate that the oxidation
of 1red to complex 1 is strongly coupled to deprotonation of
the µ-OH bridge for a wide range of values of pH (i.e., pH
) 2.0-11.7). For 1red, the oxidation energy is constant at
pH < 2.0 (oxidation takes the red path). It varies linearly at
a rate of 59 mV/pH within the range of 2.0 < pH < 11.7
(green path with nonspontaneous deprotonation), as deter-
mined by the Nernst equation:

At pH > 11.7, the oxidation energy becomes a constant
(the green path dominates with spontaneous deprotonation).
Figure 5 shows the Pourbaix diagram, illustrating the pH
dependence of E1/2, as computed at the DFT B3LYP/cc-
pVTZ(-f) level of theory and directly compared to experi-
mental data.18 The experimentally measured redox potentials
for oxidation of 1 under different pH conditions are presented
as circles in Figure 5b. The measured data points in the range
of 4 < pH < 9 (the filled circles) exhibit linear pH dependence
with a slope of ∼59 mV/pH (the solid line). This particular
value of the slope corresponds exactly with the slope
expected for a system that loses one proton for each electron
removed. Therefore, this linear relationship indicates a PCET
in the range of 4 < pH < 9. The measured potentials at pH
) 1 and pH ) 14 (open circles) obviously deviate from the
above linear relation. In such a strong acidic/basic solution
environment, it is expected that the pH-independent (non-
PCET) process dominates the oxidation of 1, leading to the
horizontal lines around pH ) 1 and pH ) 14 (dashed lines).
Therefore, the crossover points of pH-independent and pH-
dependent lines correspond to the pKa’s of the redox system.

The computational construction of the Pourbaix diagram
(Figure 5a) is based on the ab initio calculation of pKa’s
and redox potentials and predicts the redox potential of 1
for the entire pH range without relying on any kind of
experimental data. According to Figure 4, the redox potential
must be constant (0.88 V) at pH < 2.0 (oxidation takes the
red path). It must vary linearly at a rate of 59 mV/pH within
the range of 2.0 < pH < 11.7 (green path with nonsponta-
neous deprotonation), and it must be constant (0.31 V) at
pH > 11.7 (the green path dominates with spontaneous
deprotonation). The first crossover in Figure 5a corresponds
to the conditions under which the red and green pathways,
shown in Figure 4, are energetically identical. Therefore, the

pH value of this crossover point provides the pKa value of
Mn(III, IV). Analogously, the pH value of the subsequent
crossover point provides the pKa value of Mn(III, III).

This comparison shows that there is a semiquantitative
agreement between the calculated and experimental values
of redox potentials throughout the whole range of pH.54 The
estimated errors are approximately (1 unit of pH and (60
mV for calculations of pKa’s and redox potential, respec-
tively. These results, thus, suggest that the DFT B3LYP/cc-
pVTZ(-f) level of theory could provide valuable descriptions
of PCET processes in oxomanganese complexes, including
other biomimetic catalysts and the OEC of PSII.

The molecular structure of the OEC of PSII has yet to be
established.3 Several structural models have been proposed,
including the “3 + 1 Mn tetramer” with oxo-bridged high-
valent Mn ions and Ca2+ found to be partially consistent
with mechanistic studies of water oxidation and high-
resolution spectroscopy.2,7 However, it remains to be ex-
plored whether such a model is consistent with the well-
known “redox leveling” effect by PCET. Such a regulatory
mechanism is thought to avoid the buildup of charge in the
cluster by deprotonation of water/hydroxo ligands, after
oxidation state transitions, making all redox steps occur over
a narrow range of potentials during the accumulation of 4
oxidizing equivalents. A similar redox leveling process is
observed here for the oxomanganese complex 1, for which
the redox potential of the deprotonated state [(bpy)2MnIII(µ-
O)2MnIII(bpy)2]3+ (E0 ) 0.31 V) is significantly reduced as
compared to the redox potential of the protonated state (E0

) 0.88 V) manifesting such a redox leveling effect in good
agreement with experimental data. The reported results thus
partially validate the DFT B3LYP/cc-pVTZ(-f) level of
theory for systems with common structural features, such
as the OEC of PSII, when applied by combining the
thermodynamic cycle formalism in conjunction with a
continuum solvation model.

IV. Conclusions

We conclude that DFT B3LYP/cc-pVTZ(-f) calculations of
redox potentials and pKa’s, obtained from standard gas-phase
calculations and the subsequent correction for solvation
effects by using a continuum solvation model, can provide
valuable insights on the nature of PCET in oxomanganese
complexes in aqueous environments. The reported compu-
tational results of redox potentials and pKa’s and the

Figure 5. Pourbaix diagram for complex 1 in aqueous solutions, obtained (a) from free energy calculations of redox potentials
at the DFT B3LYP/cc-pVTZ(-f) level of theory and (b) from experimental data (the circles) from ref 18.

E1/2 ) E0 - 0.05916
n

pH (6)
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favorable comparisons to experimental data from cyclic
voltammogram measurements18 and pKa’s determined by
solution magnetic susceptibility and near-IR spectroscopy17

demonstrate the capabilities of current DFT techniques as
applied to modeling PCET in oxomanganese complexes.
Both the regulatory effect of oxidation state transitions on
the pKa’s of oxo ligands and the effect of deprotonation of
hydroxo ligands on the redox potentials of metal centers can
be properly modeled at the DFT B3LYP/cc-pVTZ(-f) level.
Therefore, it is natural to expect that analogous redox-
leveling processes could be modeled at the same level of
theory for the OEC of PSII. Such calculations are currently
underway in our group in an effort to establish structural
and functional models of the OEC through rigorous com-
parisons to thermodynamic studies of water oxidation in PSII.
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Abstract: A new set of bonded potentials is introduced to model the flexibility of coarse-grained
polypeptide chains. Based on a statistical analysis of known structures, the bonded potentials
are sequence-dependent, and the secondary-structure propensity of each amino acid is partially
reflected in the SisBisBi+1sBi+2 pseudotorsion angle, where Si and Bi denote the side-chain
and backbone beads, respectively. To stabilize the secondary structures during simulations,
the bonded force field must be balanced by a simplified model of the protein hydrogen bonds,
based on dipole-dipole interactions. Tested on eight polypeptides with sequence lengths ranging
from 17 to 98, using 200-ns molecular dynamics simulations, the coarse-grained model yields
trajectories with RMSDs ranging from 3 to 8 Å from the experimental conformations. The less-
structured regions of the simulated proteins exhibit the largest-amplitude movements.

1. Introduction

It is widely accepted that the conformational dynamics of
backbone proteins plays an important role in their biological
functions.1 To mention just one example among many, the
opening and reclosing motion of the two flaps that protect
the active site of the HIV-1 protease is one of the key steps
of its enzymatic mechanism.2,3 The allosteric effect in
proteins, which regulates their biological activities, is also
well-known to involve conformational rearrangements of
their backbones4 and/or alterations of their dynamic proper-
ties.5 These backbone motions can be probed by experimental
techniques, particularly NMR spectroscopy, which can
measure the angular mobility of the NsH bonds.6 Protein
structural changes can also be examined by theoretical
methods, such as classical molecular dynamics simulations.7

Nevertheless, both NMR and computational approaches
generally meet difficulties in studying the broad-amplitude
and long-time-scale movements of large proteins. Hence, the
development of novel methodologies to investigate the
functional internal motions of large biomolecular systems
is still a very active research field.

Coarse-grained (CG) models of polymers,8 particularly
proteins, are now very popular, as the reduction in the
number of particles enhances the exploration of phase space,9

accelerates computer calculations, and provides insight into
biological processes occurring on up to a microsecond time
scale.10,11 Among such simplified models, those at the residue
level, which describe each amino acid with one or a few
beads, succeed in combining computational efficiency with
realistic descriptions of protein structural details. Thus, since
the pioneer work of Levitt in 1976,12 a large number of CG
protein force fields have been developed, mainly to tackle
the protein folding issue, but also to simulate the confor-
mational dynamics of large proteins.13,14 CG protein models
have also been applied to the protein-protein docking
problem, as bead softness can implicitly account for side-
chain local flexibility and improve the predictions of match-
ing interfaces between quasirigid proteins.15

The reliability of reduced protein models depends on a
fine balance between the various force-field terms, and their
interpretative strength relies on a simple formulation and a
clear separation of the different physical driving forces. As
in classical atomic models, CG protein force fields usually
have a nonbonded (or long-range) contribution, which
includes van der Waals and electrostatic interactions, and a* E-mail: thaduong@univ-evry.fr.
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bonded (or short-range) contribution, which determines the
local geometry and flexibility of the polypeptide chains.12,16-24

Whereas a physical basis can guide the building of non-
bonded potentials between protein coarse grains,25-29 the
empirical parametrization of the bonded terms is not
straightforward, as their ability to reproduce protein second-
ary and tertiary structures depends on the details of the
nonbonded interactions, particularly the hydrogen bonds.

The flexibility of CG proteins can be efficiently modeled
using elastic network models, which replace all of the
interactions between pairs of beads that are separated by a
distance lower than a cutoff parameter with quadratic
potentials. Despite their simplicity and ease of implementa-
tion in molecular modeling programs, these one-parameter
models can capture the essential features of the functional
low-frequency large deformations of proteins.30-34 One
drawback of most elastic network models, however, is the
absence of any explicit reference to the sequence of proteins,
which hinders the study of the influence of mutations on
protein dynamic behaviors. In addition, these models cannot
describe large anharmonic motions and possible binding-
induced structural changes of the polypeptide chains. To
study these latter phenomena, one can hardly avoid the
development of bonded potentials.

Effective bonded force fields for CG flexible proteins can
be divided into two families that differ in terms of the level
of resolution. In the high-level group, the peptide backbone
is generally described with three united atoms, one for the
nitrogen and its hydrogen atom, another for the R-carbon
and its hydrogen atom, and the third for the carbonyl carbon
and its oxygen atom.9,22,23,35,36 In these descriptions, the
backbone dihedral angles are similarly defined as in atomic
models and can be directly calibrated to reproduce the
Ramachandran energy landscapes. In addition, the two
backbone united atoms NH and CO allow for the natural
introduction of the hydrogen-bond interactions that stabilize
secondary structures.22,35,37 In the low-resolution models, the
amino-acid backbone is represented with a single bead. In
that case, the residue propensity to form secondary structures
has to be implicitly encoded in the backbone pseudobending
and/or pseudotorsion potentials,18,24,31,38 and the hydrogen-
bond stabilizing effect has to be introduced through empirical
potentials3,17,39 or electrostatic interactions.16,38 These one-
bead backbone models significantly reduce the number of
local minima in the conformational space and generate
overall less-frustrated energy landscapes.9 However, in
addition to the difficulty of calibrating the balance between
the various energetic terms, most of these models require
more or less preliminary information about native secondary
or tertiary structures to simulate the protein dynamic
conformation, such as in refs 3 and 24. Except for a few
studies including those carried out by Scheraga, Liwo, and
co-workers40,41 and the recent one by Majek and Elber,38

the conformational stability and dynamics of CG polypeptidic
chains over long trajectories has seldom been examined using
off-lattice unbiased one-bead backbone models.

This article presents an effort to build a general empirical
bonded force field of CG proteins that allows their confor-
mational changes to be studied by means of molecular

dynamics (MD) simulations. This model of polypeptide
flexibility is the natural continuation of the CG nonbonded
potential that was recently derived from an all-atom force
field by Basdevant et al.29 The CG bonded potentials are
completed with a simplified model of hydrogen bonds,
formulated in terms of dipolar interactions and not biased
toward any particular protein conformation or secondary
structure. The CG protein model does not yet include a
consistent description of solvation, especially to account for
hydrophobic effects. Using instead a distance-dependent
dielectric function as a crude model of hydration, the aim
of this work is to bring out a minimal set of CG physical
potentials that can reproduce the dynamic stability of proteins
with MD simulations. This study therefore primarily focuses
on the equilibrium structural properties of CG proteins and
compares them with experimental observations, principally
those provided by NMR spectroscopy.

2. Methods

2.1. Description of the Amino Acids. In the CG protein
model presented herein, each amino acid is described with
one bead for the backbone atoms and one or two beads for
the side chain, depending on its size (Figure 1).29 Each bead
is located at the geometric center of the heavy atoms that it
represents. As in classical all-atom force fields, it is assumed
that the nonbonded contribution can be separated and
expressed as sums of pairwise nonpolar and Coulombic
energy functions depending on the grain-to-grain distances.
In the present study, all of the beads are neutral, except for
those corresponding to the two terminal backbone residues
(Nter+ and Cter-) and the extremities of the charged side
chains (ARG+, ASP-, GLU-, and LYS+). In the following
discussion, the backbone grains are denoted Bi, and the side-
chain grains are denoted Si and Si*. The coarse-grained
nonpolar potentials were obtained by numerical integration
of the mean Lennard-Jones forces between pairs of amino
acids. To calculate these latter quantities, 20 all-atom MD
simulations for all possible homologue pairs of amino acids
were performed in vacuo, using fully flexible molecules and
a vanishing charge in order to capture the purely nonelec-
trostatic interaction. Then, to obtain a numerically tractable
expression for the nonpolar energies, we fit all of the
computed potentials of mean force with a unique mathemati-
cal function. The function that was found to best fit all 29
potentials, regardless of the size and softness of the coarse
grains, consists of a repulsive part in r-6 and a Gaussian
attractive part

The values of the parameters εii, λii, and σii for the self-van der
Waals interactions, as well as comparisons between CG energies
and averaged all-atom Lennard-Jones potentials, are given in
ref 29. To include cross-interactions and keep the number of
parameters as small as possible, the empirical Lorentz-Berthelot
mixing rules were applied: εij ) (εiiεjj)1/2, λij ) (λii + λjj)/2, and
σij ) (σii + σjj)/2.

VvdW(rij) ) εij{(λij

rij
)6

- exp[-( rij

σij
)2]} (1)
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2.2. Determination of the Bonded Potentials. The bonded
potentials presented here are subdivided into three contribu-
tions (Figure 2), namely, a bond term depending on the length
σ of all of the pseudobonds, a bending term expressed as a
function of the distance θ between grains separated by two
successive bonds, and a torsion term for all dihedral angles:
Vbonded ) ∑Vbon(σ) + ∑Vben(θ) + ∑Vtor(τ). To estimate these
energy functions, a statistical analysis was first performed
on a nonredundant set of 550 experimental structures of
proteins (listed in Table 1 of the Supporting Information).

Then, the knowledge-based potentials were extracted from
the normalized probability distribution functions P, using
Boltzmann inversion procedures: V ) -γkBT ln(P), where
kB is the Boltzmann constant and T is the temperature. This
approach, introduced by Miyazawa and Jernigan,42 has been
employed by many groups mainly to build short-range and
long-range energy potentials that enable the discrimination
of protein native folds from decoy structures.20,43-46 In this
study, this method was used to extract only the profiles of
empirical bonded energy functions that govern the local
conformation of the CG protein backbone, as the nonbonded
contributions were previously determined from an all-atom
protein model.29 The empirical factors γ are weight scaling
parameters introduced to balance the bonded energies against
the nonbonded potentials that were determined using another
approach. Preliminary trials on small peptides showed that,
to generate stable MD trajectories, the bonded potentials
needed to be stiffened using γ factors higher than 1. The
tests revealed that values of γbon ) 4, γben ) 8, and γtor ) 6
for the bond, bending, and torsion potentials, respectively,
can yield satisfactory results. Finally, the bonded potentials
were fitted with tractable mathematical expressions to be
implemented in an MD algorithm.

The database of 550 proteins includes both bound and
unbound structures from the Protein Data Bank,47 having
less than 50% sequence similarity, refined to a crystal-
lographic resolution lower than 3 Å, with no missing or
unresolved heavy atoms. This set represents about 158000

Figure 1. Presentation of the coarse-grained amino acids. Each gray rectangle represents a bead, whose position is located
at the geometric center of the heavy atoms that form the coarse grain.

Figure 2. Schematic representation of the CG polypeptide
model with its pseudobonds, pseudobends, and pseudotor-
sions. The backbone beads are denoted Bi, and the side chain
beads are denoted Si and Si*. Dark gray springs describe
pseudobonds between the coarse grains, whereas light gray
springs represent distance-dependent potentials used to
account for the bending conformations.
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amino acids, of which 37% are considered in R-helices, 34%
in �-strands, and 29% in nonstructured coils.

2.3. Bond, Bending, and Torsion Energy Functions.
Figure 3 shows the probability distribution functions for the
BisBi+1 and three others bond types. Most of the bond
probability distributions have a peak shape around a single
equilibrium value, whereas a few of them present a bimodal
profile, including some virtual bonds BisSi involving large
side chains (Phe, Trp, Tyr) and especially the BisBi+1 bond
distribution whose two peaks are associated with the helical
and extended conformations of the backbone. Nevertheless,
the length values between the two maxima are also signifi-
cantly populated, and Boltzmann inversion yields a bond
potential whose the second minimum is not very pronounced.
Therefore, a single-well quadratic function was assumed to
be a reasonable approximation of the BisBi+1 energy, as
well as of all the other bond potentials (Figure 3)

The energy functions associated with the bending angles
were replaced with Urey-Bradley-like potentials depending
on the distance between beads separated by two successive
bonds (Figure 2). Preliminary works using bending-angle-
dependent probability distributions generated a Bi-1sBisBi+1

energy profile whose second minimum associated with the
�-structures was not very well-defined. For this reason,
distance-dependent potentials are used instead of the angle-
dependent ones, in order to better account for the two pref-
erential Bi-1sBisBi+1 bending conformations. Because the
side chains have a nonsymmetrical orientation relative to the
direction of the protein backbone, it is important to dif-
ferentiate between the Bi-1sBisSi and SisBisBi+1 bending

types, as illustrated in Figure 4. The bending probability
distribution functions generally have a single-peak profile,
except for eight bends that have a clear bimodal shape
(Bi-1sBisBi+1, Bi-1sBisHisi, Bi-1sBisPhei, Bi-1sBis
Trpi, Bi-1sBisTyri, AspisBisBi+1, BisPheisPhei*, and
BisTyrisTyri*). Therefore, all of the bending potentials were
fitted with quadratic functions, except the previously men-
tioned ones, for which double-well functions better fit the
potentials (Figure 4). These functions were built by adding
a harmonic term and a Gaussian term

It should be noted that the two minima of the Bi-1s
BisBi+1 generic energy function (Figure 4) are characteristic
of R-helix and �-coil secondary structures, and that the
tendency of the Bi-1sBisBi+1 triplet to adopt an R- or �-coil
local conformation is indirectly modulated by the two other
bends Bi-1sBisSi and SisBisBi+1. Furthermore, the bi-
modal profiles of the Bi-1sBisBi+1 probability distribution
and potential were found by both Levitt12 and Scheraga and
co-workers48,49 to be correlated with those of the adjacent
backbone torsions. Nevertheless, it appears quite difficult to
estimate how strong this correlation is and the extent to which
it is a causal correlation rather than being due to a third
physical factor, such as hydrogen bonding or other interac-
tions. Thus, it is not clear whether this correlation has to be
explicitly included in the CG bonded force field. The first
version of the CG model presented herein neglects this
correlation and assumes that the backbone internal coordi-
nates are all independent degrees of freedom. Neglect of this

Figure 3. Top: Probability distribution functions for various
pseudobond types. Bottom: Associated potentials (thin lines)
and fitting energy functions (thick lines).

Vbon(σ) ) K0(σ - σ0)
2 (2)

Figure 4. Top: Probability distribution functions for various
pseudobend types. Bottom: Associated potentials (thin lines)
and fitting energy functions (thick lines).

Vben(θ) ) K1(θ - θ1)
2 + K2 exp[-(θ - θ2

θ3
)2] + K3

(3)
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correlation might have led to the need to stiffen the CG
bonded potentials using the weight scaling parameters γ
introduced in the previous section to generate stable MD
trajectories. At present, further developments are being
conducted to study the infuence of an explicit implementation
of this correlation on the performance of the force field.

The pseudotorsion potentials are critical in determining a
close description of the protein backbone secondary-structure
propensity and possible large-amplitude dynamics. In the
proposed model, the conformation of each backbone dihedral
angle is locally determined by three potential types: the
Bi-1sBisBi+1sBi+2 torsion, which is sequence-independent,
and the two distinct torsions Bi-2sBi-1sBisSi and Sis
BisBi+1sBi+2, which involve the side-chain grains. This
approach differs significantly from other CG pseudotorsion
models, which introduce only one potential for the Bi-1s
BisBi+1sBi+2 dihedral angle but whose the shape and param-
eters depend on the nature of the amino acids Si and Si+1.

16,18,20,38

The presented model allows for the consideration of only 1 +
(2 × 19), rather than 20 × 20, energy functions.

The torsion Bi-1sBisBi+1sBi+2 probability distribution
function and its associated potential (Figure 5) have general
shapes similar to those found in several previous studies,18,20

with two preferential conformations. However, it should be
emphasized that, whereas the first minimum (around 70°) is
clearly associated with R-helical structures, the second one
(around 300°) predominantly corresponds to unstructured
coils and widely overlaps the �-conformations, which have
backbone torsion mean values around 190°. Hence, by itself,
the Bi-1sBisBi+1sBi+2 potential cannot yield stable �-strand
structures, and these latter need to be stabilized by other local
interactions. Compared to previous similar studies,18,20 the
difference in the position of the second minimum of the

Bi-1sBisBi+1sBi+2 potential arises slightly from the loca-
tion of the Bi grains, which is at the geometric center of the
backbone groups and not the CR atoms. 9 It also certainly
comes from differences in the number and proportion of R/�-
coils in the protein databases that were used to extract the
potentials. This is probably a significant drawback of
knowledge-based approaches, but despite this limitation, they
allow empirical energy functions to be generated easily and
provide instructive insights into protein local short-range
interactions.

For all of the amino acids except proline, the Bi-2s
Bi-1sBisSi probability and energy functions have similar
profiles with a single preferential conformation between 240°
and 300° (Figure 6). It should be noticed here that all of
these torsion energies allow for the maintenance of the local
chirality of the backbone beads Bi (with the exclusion of
the Gly, Nter, and Cter residues). Indeed, for a given
Bi-2sBi-1sBisBi+1 backbone dihedral conformation, the
position of the side chain Si relative to the three beads Bi-1,
Bi, and Bi+1 is energetically determined by the single
minimum of the torsion potential Bi-2sBi-1sBisSi (in
addition to the bond length BisSi and the two bending
potentials Bi-1sBisSi and SisBisBi+1). In contrast, the
SisBisBi+1sBi+2 torsion types present more various be-
haviors that clearly depend on the nature of the amino acid.
Their torsion potentials generally have two minima, one
between 60° and 90° associated with �-strands and coils and
a second around 210° that is characteristic of R-helices
(Figure 7). One can distinguish three tendencies among these
energy functions: For amino acids such as Ala, Arg, Glu,
Gln, Lys, and Met, the minimum associated with the �-strand
and coil conformations is clearly less deep than the R-related
minimum. On the contrary, for residues such as Asn, Asp,

Figure 5. Top: Probability distribution function for the Bi-1s
BisBi+1sBi+2 pseudotorsion type. Bottom: Associated poten-
tial (thin line) and fitting energy function (thick line).

Figure 6. Top: Probability distribution functions for three
Bi-2sBi-1sBisSi torsion types. Bottom: Associated potentials
(thin lines) and fitting energy functions (thick lines).
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Cys, Pro, Ser, and Thr, the well associated with the R
structures is unfavored relative to the other one. In the third
group, including the His, Ile, Leu, Phe, Trp, Tyr, and Val
amino acids, the two minima coexist to a similar extent.
Although these tendencies can hardly be quantitatively
correlated to existing secondary-structure propensity scales,
these observations reflect the overall residue probability to
form secondary motifs previously computed by Chou and
Fasman.50 The chosen mathematical function to fit all torsion
potentials is a fourth-order polynomial of sines, which is a
good compromise between simplicity of the analytical form
and accuracy of the fit

All of the parameters for the pseudobond, bending, and
torsion potentials are given in Tables 2-4 of the Supporting
Information.

2.4. Coarse-Grained Model of Hydrogen Bonds. The
hydrogen bonds within proteins are particularly known to
stabilize the protein secondary structures. These interactions,
which are mainly electrostatic in nature, occur not only
between amino acids separated by four or few residues, as
in R-helices, but also between amino acids that could be very
distant in the sequence, as in �-sheets. Following the idea
of Liwo et al.,16 a simplified model of protein hydrogen
bonds can be introduced through dipole-dipole interactions
between all pairs of backbone grains. Nevertheless, instead
of placing a dipolar vector at the center of each backbone
bead and calculating orientation-dependent interactions, a
positively charged extra site Hi is attached to each grain Bi

(which now carries an negative charge) in order to reproduce

the dipole of the amino acid (Figure 8). The addition of the
particle Hi follows in spirit the classical Drude oscillator
model introduced in recent empirical force fields to describe
the atomic polarizability.51,52 In the present model, the
auxiliary particles Hi are used to account for both the
permanent dipole and the induced polarization of backbone
beads.

To determine the backbone dipole moment and orientation
relative to the neighboring residues, a statistical analysis was
performed on the previous set of experimental structures of
all-atom proteins, using the atomic partial charges from the
second-generation Amber force field.53 Assuming arbitrarily
that the two grains Bi and Hi carry charges of (0.5e, the
analysis yields the probability distribution functions for the
BisHi bond length, as well as the Bi-1sBisHi and
HisBisBi+1 pseudobends (Figure 9). Then, applying the
Boltzmann inversion generates the potentials that allow the
moment, orientation, and fluctuations of the backbone dipoles
to be modeled. As seen in Figure 9, the BisHi bond potential
can be satisfactorily fitted with a quadratic function, whereas
the two Urey-Bradley-like potentials for the Bi-1sBisHi

and HisBisBi+1 bends are better fitted with two double-
well functions (eq 3), which account for the two preferential
R and extended � conformations. It should be noted that the
averaged length of the BisHi bonds is equal to 1.4 Å, which
reflects a mean dipole moment of 0.7 eÅ for the backbone
beads. This value is different from the dipole moment of
the peptide bond NHsCO that links two successive CR
atoms (about 2.3 eÅ), because each backbone bead encom-
passes an amine group NH preceding a CRH and a carbonyl
group CO succeeding it. Therefore, in contrast to the planar
and quasirigid peptide group in which the bonds NH and
CO dipoles are almost colinear and are added, the backbone
bead dipole depends on the internal spatial distribution of
the NHsCRHsCO atoms, and its moment is less strong and
more variable than that of the peptide bond. Nevertheless,

Figure 7. Top: Probability distribution functions for three
SisBisBi+1sBi+2 torsion types. Bottom: Associated potentials
(thin lines) and fitting energy functions (thick lines).

Vtor(τ) ) ∑
n)1

4

An sinn(τ - τn) (4)

Figure 8. Modeling the protein backbone dipole moment,
orientation, and fluctuations using classical Drude-like oscil-
lators. Each particle Hi is bonded to the backbone bead Bi.
Assuming that the two particles carry charges of (0.5e, the
length of the BisHi bond is equal to 2Pi, where Pi is the
backbone dipole moment. Its orientation relative to the two
neighboring backbone beads Bi-1 and Bi+1 is determined by
the two distances Bi-1sHi and HisBi+1.
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the backbone bead dipole mainly arises from the carbonyl
group dipole (which is twice as strong as the NH bond), so
that, in extended �-strands, where the dipoles of the two NH
and CO bonds seem to cancel out, the total backbone bead
dipolar moment remains around 0.6 eÅ whereas it has a
slightly higher value of around 0.8 eÅ in R-helices.

In most all-atom force fields, the 1-4 nonbonded interac-
tions are treated differently from the others, because they
are partially taken into account through dihedral potentials.
Similar considerations for the CG model result in the
introduction of three additional torsion potentials to account
for the dipolar interactions of the Bi bead with its neighboring
beads Bi(1 and Bi(2, which interact only through bonded
potentials. Figure 10 displays the probability distributions
and energy functions for these Hi-1sBi-1sBisHi, Bi-2s
Bi-1sBisHi, and HisBisBi+1sBi+2 additional torsion types.
Similarly to the Bi-2sBi-1sBisSi torsions, the Bi-2s
Bi-1sBisHi energy potential, which has a single minimum,
allows for the maintenance of the “chiral” geometry of the
substituents of the backbone beads Bi and prevents possible
“flips” of the particles Hi. Finally, it can be noticed that this
approach locates the dipole of the backbone grains at their
geometric center in contrast to the model of Liwo et al.16

which accounts for the peptide bond dipoles and then locates
them in the middle of two successive CR atoms. Thus,
contrary to their dipolar model, the BisHi dipole orienta-
tion is not explicitly correlated to the Bi-2sBi-1sBisBi+1

dihedral conformation.54 Nevertheless, the preferential ori-
entation of the backbone dipoles relative to their neighboring
residues is favored by the two torsion potentials HisBis
Bi+1sBi+2 and Hi-1sBi-1sBisHi. All of the parameters for

the potentials involving the auxiliary particle Hi are listed
in Tables 2-4 of the Supporting Information.

3. Results

The CG bonded potentials described in the preceding section
have been combined with the previously developed non-
bonded van der Waals potentials (eq 1) in an MD algorithm
to test their capability to yield stable trajectories of a few
peptides and small proteins. In particular, an important
question is the extent to which the flexible reduced protein
model preserves the secondary structures and accounts for
the loop mobility.

3.1. Simulation Computational Details. The MD simu-
lations of the tested polypeptides were performed with the
program Orac,55 in the canonical NVT ensemble using the
Nosé-Hoover thermostat56 and an integration time step of
1 fs. All systems were first progressively heated from 100
to 300 K for 0.6 ns, then equilibrated at this latter temperature
for an additional 1.2 ns, and finally simulated for 198.2 ns
without any constraint. No cutoff distance was used, so that
all nonbonded interactions were taken into account. The
present study does not include any explicit hydration model.
Nevertheless, to mimic the screening effect of the high-
dielectric solvent, all Coulombic interactions were damped
using a sigmoidal distance-dependent dielectric function.57,58

The dielectric screening effect is theoretically dependent on
the charge exposure,59,60 but to keep the solvent model as
simple as possible, only two different sigmoidal functions
were used: one with a large slope for interactions involving
charged side chains, which are generally exposed to the
solvent, and one with a smaller slope for interactions between

Figure 9. Top: Probability distribution functions for the BisHi

bond distance and the Bi-1sBisHi and HisBisBi+1 pseudo-
bends. Bottom: Associated potentials (thin lines) and fitting
energy functions (thick lines).

Figure 10. Top: Probability distribution functions for the
HisBisBi+1sHi+1, Bi-2sBi-1sBisHi, and HisBisBi+1sBi+2

pseudotorsions. Bottom: Associated potentials (thin lines) and
fitting energy functions (thick lines).
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the backbone beads Bi and Hi, which are overall more buried
sites (see Figure 1 in the Supporting Information).

3.2. Equilibrium Structural Properties. Here are re-
ported the results of the MD simulations for eight polypep-
tides, with sequence lengths ranging from 17 to 98, having
various secondary-structure motifs. Table 1 lists the tested
peptides and shows that the CG model allows the compu-
tational times to be reduced by a factor of about 15-25,
relative to the AA description (without explicit solvent). All
simulations were started from the protein experimental
structure available in the Protein Data Bank,47 without any
addition of counterions. As shown in Figure 2 of the
Supporting Information for four of the studied polypeptides,
the time evolution of the total energies and their bonded
contributions Vbonded are stable along the last nanoseconds
of the trajectories, suggesting that simulations have reached
some equilibrium states. Figure 11 displays the time evolu-
tions of the protein root-mean-square deviations (RMSDs)
from their initial conformation, calculated over their back-
bone beads. Overall, it is observed that most of the tested

polypeptides reach stable conformations not too far from the
native structures, with RMSDs ranging from 3 to 6 Å after
200 ns of simulation. In contrast, the protein 1B75 structure
is quite stable until about 110 ns, after which its RMSD
rapidly increases and stabilizes around 8 Å. The protein 1AJ3
seems to have reached some stable conformations between
25 and 75 ns and between 130 and 180 ns, but its RMSD
increases at the end of the simulation to a rather high value
between 7 and 8 Å. As shown in Figure 3 of the Supporting
Information and as discussed below, the final RMSD values
for these two proteins clearly indicate large deformations of
their tertiary structures. Finally, it can be noticed that the
CG bonded potentials do not prevent the proteins, such as
2FLY or 1PGB, to transitionally visit conformations other
than the equilibrium one.

Comparisons of these first results with similar CG protein
models were difficult, as most of the latter were designed to
treat the folding problem and were not used to test the protein
stability by MD simulations. Other residue-scale force fields,
including the model of Tozzini and McCammon61 and the
MARTINI force field,24 were developed to study the dynam-
ics properties of large CG proteins over long MD trajec-
tories.3,62,63 However, as stressed by the authors, their CG
force fields were biased to retain either the secondary or the
native tertiary structures of proteins, making comparisons
with the presented study very delicate. The dynamic con-
formations generated by their models are certainly closer to
the experimental structures than those yielded by ours, as it
is generally difficult to have a completely unbiased and
accurate force field at the same time. Compared to the recent
study of Majek and Elber,38 which uses an unbiased one-
bead backbone model to simulate protein conformational
stability, the equilibrium RMSD values displayed in Figure
11 are close to the mean value (5 Å) of the RMSD yielded
by their MD simulations. This suggests that the CG force
field presented here, which is less elaborate than theirs but
similarly models the bonded potentials and hydrogen bond-
ing, allows for the generation of dynamic conformations of
simplified proteins as far to the native structures as their
simulations.

As illustrated in Figure 12 for the peptides 2FLY and
1E0Q (as well as in Figure 3 of the Supporting Information
for the proteins 1PGB and 1AJ3), the polypeptide secondary

Table 1. Polypeptides Whose Dynamic Structures Were
Simulated with the CG Model

PDB code
no. of

residues
nos. of

atoms/grains motif(s)
AA/CG CPU

time ratio

1E0Q68 17 285/56 � 26.0
2FLY69 20 356/70 R 20.5
1VII64 36 596/123 R 16.1
1PPT70 36 581/119 R/� 19.0
1PGB71 56 855/183 R/� 16.7
1BPI72 58 892/190 R/� 15.8
1B7573 94 1533/319 R/� 17.5
1AJ365 98 1596/334 R 16.7

Figure 11. Time evolutions of the RMSD values (calculated
over the backbone beads) relative to the initial conformations
for the polypeptides (top) 1E0Q, 1VII, 1BPI, and 1AJ3 and
(bottom) 2FLY, 1PPT, 1PGB, and 1B75.

Figure 12. Ball-and-stick representations of the backbone
of (top) the R-helix 2FLY and (bottom) the �-hairpin 1E0Q at
the end of simulations. The Bi grains are displayed in gray,
and the Hi particles are in red.
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structures are maintained during the simulations through the
electrostatic interactions between backbone beads: In helical
chains, the BisHi bonds are mainly oriented along the helix
axis, and the grains Bi strongly interact with the Hi+3 and
Hi+4 particles. In �-sheets, the BisHi dipoles are almost
coplanar, perpendicular to the strand direction and alterna-
tively point toward and from the neighboring strand. Without
the simplified model of hydrogen bonds, the R-helix 2FLY
bends rapidly, and a kink occurs in its middle, close to the
Gly residue, and in the �-hairpin simulations, the two strands
locally move apart, become highly curved, and dramatically
lose their parallel orientation.

The values of the backbone torsions Bi-1sBisBi+1sBi+2

provide a quantitative indicator of the stabilities of the
secondary structures during the MD simulations.18 Figure
13 displays the averaged values of these dihedral angles along
the sequence of polypeptides 1PPT, 1PGB, and 1B75, which
have various lengths and a common R/� motif, in order to

display the different angle values that correspond to the
backbone torsions. When compared with the values measured
in the PDB structures, it can be observed that most of the
backbone torsions keep a conformation close to the experi-
mental one, especially in the helical and �-strand structures.
Several of them undergo transitions, and such conformational
changes mainly occur near or in the loop regions. In the case
of 1PPT, an R f � transition of the residue 30 backbone
torsions can be observed that slightly kinks the helix end,
as well as a structural change into an R-conformation of the
loop region 8-12, not observed by experiments. In the
protein 1B75 simulation, several dihedral angles undergo
�f R transitions, particularly in the first and fifth �-strands,
revealing large conformational rearrangements consistent
with the relatively high RMSD time evolution. It should be
emphasized here that, whereas the residues in R-helices have
dihedral values around 70°, which is the angle value of the
first minimum in the Bi-1sBisBi+1sBi+2 potential (Figure
5), the residues in �-strands have average torsions around
190°, which does not correspond to the second minimum of
the backbone potential. These � conformations are, in fact,
partially stabilized by the HisBisBi+1sHi+1 torsions (Figure
10), as well as by the SisBisBi+1sBi+2 potentials (Figure
7), which are sensitive to the nature of the amino acids. After
many tests, no stable structure of proteins could be obtained
without the HisBisBi+1sHi+1 potential. Overall, the CG
bonded potentials allow the backbone dihedral conformation
of the proteins to be well conserved: As shown in Figure
14, which displays a plot of the time evolutions of the
percentage of native backbone torsions (plus or minus 30°),
most of the MD trajectories preserve more than 60% of the
protein backbone dihedral angles in the experimental con-
formation. The two simulations of proteins 1BPI and 1B75

Figure 13. Residue-averaged values of the Bi-1sBis
Bi+1sBi+2 torsions for the proteins (top) 1PPT, (middle) 1PGB,
and (bottom) 1B75. Black and gray lines represent the
theoretical predictions and experimental measurements, re-
spectively. Horizontal plain and striped bars indicate the
R-helix and �-strand positions, respectively, in the protein
sequence.

Figure 14. Time evolution of the percentage of native backbone
torsions for the polypeptides (top) 1E0Q, 1VII, 1BPI, and 1AJ3
and (bottom) 2FLY, 1PPT, 1PGB, and 1B75.
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are those that least conserve the backbone structures, with a
percentage of torsion values close to experiments of around
50%.

If the secondary structures are relatively well conserved
along the MD simulations, some protein tertiary structures
are slightly deformed relative to the experimental structures.
For example, the two last R-helices of the protein 1AJ3 are
more curved and twisted at the end of the simulation than
in the initial conformation (see Figure 3 of the Supporting
Information). During the simulation of 1VII, the orientation
of its first R-helix relative to the other two can change
significantly. At the end of the 1PGB simulation, the R-helix
is oriented almost parallel to the �-strand direction, whereas
it diagonally crosses the sheets in the experimental structure.
In the protein 1B75, the initial conformation in the �-barrel
become flatter instead of remaining roughly cylindrical. All
of these discrepancies could be due to the absence of
counterions and of an electrostatic description of the neutral
polar side chains. They probably also arise from the crude
model of solvation, which cannot account for hydrophobic
interactions within the protein cores or for the molecular
nature and exclusion-volume effect of the solvent. Further
corrections of these deficiencies in the CG protein model
are at present under development.

3.3. Structural Fluctuations and Thermal Instability. One
question addressed here is whether the simplified backbone
model can reasonably simulate the conformational fluctua-
tions of proteins, particularly their loops, which are expected
to undergo the largest-amplitude movements. In Figure 15
are plotted the residue root-mean-square fluctuations (RMS-
Fs) relative to the averaged structures for the 1VII and 1AJ3

proteins. These RMSFs are directly compared to those
provided by NMR experiments that have solved the three-
dimensional structures.64,65 The RMSFs calculated for 1VII
appear larger than the NMR values, especially for residues
in the first R-helix and at the beginning of the third R-helix.
This confirms that the CG protein tertiary structure is less
compact than the experimental structure and thus does not
restrain the movements of its secondary structures much. In
contrast, the 1AJ3 loops undergo fewer large-amplitude
motions than in NMR experiments, especially the loop
connecting the first two R-helices. When examining the CG
protein structure (Figure 3 of the Supporting Information),
it can be noticed that the loops come close to and interact
with the C-terminus and N-terminus instead of being fully
solvated, which could explain their rather restrained motions.
Nevertheless, it is overall observed that the residues in the
secondary structures have the lowest RMSFs, whereas the
loop regions have the largest fluctuations, no more nor less
accurately than calculations provided by less detailed elastic
network models.

A finer indicator of the protein backbone conformational
fluctuations is provided by the measurement of the so-called
S2 order parameter with NMR spectroscopy.66 This parameter
reflects the angular mobility of the backbone NsH bonds
and can be compared to the angular mobility of the BsH
dipoles in the CG protein model. In simulations, it can be
calculated as

where µR and µ� denote the three components, x, y, and z,
of the normalized vector along the BsH bonds and where
the brackets symbolize a time average over simulations.67

An S2 order parameter close to 1 indicates that the NsH or
BsH vectors are quite constrained in space and that the H
particle is probably involved in a hydrogen bond. If it is
close to 0, these vectors are, on the contrary, free to move
and rotate. The S2 parameters calculated from the simulations
are displayed in Figure 16 as a function of the residue
numbers of the two proteins 1BPI and 1PGB. Overall, it is
observed that the BsH bonds have small angular fluctuations
for residues in R-helices and �-strands, whereas they are
significantly more mobile for residues in loops. This cor-
roborates the role of the electrostatic interactions between
BsH polar groups in stabilizing the secondary structures,
similarly to the hydrogen bonds between the NsH and CdO
atoms. However, discrepancies between simulations and
experiments can be noticed: In the 1BPI simulation, the two
�-strands are significantly more mobile, whereas the loop
between them has more restrained movements than observed
by NMR spectroscopy, indicating a slight deformation of
these secondary structures. The S2 parameter profile of the
protein 1PGB is in overall good agreement with experimental
observations, except for the third �-strand, which appears
to be more mobile, as well as the second loop before the
R-helix, which undergoes larger-amplitude motion. Further
investigations, especially into the stabilizing role of solvent,
are being conducted to explain these discrepancies and

Figure 15. Comparison of the residue RMSFs relative to
averaged conformations, computed from simulations (black
lines) or provided by NMR experiments (gray lines), for the
proteins (top) 1VII and (bottom) 1AJ3. Horizontal dark gray
and light gray lines represent the R-helix positions.

S2 ) 3
2 ∑

R)1

3

∑
�)1

3

〈µRµ�〉2 - 1
2

(5)

770 J. Chem. Theory Comput., Vol. 6, No. 3, 2010 Ha-Duong



improve the capability of the CG model to yield stable and
meaningful dynamic conformations of proteins.

As previously mentioned, the CG bonded potentials
presented here possibly enable conformation changes of the
simulated proteins, contrary to elastic network models, which
can study only harmonic deformations around a single
structure. To clarify the capability of CG proteins to explore
non-native conformations, simulations at high temperatures
were performed for the four medium-size proteins 1PPT,
1VII, 1PGB, and 1BPI. In practice, their previous MD
trajectories at 300 K were continued at 400 K from 100 to
150 ns then at 500 K from 150 to 200 ns. Figure 17 shows
the time evolutions of the RMSDs from the experimental
structures and the percentages of native backbone torsions
((30°) for the four simulations. It can be observed that the
RMSDs of the four proteins increase during the 50-ns
trajectories at 400 K and, for the proteins 1PPT and 1PGB,
continue to rise during the last 50 ns at 500 K to values
ranging from 7 to 10 Å. This clearly indicates a denaturation
of their native conformation upon heating. Nevertheless,
regarding the percentages of native backbone torsions, the
simulations of the two proteins 1PPT and 1VII maintain a
rather high ratio of backbone torsions in native conformation
(between 60% and 70%), suggesting that their tertiary
structure is lost before their secondary structure. In contrast,
the percentages of native backbone torsions of the two protein
1PGB and 1BPI rapidly decrease to low values between 30%
and 40%. For these denatured proteins, the secondary
structures are lost concomitantly to their tertiary conformation.

4. Conclusions

This work introduces a set of bonded potentials for modeling
the backbone flexibility of proteins described with residue-
scale coarse grains. The main feature of these potentials is
that the local secondary-structure propensity of the amino
acids seems to be encoded in the pseudotorsions Sis
BisBi+1sBi+2. Combined with the nonbonded van der Waals
potential reported recently29 and a simplified dipolar model
of hydrogen bonds, the CG bonded potentials overall generate
stable protein structures in the neighborhood of the experi-
mental conformations. Despite some backbone torsion con-
formational changes, the protein secondary structures are
quite well conserved along the 200-ns MD trajectories, but
some tertiary structures deviate from the initial ones,
especially the �-barrel protein 1B75. The amino acids in the
loops connecting helices and strands are found to have the
largest internal mobility. At present, further improvements
of the model, particularly a better description of the polar
residues and their interactions with high-dielectric solvents,
are in development. It is believed that this CG protein model
will provide, at a low computational cost, a reasonable
dynamic picture of protein equilibrium structures and useful
insights into the functional role of large protein conforma-
tional changes.
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eters of the coarse-grained protein bonded potentials de-

Figure 16. Comparison of the BsH order parameters (black
line) with the NsH order parameters measured by NMR
spectroscopy (gray line) for the proteins (top) 1BPI and
(bottom) 1PGB. Horizontal dark gray and light gray lines
represent R-helix and �-strand positions, respectively.

Figure 17. Time evolutions of the (top) RMSD relative to the
initial conformation and (bottom) percentage of native back-
bone torsions for the polypeptides 1PPT, 1VII, 1PGB, and
1BPI. At 100 ns, the temperature was increased from 300 to
400 K, and at 150 ns, it was increased again to 500 K.
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Abstract: An accurate representation of ion solvation in aqueous solution is critical for meaningful
computer simulations of a broad range of physical and biological processes. Polarizable models
based on classical Drude oscillators are introduced and parametrized for a large set of monatomic
ions including cations of the alkali metals (Li+, Na+, K+, Rb+, and Cs+) and alkaline earth elements
(Mg2+, Ca2+, Sr2+, and Ba2+) along with Zn2+ and halide anions (F-, Cl-, Br-, and I-). The
models are parametrized, in conjunction with the polarizable SWM4-NDP water model
[Lamoureux et al. Chem. Phys. Lett. 2006, 418, 245], to be consistent with a wide assortment
of experimentally measured aqueous bulk thermodynamic properties and the energetics of small
ion-water clusters. Structural and dynamic properties of the resulting ion models in aqueous
solutions at infinite dilution are presented.

1. Introduction
Ions are fundamental to the structure and function of
biological systems, where their local environment can be as
diverse as are the roles that they play. Ions are involved in
the folding of proteins and nucleic acids, enzyme catalysis,
and numerous cellular signaling processes. Monovalent ions
such as Na+, K+, and Cl- play an important role in the
homeostasis and electric activity of living cells and in
modulating biomolecular stability through both specific and

nonspecific interactions.1,2 Divalent cations, such as Zn2+,
Mg2+, and Ca2+, are often associated with catalytic or
regulatory activities of proteins and enzymes,3,4 including
the activation by Ca2+ of K+ channels,5 the stabilization by
Zn2+ of zinc-finger proteins,6 and the condensation and
folding of RNA and DNA by Mg2+.7-12

In order to have meaningful computational models to probe
and explore the diverse and important roles of ions in
biological phenomena, accurate and physically realistic
descriptions of their microscopic interactions is crucial. This
is not trivial because a balanced description of the interactions
between ion and ion, ion and water, and ion and biomolecules
is required. A number of nonpolarizable models for ions have
been developed.13-18 The influence of induced electronic
polarization, in particular, has been shown to be critical to
the study of ion channels,19-21 and it is expected to be
generally important for the study of aqueous ionic systems.
Striking a balance between accuracy and computational
expense is an important consideration in designing useful
models. Because proper statistical averaging in biological
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systems requires long simulations to sample over many
configurations,22 achieving a sufficient sampling of the
relevant configurations can become computationally prohibi-
tive if the microscopic interactions are generated via
sophisticated ab initio quantum mechanical (QM) approaches.
In that regard, treatments of many-body polarization effects
based on simple potential functions have important advan-
tages over QM methods. An alternative approach is to adopt
a polarizable force field.23-26

Generally speaking, there are three different methods to
account for explicit electronic polarization into classical force
fields, i.e., induced dipole model, fluctuation charge model,
and classical Drude oscillator model. Correspondingly, a
number of polarizable models for ions have been developed
based on these three different approaches to study a variety
of phenomena involving ions.27-30 Our own efforts have
been focused on developing a complete all-atomic polarizable
force field for proteins, nucleic acids, and membranes based
on the concept of the classical Drude oscillator.31 This model
approximates the quantum mechanical electronic responses
by using auxiliary massless charged particles that are
harmonically bound to the polarizable nuclei.24,26,29,32-35

This approach is also referred to as the “shell model”36-38

or “charge-on-spring”.24,39 The polarizable Drude force field
has been shown in previous studies to be accurate for the
simulation of liquid water,33-35 aqueous ionic systems,29

condensed phases of small organic molecules,40-44 and lipid
membranes.45 In these efforts, all new chemical entities must
be compatible with the polarizable SWM4-NDP water
model,35 which serves as the central reference for the
polarizable Drude force field.

In the present paper, models for an extended set of ions
are constructed and parametrized to be compatible with the
SWM4-NDP water model.35 The set comprises the most
abundant and biologically relevant monatomic ions, including
cations of the alkali metals (Li+, Na+, K+, Rb+, and Cs+)
and alkaline earth elements (Mg2+, Ca2+, Sr2+, and Ba2+)
along with Zn2+ and halide anions (F-, Cl-, Br-, and I-).
The present models of alkali and halide ions are similar to
those developed previously,29 which were parametrized in
conjunction with the SWM4-DP water model.34

Because the SWM4-DP and SWM4-NDP models differ
in the sign of the charge on the auxiliary Drude particle
attached to the oxygen atom, a reparametrization is necessary
to have models compatible with the SWM4-NDP water
model.35 In addition, models for divalent cations are intro-
duced and parametrized. The latter pose new challenges for
a classical polarizable force field, particularly regarding the
treatment of overpolarization and Coulombic singularities.
Approaches to overcome these problems are presented.

The paper is organized as follows. Section 2 recapitulates
the relevant details of the Drude model for ion solvation and
articulates the questions that arise when extending it to treat
highly polarizable anions and divalent ions, along with steps
that have been taken to solve the problem. Also included in
section 2 are the parametrization strategy and target data. In
section 3, results of the fitting are presented for our set of
ions, along with an analysis of the structural properties and
polarization effects that are predicted by the model.

2. Theory and Methods

2.1. Classical Drude Polarizable Model. The model ions
are consistent with the SWM4-NDP polarizable water model
with a negatively charged Drude oscillator bound to its
oxygen site.35 The SWM4-NDP potential reproduces most
properties of bulk water under ambient conditions (density,
vaporization enthalpy, radial distribution function, dielectric
constant, self-diffusion constant, shear viscosity, and free
energy of hydration). In particular, the SWM4-NDP model
yields a correct static dielectric constant, which makes it
appropriate to study systems dominated by water-mediated
electrostatic interactions. The SWM4-NDP water model
comprises five interaction sites: (1) the oxygen atom “O”
carrying a charge of -qD

wat, (2) the Drude particle “D”
harmonically attached to the oxygen atom carrying a (nega-
tive) charge of qD

wat, (3) the massless auxiliary site “M”
carrying a charge qM

wat, and (4 and 5) the hydrogen atoms“H1”
and “H2”, each carrying a charge of qH

wat. The interactions
within and between water molecules are calculated according
to the formulation of the polarizable Drude model described
in refs 33 and 34. The ion models comprise two sites: (1)
the ion core atom “A” carrying a charge of qion - qD

ion and
(2) a Drude particle “D” attached to the ion atom carrying a
(negative) charge of qD

ion. To be consistent with the SWM4-
NDP model, polarization of an ion is represented by a
negatively charged particle, representing electron density,
bound to its nucleus (core). All atomic dispersion and
electronic overlap effects are represented in a pairwise
additive way using the Lennard-Jones (LJ) potential. The
core repulsion and van der Waals dispersive interactions are
modeled by a LJ interaction between the water oxygen and
the ion core atom via the Lorentz-Berthelot combination
rule.46 The potential energy of one ion and one water
molecule can be written as

where ULJ
iw is the LJ interaction between the ion and the water

oxygen atom,UDrude
iw represents the harmonic restoring springs

associated with the Drude oscillator of the water molecule
and the ion, and Uelec

iw includes all the Coulombic electrostatic
interactions between the fixed and mobile charges carried by
the ion (two sites) and the water molecule (five sites). The spring
constant KD is set to 1000 kcal/mol/Å 2 for all Drude oscillators
in the system. This value dictates the magnitude of the charge
that the Drude particle must carry to produce the correct
polarizability R, i.e., qD ) -(RKD)1/2.35 For example, the
charge on the Drude particle of I-, the most polarizable ion
in the current study, is - 4.733e with this restoring spring
constant.

Simulations of the models are performed by considering
the dynamics of an extended Lagrangian in which a small
mass mD and kinetic energy are attributed to the Drude
particles. The amplitude of the Drude oscillators is controlled
with a low-temperature thermostat acting in the local center-
of-mass reference frame of each atom-Drude pair.33 The
mass of the Drude particles is set to 0.4 amu, which is
subtracted from the mass of the physical polarizable nucleus
such that the total mass of the pair remains constant. To

Utot
iw ) ULJ

iw + UDrude
iw + Uelec

iw (1)
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ensure that the time course of the induced dipoles stays close
to the self-consistent field (SCF) solution, a Nosé-Hoover
thermostat at a temperature T* ) 1 K is applied to the relative
motion of each atom-Drude pair (in their local center-of-
mass reference frame). It was shown that the trajectories
generated according to this procedure are very close to those
generated by the SCF regime of induced polarization.33,34

To control the global thermalization of the system, a second
thermostat is applied to the center of mass of the atom-Drude
pairs as well as the hydrogen atoms.

2.2. Overpolarization of Drude Oscillators. The simple
sum over Coulomb interactions of Uelec in eq 1 does not
exclude singular r-1 attractive interactions between the Drude
particles and other interaction sites carrying a net charge.
Such singularities are generally not problematic in fixed-
charge force fields, where the charges are buried within r-12

LJ core repulsive interactions. In the polarizable model based
upon the Drude oscillator, however, the charge on the Drude
particles is not as effectively shielded from other charges
by such nonelectrostatic core repulsive interactions. To clarify
the situation leading to singularities, consider the interaction
between a Drude oscillator bound to a heavy atom fixed at
the origin and a point charge qi placed at some distance X.
Along the one-dimensional axis, the potential energy is

where x is the displacement of the oscillator, qD is the
magnitude of the charge on each end of the Drude oscillator,
and KD is the harmonic restoring force constant. The self-
consistent field condition is

The point of inflection for this solution becomes unstable
when

at which point x ) X/3. For a fixed value of KD, instabilities
can occur when the polarizability R is large, as in the case
of some anions, or when the charge qi is large, as in the
case of the small monatomic divalent cations.

To illustrate the instabilities encountered with a divalent
cation (qi ) 2.0e), we substitute the charge and force constant
parameters from the SWM4-NDP water model. The results
are illustrated in Figure 1. Substituting parameters for the
SWM4-NDP water model into eq 4, one finds that X ) 1.974
Å. For example, when the divalent cation is placed at a
distance of 2X from the origin, the Drude particle can reside
in a stable minimum located at x ≈ 0.14 Å (Figure 1).
However, as shown in Figure 1, placing the divalent cation
X < 1.974 Å will cause the SWM4-NDP oscillator to fall
into the singular Coulomb well at X. In contrast, the system
is stable with a monovalent cation (qi ) 1.0e): according to
eq 4, the instability appears only at X ) 1.567 Å.29 This
distance is considerably shorter than that observed for
ion-water close contacts in simulation of ions in solution.

Monovalent cations, unlike those for the divalent cations with
the oxygen Drude sites on SWM4-NDP water molecules,
therefore need no special treatment in order to avoid the
“polarization catastrophe”.29

A number of empirical remedies to the overpolarization
problems are possible. The simplest treatment is to introduce
an additional anharmonic restoring force to prevent exces-
sively large excursions of the Drude particle away from the
atom.39 The value of such anharmonic term can be adjusted
to reduce the polarizability of atoms at high field. This
approach was used to prevent any instabilities with the highly
polarizable anions such as Br- and I-. The anharmonic
restoring force was chosen to be active only beyond a certain
stretching distance ∆Rcut

thus preserving the linear polarization response with small
displacements.

The cutoff was chosen to be based on the maximum
displacement of the Drude particles with respect to their
nuclei in SWM4-NDP water models to ensure that its
properties will not be affected. The force constant was chosen
to be 40 000 kcal/mol/Å4 to reproduce the maximum induced
dipole moment of halide anions estimated by MP2 calcula-
tions (see Supporting Information Figure S1). If the stiff
anharmonic restoring force causes numerical instability with
the finite time-step integrator, the problem could be treated
using a multiple time-step algorithm, where the rapidly
varying restoring forces are integrated with a smaller time
step than the remaining slowly varying forces.47

A second possibility is to associate a small repulsive core
to the Drude particle implemented with the NBFIX option
in the program CHARMM.48 Finally, another possibility is
to introduce electrostatic screening functions that alter the
charge-charge 1/r Coulombic interactions at short dis-
tances.30,49-52 The latter approach was used to construct
stable and accurate models of the divalent cations. A
screening function was introduced to modulate the electro-
static interactions between the divalent ion and the induced
dipole component of the oxygen of the water molecules

U(x) ) 1
2

KDx2 +
qDqi

|X|
-

qDqi

|X - x|
(2)

dU(x)
dx

) KDx -
qDqi(X - x)

|X - x|3
) 0 (3)

X ) (27
4

qi� R
KD

)1/3

(4)

Figure 1. SWM4-NDP water molecule with a point charge
of +2e placed 2X, X, and X/2 defined by eq 4 away from the
oxygen atom.

Uhyp ) Khyp · (∆R - ∆Rcut)
4 (5)
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where rij are the distances between the pairs of charges taken
from qi ) {qion - qD

ion, qD
ion} and qj ) {-qD

wat, qD
wat}. The

screening function Siw(r) is given by

where aiw ) (RiRw)(1/6)/tiw and Ri and Rw are the polariz-
abilities of the ion and oxygen of the water molecule,
respectively. This functional form of electrostatic screening
was originally introduced for point dipoles by Thole.40 The
dimensionless Thole parameter tiw modulates the strength of
the screening for the ij pair. In the polarizable Drude model,
this form has previously been utilized to modulate the
intramolecular nearest-bonded-neighbor 1-2 interactions and
next-nearest-bonded-neighbor 1-3 interactions.43 For the
divalent cations, the four terms representing the electrostatic
interactions between the ion-Drude pair and the water
oxygen-Drude pair were treated using eq 7.

2.3. Free Energy Calculations. The absolute hydration
free energy of the ions was calculated and decomposed into
three contributions following a free energy perturbation
simulation protocol established previously29,53

where ∆Grep and ∆Gdisp are the repulsive and attractive
(dispersive) components, respectively, of the LJ interaction
in eq 1.The electrostatic component of the hydration free
energy is ∆Gelec. Each component of the total hydration free
energy was computed from independent simulations in which
an ion was placed in a periodic box containing 216 explicit
SWM4-NDP water molecules. Long-range electrostatic
interactions were computed using particle mesh Ewald
summation.54 A smooth real-space cutoff is applied between
10 and 12 Å with an Ewald splitting parameter of 0.34 Å-1,
a grid spacing of ∼1.0 Å, and a sixth-order interpolation of
the charge to the grid. The isothermal-isobaric ensemble
was simulated using a Nosé-Hoover thermostat55,56 and the
modified Andersen-Hoover barostat of Martyna et al.57

along with a 1 fs time step. The internal geometry of the
SWM4-NDP water molecule was kept rigidly fixed using
the SHAKE/Roll and RATTLE/Roll algorithm.58,59 For each
value of the thermodynamic coupling parameter, λ, after an
initial equilibration of 200 ps, equilibrium properties were
averaged over a 400 ps molecular dynamics simulation. For
the dispersive and electrostatic components, λ took on values
between λ ) 0 and λ ) 1 that were evenly spaced in
increments of 0.1. For the repulsive term, λ took on the
following values: 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0, 3, 0.35, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1. The repulsive contribution, ∆Grep,

was computed using a soft-core scheme as described else-
where53 and unbiased using the weighted histogram analysis
method (WHAM),60 while ∆Gdisp and ∆Gelec were computed
using thermodynamic integration (TI). On the basis of
multiple runs, the overall precision of the calculated absolute
hydration free energies with the current protocol is on the

order of 0.2 kcal/mol for monovalent ions and 0.5 kcal/mol
for divalent ions.

In discussions of the hydration free energy of ionic species,
one may consider the real physical value, which includes
the contribution of the phase potential arising from crossing
the physical air/water interface or the intrinsic bulk phase
value, which is independent of the interfacial potential.29,61,62

The relationship between real and intrinsic hydration free
energies is defined as ∆Ghydr

real ) ∆Ghydr
intr + zFΦ, where F is

the Faraday constant (23.06 kcal/mol/V) and Φ is the
electrostatic Galvani potential at the liquid-vacum interface
or the phase potential of the liquid relative to vacuum. It
may be tempting to consider the intrinsic free energy as
somehow reflecting more faithfully the true hydration free
energy of the ion within the bulk phase because it is
“disentangled” from the bias arising from the liquid-vacum
interfacial potential. However, it should be noted that the
actual value of Φ depends upon the convention to define
the Galvani potential. One may construct an “internal”
Galvani potential via a P-sum, where the potential at all
points in space is the superposition of the total charge density
from all the particles.63,64 Alternatively, one may construct
an “external” Galvani potential via a M-sum, where the
potential from each water molecule contributes only to points
in space that are outside their repulsive core.63,64 Although
the internal or external Galvani potentials can be defined
mathematically without ambiguity by specifying which P-
or M-sum convention has been used, they cannot be
measured experimentally by a physical process.

To avoid any ambiguity, only real hydration free energies
are considered throughout the present study. ∆Ghydr

real corre-
sponds to the reversible thermodynamic work to move a
single ion from vacuum to the interior of a pure water phase
(i.e., across the physical liquid-vacuum interface). Our free
energy calculations with periodic boundary conditions (PBC)
and particle mesh Ewald are carried out within the P-sum
convention, and the implicit reference phase potential of the
liquid is the “internal” Galvani potential. Such free energy
calculations yield ∆Ghydr

intr , which then needs to be shifted by
zΦ (calculated within the same P-sum convention) to yield
the physically meaningful ∆Ghydr

real . For our polarizable SWM4-
NDP water model, the P-sum internal Galvani potential Φ
is equal to -545 mV35 (negative in the liquid phase relative
to vacuum), giving rise to an energy shift of -12.6 kcal/
mol for the monovalent cations/anions and twice that amount
for the divalent species. Finally, for a direct comparison with
published experimental tables, it is necessary to convert the
results into the free energy of an ion going from an ideal
gas at 1 atm to an idealized bulk solution at 1 M concentra-
tion. To account for the compression from a volume of
24.465 L/mol in the ideal gas to the 1 M solution, a small
entropic contribution of -kBT ln (1/24.465) ) 1.9 kcal/mol
must be added per ion.29

2.4. Target Data and Parametrization Strategy.
2.4.1. Ionic Charges and Polarizabilities. For the alkali
cations and halide anions, the values of the polarizabilities
from the earlier parametrization compatible with the SWM-
DP water model were used here without changes.29 In Table
1 included among these polarizabilities are gas-phase values,

qiqj

rij
f (qiqj

rij
)Siw(rij) (6)

Siw(r) ) 1 - (1 + r
2aiw

)e-r/aiw (7)

∆Ghydr ) ∆Grep + ∆Gdisp + ∆Gelec (8)
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reported by Mahan,65 for the alkali cations and a set of
“solvent-renormalized” values for the anion halides, with the
bare gas-phase polarizability66 scaled down by a factor of
0.724. Although the actual values vary, such reduced anion
polarizabilities have also been noted in previous quantum
mechanical studies;67-70 see ref 29 for a more complete
discussion. For the divalent cations, gas-phase values were
again taken from Mahan:65 0.075 Å 3 for Mg2+, 0.49 Å 3 for
Ca2+, 0.87 Å 3 for Sr2+, 1.56 Å 3 for Ba2+, and 0.42 Å 3 for
Zn2+.

2.4.2. Ionic Monohydrates. For the monovalent ions, the
target monohydrate properties are the same as those used in
a previous effort29 and are summarized in Table 2. Namely,
the target binding enthalpies, ∆H, for the alkali cations and
halide anions are the gas-phase binding enthalpies measured
by Dz̆idić and Kebarle71 and Tissandier et al.72 In addition,
the binding energies are taken from the ab initio computa-
tions.73-76 A set of target ion-oxygen distances was
established for the monovalent ions as described in detail

by Lamoureux and Roux.29 For the divalent cations, ab initio
quantum chemical computations were carried out at the MP2
level using Gaussian03.77 The details of the basis sets used
and resulting target data are presented in Table 2. In these
computations, the water geometry was fixed to that of the
SWM4-NDP model while the ion-oxygen separation was
varied.

2.4.3. Absolute Hydration Free Energies. The experimen-
tally determined absolute hydration free energies of ions at
infinite dilution are a central piece of information to optimize
the model.72,78-83 However, as noted previously,29 there is
a large spread in the reported values for the alkali and halide
ions (see Figure 2 of ref 29). The same is true for the divalent
cations. Considerations based on interfacial potentials may
help explain the origin of some of those discrepancies,
although it is important to realize that the overall offset of the
absolute hydration free energy scale measured experimentally
remains undetermined. The most reliable target data that can
be extracted from the experimental measurements are the

Table 1. Parameters for Alkali Cations, Halide Anions, and Divalent Cations with Negatively Charged Drude Oscillators

q (|e|) R (Å3)a -qD (|e|) Emin (kcal/mol) Rmin/2 (Å) Thole tiw

Li+ +1 0.032 (0.032) 0.310427 0.0300000 1.1000000
Na+ +1 0.157 (0.157) 0.687597 0.0315100 1.4616800
K+ +1 0.830 (0.830) 1.580968 0.1419265 1.6866521
Rb+ +1 1.370 (1.370) 2.031161 0.2730669 1.7855083
Cs+ +1 2.360 (2.360) 2.665877 0.2766036 2.0238218
F- -1 1.786 (2.467) 2.319199 0.0026181 2.4622406
Cl- -1 3.969 (5.482) 3.457187 0.0719737 2.4811139
Br- -1 5.262 (7.268) 3.980713 0.0823440 2.6262883
I- -1 7.439 (10.275) 4.733085 0.2084343 2.7579694
Zn2+ +2 0.420 (0.420) 1.124637 0.2500000 0.9349678 2.14773
Mg2+ +2 0.075 (0.075) 0.475246 0.0500000 1.1264156 1.51567
Ca2+ +2 0.490 (0.490) 1.214747 0.2100000 1.2708552 1.50877
Sr2+ +2 0.870 (0.870) 1.618629 0.3400000 1.3059400 1.23792
Ba2+ +2 1.560 (1.560) 2.167454 0.6000000 1.5717385 1.45869

a In parentheses are the ab initio estimates of the gas-phase polarizabilities from which the values for R are derived (see ref 65 for the
alkali ions and ref 66 for the halide ions and divalent ions).

Table 2. Properties of Alkali Cations, Halide Anions, and Divalent Cations with Drude Polarizable Models

ion Umin
a dmin

b ∆Hc rmax gmax rmin gmin Nc Dd ∆Ghydr
real e ∆∆Ghydr

f

Li+ -35.9 (-35.2) 1.91 (1.87) -35.6 (-34.0, -34.0) 2.02 12.50 2.56 0.00 4.0 1.30 (1.03) -120.5 -24.2 (-23.8 to -26.2)
Na+ -24.6 (-24.3) 2.25 (2.26) -24.4 (-24.0, -25.0) 2.38 7.42 3.24 0.20 5.6 1.58 (1.33) -96.3 -17.3 (-16.7 to -17.7)
K+ -17.9 (-17.8) 2.62 (2.64) -17.6 (-17.9, -18.1) 2.74 4.80 3.56 0.45 6.9 2.20 (1.98) -78.6 -5.2 (-4.9 to -5.4)
Rb+ -15.7 (-16.1) 2.79 (2.79) -15.2 (-15.9, -16.0) 2.90 4.04 3.80 0.62 8.1 2.44 (2.07) -73.7 -7.1 (-5.5 to -7.7)
Cs+ -13.3 (-14.1) 3.05 (2.99) -12.5 (-13.7, s) 3.16 3.25 4.10 0.75 9.7 2.56 (2.06) -66.5
F- -23.5 (-25.9) 2.53 (2.44) -23.2 (-23.3, -23.3) 2.72 4.77 3.34 0.37 5.5 1.33 (1.48) -108.0 -30.0 (-13.4 to -30.6)
Cl- -14.0 (-14.4) 3.09 (3.11) -13.7 (-13.1, -14.4) 3.16 3.15 3.78 0.72 6.5 1.82 (2.03) -78.4 -6.5 (-3.3 to -6.9)
Br- -12.4 (-12.7) 3.26 (3.26) -11.9 (-12.6, -13.0) 3.28 2.70 3.96 0.75 6.8 1.85 (2.08) -71.6 -8.5 (-7.7 to -11.1)
I- -10.2 (-10.6) 3.56 (3.50) -9.7 (-10.2, -10.5) 3.50 2.28 4.16 0.90 7.1 2.02 (2.05) -63.1
Zn2+ -100.0 (-96.3) 1.82 (1.86) -99.4 (-103.1) 2.14 17.2 3.08 0.0 6.0 0.61 (0.70) -460.2 -90.3 (-107.6)
Mg2+ -89.4 (-77.9) 1.86 (1.93) -89.0 (-81.8) 2.06 19.0 2.72 0.0 6.0 0.82 (0.71) -447.2 -77.3 (-77.7 to -80.3)
Ca2+ -55.6 (-54.9) 2.18 (2.25) -55.1 (-56.5) 2.28 16.9 2.76 0.0 6.0 0.96 (0.79) -369.9 -32.7 (-29.8 to -32.9)
Sr2+ -45.2 (-40.6) 2.30 (2.52) -44.7 (-) 2.42 11.9 3.20 0.0 7.2 0.96 (0.79) -337.2 -27.2 (-27.9 to -31.1)
Ba2+ -37.7 (-34.0) 2.56 (2.73) -37.3 (-) 2.68 10.4 3.30 0.1 8.2 0.97 (0.85) -310.0

a The reference binding energy in parentheses U min of monovalent monohydrates is taken from various sources:29 Li+,73 Na+,74 K+,75

Rb+,74 Cs+,74 F-,76 Cl-,76 Br-,76 I-.76 The reference values for divalent ions were obtained with MP2 calculations with basis set
6-311++G(3df,3pd) for hydrogen, oxygen, Mg2+, Ca2+, and Zn2+ and LANL2DZ pseudopotential and associated basis set for Sr2+ and Zn2+.
The energies are in kcal/mol. b The reference distance in parentheses of the alkali cations is taken from various sources,29 while those of
the halide anions are taken from ref 76. The reference values for divalent cations were obtained from MP2 calculations (see footnote a of
this table for details). The distances are in Ångstroms. c The reference enthalpies in parentheses ∆H for the monovalent monohydrates
are taken from the experimental studies.71,72 The reference enthalpies in parentheses ∆H for the divalent monohydrates are taken from the
theoretical study.87 The enthalpies are in kcal/mol. d The experimental self-diffusion coefficients are taken from the Handbook of Chemistry
and Physics.95 The self-diffusion coefficients are in 10-5 cm 2/s. e The real hydration free energies ∆Ghydr

real , in kcal/mol, are obtained from the
intrinsic free energies from periodic boundary condition (PBC) simulations corrected with the phase potential- and entropy-related
contributions. f The experimental hydration free energy differences in kcal/mol for the monovalent ions are taken from refs 72 and 78-83,
while those for the divalent ions are taken from refs 80, 82, and 83. The entry for Zn2+ is defined as ∆Ghydr

real (Zn2+) - ∆Ghydr
real (Ca2+).
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relative hydration free energies between different ions of
identical charge and the total solvation free energies of neutral
salts (∆Ghydr(ABn) ) ∆Ghydr(A) + n ∆Ghydr(B)). Notwithstand-
ing those issues, it should be noted there are also some
quantitative differences among the various experimental values.
For example, Tissandier et al.72 reported the total hydration free
energy of KCl to be -156.8 kcal/mol, while Randles78 reported
-151.3 kcal/mol. The values from Tissandier,72 Schmid,83 and
Klots81 are quite close for the monovalent ions. During the
parametrization of monovalent ions, we principally aimed to
reproduce the target data generated from the measurements of
Tissandier.72 For the divalent ions, the target data was taken
from the measurements of Schmid,83 except in the case of Zn2+

where our model falls between the data from Schmid83 and
Gomer and Tryson.80

2.4.4. Optimization Procedure. The parameters for the
ion-water oxygen interaction are constructed via the
Lorentz-Berthelot combination rule,46 Emin

iw ) (Emin
ion Emin

O )1/2

and Rmin
iw ) (Rmin

ion + Rmin
O )/2. The adjustable parameters for

the monatomic ions within the classical Drude oscillator
scheme are the LJ parameters of the ion, Rmin

ion and Emin
ion . Rather

than exploring the LJ parameters of the ions directly, it is
more convenient to explore the space of monohydrate
interaction energies and minimum-energy ion-oxygen dis-
tances {dmin, Umin},29 which can be compared to the available
ab initio or experimental data. Furthermore, quadratic
response functions are fitted to the data from explicit
computations, defined by coordinates in {dmin, Umin}, to
interpolate predicted properties (e.g., hydration free energy)
between simulated models29,35

A set of polarizable models for the monovalent ions was
thus constructed by determining the LJ parameters spanning
a grid in the {Umin, dmin} coordinates and simultaneously
fitting all ions using the interpolated polynomials. For

divalent cations that use the Thole screening as described
by eq 7, there are three parameters to fit per ion: the LJ radius
and well depth of the ion and the ion-water Thole screening
factor. To simplify the parametrization process and ensure
physically reasonable dispersive interactions, it proved useful
to first assign the LJ well depth by making use of the familiar
London dispersion formula ∼C6

ij/r6 for the leading order
dispersion coefficient

where EI
i, EI

w, Ri, and Rw are the ionization energy and
polarizabilty of the ion and water, respectively. Converting
C6

iw into the attractive coefficient of the LJ interaction,
2Emin

iw (Rmin
iw )6, yields an estimate of Emin

iw . The resulting values
are 0.05 for Mg2+, 0.21 for Ca2+, 0.34 for Sr2+, 0.60 for
Ba2+, and 0.25 for Zn2+ (all in kcal/mol). Once the LJ well
depth is assigned, a grid in {dmin, Umin} was generated for
each divalent ion by varying the LJ radius and Thole
parameter for each ion. The parametrization of the complete
set of ion models is fairly consistent and robust. As observed
previously,29,84 alternative sets of parameters can be found
with small variations in the ion monohydrate energies ((0.25
kcal/mol) or in the ion-water distances ((0.1 Å), resulting
in small shifts in the absolute hydration free energies ((3
kcal/mol). At this stage, the parametrization procedure is
aimed at designing accurate models for the infinite dilution
limit. Solutions at high concentrations, where ion-ion
interactions become important, will be examined in a later
stage. The final fitted values are summarized in Table 1.

3. Results and Discussion

The previously developed K+ model was shown to capture
the essential properties in both the gas phase and aqueous
solution.84 The parameters for the polarizable Drude ion
models were optimized to be consistent with bulk hydration
free energies of the neutral salts while yielding accurate
energies and geometries for the ionic monohydrates. An
important advantage of reproducing the bulk hydration free
energies of neutral salts with our model ions is that these
data contain no undetermined offset constant, as do the
absolute hydration free energies of individual ions.29 Achiev-
ing an accurate description for the ionic monohydrates
becomes critical, therefore, to “lock down” the absolute scale
for the bulk hydration free energies. As shown in Table 2,
this procedure defines a “solvation-consistent” scale for the
absolute hydration free energies of ionic species despite the
uncertainties in the experimental data. Overall, the properties
of bulk solvation given in Table 3 and small gas-phase
clusters given in Table 4 are in excellent agreement with
experiments.

3.1. Instabilities and Overpolarization. The polarizable
Drude models based on the simple scheme presented by eq
1 yield numerically stable simulations for all the monovalent
cations. As expected, based upon substitution into eq 4, no
numerical instabilities based on overpolarization were present.
In contrast, eq 4 can be used to predict overpolarization
catastrophes that occur for halide anions (Br- and I-) when

Figure 2. Binding energies of the divalent monohydrates as
a function of the distance between the ion and the oxygen
atoms: (solid line) ab initio results; (dashed line) Drude. See
Table 2 footnotes for the theory and basis set used to obtain
the reference data.

∆Ḡhydr(dmin, Umin) ) a0 + a1dmin + a2Umin + a3dmin
2 +

a4dminUmin + a5Umin
2 (9)

C6
iw ) 3

2( EI
iEI

w

EI
w + EI

w)RiRw (10)
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ion-proton separations are within physically realistic dis-
tances. Such instabilities are not present in our previously
published set of alkali-halide ionic models29 because the
positive Drude particle and proton do not attract one another.
Introducing an anharmonic restoring force to the anionic
Drude oscillator removes those instabilities by preventing
excessively large excursions of the Drude particle away from
the ion. Importantly, as shown in Tables 2-4, this construc-
tion did not affect our ability to adjust the parameters of the
model to accurately fit the target data. In particular, the

properties of the small cluster hydrates can be reproduced
with the simple anharmonic restoring spring.

A more serious overpolarization problem is encountered
with the divalent cations. We first tried the two simple
schemes to solve this issue, namely, adding an anharmonic
restoring force to the Drude oscillator or adding a LJ core
repulsion between the oxygen-tethered Drude particle and
the divalent cations. Experimenting with various param-
etrizations showed that while introducing an anharmonic
restoring force or a LJ core can prevent the numerical

Table 3. Hydration Free Energy of Neutral Salts (in kcal/mol)a

Li+ Na+ K+ Rb+ Cs+

F- -228.5 (-229.0) -204.3 (-203.8) -186.6 (-186.6) -181.7 (-181.2) -174.5 (-173.8)
Cl- -198.9 (-199.3) -174.7 (-174.0) -157.0 (-156.8) -152.1 (-151.4) -144.9 (-144.0)
Br- -192.1 (-192.9) -167.9 (-167.6) -150.2 (-150.4) -145.3 (-145.0) -138.1 (-137.6)
I- -183.6 (-183.9) -159.4 (-158.7) -141.7 (-141.5) -136.8 (-136.1) -129.6 (-128.7)

Zn2+ Mg2+ Ca2+ Sr2+ Ba2+

F- -676.2 (-696.8) -663.2 -585.9 (-589.4) -553.2 -526.0 (-528.1)
Cl- -617.0 (-637.2) -604.0 (-607.0) -526.7 (-529.9) -494.0 (-499.0) -466.8 (-468.6)
Br- -603.4 (-624.4) -590.4 (-594.3) -513.1 (-517.0) -480.4 (-486.2) -453.2 (-455.7)
I- -586.4 (-606.5) -573.4 (-576.4) -496.1 (-499.1) -463.4 (-468.3) -436.2 (-437.8)

a The experimental solvation free energies reported for alkali halide salts by Tissandier et al.72 and Klots81 (Cs+) are listed in parentheses
for comparison. The experimental solvation free energies for salts of divalent cations were derived from the free energies of formation of the
salt minus that of the gas-phase ions (in kJ/mol): ∆Gaq° (An+ + nB-) ) ∆Gf°(ABn) - ∆Gf°(An+ (g)) - n∆Gf°(B-(g)), with ∆Gf°(An+(g)) )
∆Hf°(An+(g)) - T∆Sf°(An+(g)) and ∆Sf°(An+(g)) ) 108.8555 + 12.4716 ln(M) - ν*S(A*) ( nS(e-(g)), where M is the molar mass in grams, ν*
is 1/2 for anions and 1 for cations, S(A*) is the element’s absolute entropy in the standard state, and S(e-(g)) is the absolute entropy of the
gaseous electron (see ref 72 for details). The experimental thermodynamic data are taken from the Handbook of Chemistry and Physics95

and the 1982 NBS tables.85

Table 4. Solvation Enthalpies of Ion M in Water Clusters (H2O)n (in kcal/mol)

solvation enthalpy

ions, M model/exp 1 2 3 4 5 6

Li+ Drude -35.6 -65.3 (-29.7) -87.0 (-21.7) -103.0 (-16.0) -114.2 (-11.2) -125.3 (-11.1)
exp72 -34.0 -59.8 (-25.8) -80.5 (-20.7) -96.9 (-16.4) -110.8 (-13.9) -122.9 (-12.1)
exp71 -34.0 -59.8 (-25.8) -80.5 (-20.7) -96.9 (-16.4) -110.8 (-13.9) -122.9 (-12.1)

Na+ Drude -24.4 -45.9 (-21.5) -63.4 (-17.5) -77.2 (-13.8) -87.0 (-9.8) -95.1 (-8.1)
exp72 -25.0 -44.8 (-19.8) -60.2 (-15.4) -73.4 (-13.2) -84.9 (-11.5) -95.6 (-10.7)
exp71 -24.0 -43.8 (-19.8) -59.6 (-15.8) -73.4 (-13.8) -85.7 (-12.3) -96.4 (-10.7)

K+ Drude -17.6 -33.2 (-15.6) -47.0 (-13.8) -58.6 (-11.6) -67.7 (-9.1) -76.0 (-8.3)
exp72 -18.1 -34.2 (-16.1) -47.4 (-13.2) -59.2 (-11.8) -69.9 (-10.7) -79.9 (-10.0)
exp71 -17.9 -34.0 (-16.1) -47.2 (-13.2) -59.0 (-11.8) -69.7 (-10.7) -79.7 (-10.0)

Rb+ Drude -15.3 -29.0 (-13.7) -41.2 (-12.2) -51.9 (-10.7) -60.3 (-8.4) -68.5 (-8.2)
exp72 -16.0 -29.6 (-13.6) -41.8 (-12.2) -53.0 (-11.2) -63.5 (-10.5)
exp71 -15.9 -29.5 (-13.6) -41.7 (-12.2) -52.9 (-11.2) -63.4 (-10.5)

Cs+ Drude -12.4 -24.3 (-11.9) -34.7 (-10.3) -44.0 (-9.3) -52.0 (-8.0) -64.0 (-12.0)
exp71 -13.7 -26.2 (-12.5) -37.4 (-11.2) -48.0 (-10.6)

F- Drude -23.2 -45.4 (-22.2) -66.9 (-21.5) -80.2 (-13.3) -90.7 (-10.5) -103.1 (-12.4)
exp72 -23.3 -41.2 (-17.9) -55.7 (-14.5) -69.4 (-13.7) -82.2 (-12.8) -93.1 (-10.9)

Cl- Drude -13.7 -27.6 (-13.9) -43.9 (-16.3) -57.4 (-13.5) -64.4 (-7.0) -71.7 (-7.3)
exp72 -14.4 -27.2 (-12.8) -38.9 (-11.7) -49.8 (-10.9) -59.3 (-9.5) -68.1 (-8.8)

Br- Drude -11.9 -24.6 (-12.7) -40.4 (-15.8) -53.2 (-12.8) -59.6 (-6.4) -68.1 (-8.5)
exp72 -13.0 -25.0 (-12.0) -36.4 (-11.4) -47.4 (-11.0) -58.2 (-10.8) -68.5 (-10.3)

I- Drude -9.7 -20.9 (-11.2) -35.6 (-14.7) -42.4 (-6.8) -50.7 (-8.4) -59.6 (-8.9)
exp72 -10.5 -20.2 (-9.7) -29.5 (-9.3) -38.7 (-9.2) -47.7 (-9.0)

Zn2+ Drude -99.4 -176.9 (-77.5) -237.2 (-60.3) -284.4 (-47.2) -306.2 (-21.8) -329.0 (-22.8)
theor or exp87 -103.1 -191.1 (-88.0) -246.9 (-55.8) -289.8 (-42.9) -314.8 (-25.0) -339.0 (-24.2)

Mg2+ Drude -89.0 -164.6 (-75.6) -223.3 (-58.7) -269.8 (-46.5) -293.0 (-23.2) -316.5 (-23.5)
theor or exp87 -81.8 -153.8 (-72.0) -210.4 (-56.6) -254.3 (-43.9) -282.3 (-28.0) -306.9 (-24.6)

Ca2+ Drude -55.1 -105.2 (-50.1) -149.5 (-44.2) -188.1 (-38.6) -217.8 (-29.7) -245.3 (-27.5)
theor or exp87 -56.5 -105.1 (-48.5) -148.0 (-42.9) -183.6 (-35.6) -211.3 (-27.7) -236.6 (-25.3)

Sr2+ Drude -44.7 -86.2 (-41.5) -124.0 (-37.8) -158.4 (-34.4) -187.0 (-28.6) -213.6 (-26.6)
exp86 - (-22.7)

Ba2+ Drude -37.3 -72.0 (-34.7) -103.7 (-31.7) -133.3 (-29.6) -158.7 (-25.4) -182.6 (-23.9)
exp86 - (-23.9) - (-19.8)

a Numbers in parentheses are for the reaction M(H2O)n-1 + H2O h M(H2O)n.
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instabilities, it remained difficult to get reasonable mono-
hydrate energies as the large Coulombic repulsion between
the bare positive charge carried by the oxygen nucleus
and the ion remains unshielded. This Coulombic interac-
tion gives rise to large repulsion energies that must be
compensated in order to have reasonable monohydrate
energies and geometries with the divalent cations. Ulti-
mately, it was found that introducing a Thole-type
screening function49 for the Coulombic electrostatic for
the interactions between the divalent ion and the induced
dipole component of the water molecules led to the best
models. A similar approach was used to construct models
of divalent ions consistent with the AMOEBA polarizable
force field.30,52 Comparisons between the Drude model
with Thole-like damping and the ab initio calculations are
shown in Figures 2 and 3. The Thole screening scheme
given by eq 7 effectively removes the singularity problems
illustrated in Figure 1 and yields divalent monohydrates
with reasonable binding energies and total dipole moments.

3.2. Bulk Hydration Free Energies. The total hydration
free energies of neutral salts are shown in Table 3 and
Figures 4 and 5 together with available experimental data.
Although the relative hydration free energy difference
between different ions in the same series and the total
hydration free energy of a neutral salt can generally be
measured very accurately, we note that there are noticeable
differences among the experimental data from difference
sources72,78-83,85 (see Supporting Information Tables S1
and S2). Overall, the current Drude models agree very
well with the experimental data, with the monovalent
neutral salts closer to the experimental estimations by
Tissandier et al.,72 Klots,81 and Schmid et al.83 (Figure
4) and the divalent neutral salts closer to the experimental
estimations by Schmid et al.83 and Gomer and Tryson80

(Figure 5).
The hydration free energy differences of ions in the same

series are well reproduced with some compromise of the
monohydrate properties for smaller ions. These present
models define an absolute hydration free energy scale in
which the real hydration free energy of the proton would be

-258.8 kcal/mol. This can be compared with the experi-
mental estimates of -264 kcal/mol by Tissandier et al.,72

-249.5 kcal/mol by Schmid et al.,83 and -253.2 kcal/mol
by Gomer and Tryson.80 It is noteworthy that the current
value of -258.8 kcal/mol differs by less than 2% from the
experimental estimates obtained by Tissandier et al.72 This
suggests that their analysis, which consisted of monitoring
the stepwise changes in ion-cluster free energies, was
targeting the absolute real free energy of the proton.72

3.3. Enthalpies of Ionic Small Hydrates. Structural and
thermodynamic properties of small clusters offer a rigorous
test of the accuracy of the models. As opposed to bulk liquid
hydration where induced polarization over different moieties
may lead to some compensation of errors, the microscopic
interactions are displayed nakedly in small clusters, and
possible limitations of the models become readily apparent.
Furthermore, because the polarizable models are constructed
with the intended purpose of responding accurately to
different electrostatic environments, the ability to reproduce
the properties of small ionic hydrates is very important.
Finally, the properties of the ionic monohydrates are used

Figure 3. Total dipole moments of the divalent monohydrates
as a function of the distance between the ion and the oxygen
atoms. The ions are located at the origin to compute the dipole
moment. See Table 2 for details.

Figure 4. Hydration free energies of salts with monovalent
cations: Tissandier,72 Klots,81 Marcus,82 Noyes,79 Schmid,83

Randles,78 and Gomer.80

Figure 5. Hydration free energies of salts with divalent
cations: Schmid,83 Marcus,82 Gomer,80 Noyes,79 and this
work. See the caption of Table 3 for details. The entries for
MgF2 and SrF2 in this work were derived based on hydration
free energy differences between F- and Cl- and the total
hydration free energies of salts MgCl2 and SrCl2.
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to set the scale for the absolute hydration free energies in
bulk solution. The calculated ionic monohydrate energies and
geometries are reported in Table 2. The results generally
agree well with the target data.73-76 As previously noted,29

the limitations of the models are most apparent for smaller
ions. This trend is observed for the divalent cations as well.
The less satisfactory performance of the divalent cations is
very likely due to the neglect of the important charge-transfer
effect, which is absent from the current energy function. The
enthalpies of hydration for an ion solvated in a small water
cluster (1-6) compare favorably with literature values with
the monovalent cations having the best agreement71,72,86,87

(Table 4). In general, the monovalent cations reproduce the
experimentally measured properties of ionic hydrate clusters
slightly better than do the halide anions. The most likely
explanation for this is that the conformational spaces for
water molecules in the anion-water clusters are far more
complicated than those for the cation-water clusters due to
the formation of hydrogen bonding between water molecules
coordinating the anion. The hydration enthalpies for the
divalent cations have larger deviation from the experimental
or ab initio data, consistent with the monohydrate properties.

3.4. Coordination Structure in Bulk Solution. Radial
distribution functions (RDF) averaged from 10 simulations
each of 200 ps for ion-oxygen contacts, g(RIon-O), are
presented in Figures 6, 7, and 8 for the alkali cations, halide
anions, and divalent ions, respectively. The coordination
numbers for each ion, N(RIon-O), defined as the integral of
g(RIon-O) from the origin out to the first minimum, rmin, are
presented in Table 2. The RDFs and coordination numbers
for the monovalent ions are very similar to those reported
from the previous models (Figures 6 and 7) based upon the
(positive Drude) SWM4-DP water model.29 Here, we briefly
discuss the main findings.

In accordance with the most recent computational studies,
the current model predicts that the Li+ ion is 4-coordinated
within the experimental range obtained from neutron and
X-ray diffraction (see refs 88-90 for a survey). After the
first peak, the lithium-oxygen RDF remains very small over
a large interval extending from 2.4 to 3.1 Å. This result is

consistent with Car-Parrinello molecular dynamics (CPMD)
simulation.91 The strong separation between the first and
second peak in the RDF implies that the coordination number
of Li+ can be defined unambiguously. However, for Na+

and K+, a more populated region is observed between the
first and second peaks in the RDFs. As a result, a broad
distribution of coordination numbers within the first solvation
shell was observed.22,84 As dissussed in refs 29, 84, and 90,
both experimental studies and CPMD-type simulations have
predicted a wide range of coordination numbers for Na+ and
K+ and the current models fall well within the reported range.
In addition, the coordination number distributions of Na+

and K+ overlap substantially with one another, indicating
that the coordination number alone is not a dominant factor
in describing the thermodynamics of ion solvation.22

For the divalent ions, the first peak in the RDF is generally
sharper than those of the monovalent ions, indicating a highly
ordered water structure around the ions (Figure 8). In
addition, a clear separation exists between the first and the
second coordination shells, as indicated by the small value
of the first minimum in the RDFs. The current Drude model
for Ca2+ gives a coordination number of 6, smaller than the
value of 7.3 based on the AMOEBA force field.30 As a
comparison, the coordination numbers of Ca2+ were esti-

Figure 6. Radial hydration structure for the alkali cations.
Radial distribution functions g(RIon-O) functions are shown by
the solid line, and the coordination numbers N(RIon-O) are
shown by the dashed line.

Figure 7. Radial hydration structure for the halide anions.
Radial distribution functions g(RIon-O) are shown by the solid
line, and the coordination numbers N(RIon-O) are shown by
the dashed line.

Figure 8. Radial hydration structure for the divalent cations.
Radial distribution functions g(RIon-O) functions are shown by
the solid line, and the coordination numbers N(RIon-O) are
shown by the dashed line.
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mated to lie between 5.5 and 10 based on various experi-
mental techniques92 and between 6 and 7 according to the
most recent CPMD simulations.92 For Mg2+, the Drude
model gives a coordination number of exactly 6, consistent
with both the experimental93 and the ab initio94 studies. For
Zn2+, the coordination number is estimated to be 6, which
is within the experimentally estimated range from 5.3 to
6.6.88 Overall, the coordination structure for the ion models
is in excellent agreement with experiment, given that no
direct adjustments were made to reproduce those features
during the parametrization.

3.5. Self-Diffusion Coefficients. The ability of the po-
larizable force field to reproduce the dynamic transport
properties of ions in aqueous solutions is a critical test of
the accuracy of computational models. This ability is best
characterized by considering the diffusion of ions in aqueous
solutions. The self-diffusion coefficients for the ion models
at infinite dilution were computed from the mean-square
displacement correlation function. Because there is only a
single ion in the atomic system, relatively long simulations
are required to obtain converged self-diffusion coefficients.
To improve convergence, 10 simulations of 200 ps each were
averaged for each ion. The results are presented in Tables 2
and 5. Additional simulations indicate that the current
estimates from MD are not overly sensitive to finite-size
effects within PBC.

The agreement between the Drude model and the available
experimental values95 is relatively good. Interestingly, the
calculated values appear to be slightly overestimated for the
cations while they are underestimated for the anions. This
intriguing trend, with the cations diffusing faster and the
anions slower than the experimental estimates, has also been
noted in a recent study with nonpolarizable models.17

Limitations in the ions and/or solvent models could perhaps
explain these discrepancies. However, it is worth recalling
that the polarizable SWM4-NPD water model matches the
experimental value of the self-diffusion of water exactly, and
the shear viscosity is satisfactorily reproduced as well.35

Alternatively, there is also the possibility that the experi-
mental estimates for the single ions are at fault for the
following reason. Experimentally, it is nearly impossible to
measure the self-diffusion coefficient of isolated ions in
solution. Most of the available values for individual cations

and anions have been deduced from conductivity measure-
ments of electrolyte aqueous solutions by invoking additional
hypotheses.95 In the limit of very low concentration [c], the
conductivity σ of an electrolyte solution varies as [c](e2/
kBT)∑izi

2Di. In practice, all the ionic species of a neutral salt
contribute to the experimentally observed σ, suggesting that
a more meaningful comparison is achieved by considering
the effective self-diffusion coefficients for neutral salts, Deff

) ∑izi
2Di/∑izi

2, corresponding to the low concentration limit
of the whole salt conductivity after removing the dependence
on the trivial prefactor [c](e2/kBT)∑izi

2.
In Table 5 the calculated and experimental values of Deff

for 40 neutral salts are listed. The agreement between the
experimental data and the calculations is striking. With
the exclusion of salts involving the smallest anion, F-, the
calculated values for the alkali-halides are almost perfect,
while the salts with the divalent cations are all less than a
few percent off. The remarkable agreement shown in Table
5 strongly argues in favor of the importance of considering
the experimental transport properties of neutral salts rather
than reported values for the self-diffusion coefficients of
individual ions.

3.6. Comparison with Other Models. Over the years, a
number of nonpolarizable13-18,96 and polarizable28-30,84

models of the monovalent ion series have been developed
and parametrized to reproduce different sets of target data.
Previous nonpolarizable models have been parametrized
primarily on the basis of the absolute hydration free energies
of single ions.13-15,18,96 Recently, Joung and Cheatham
pushed the limit of nonpolarizable force fields by enforcing
a balanced description of crystal and solution properties.16,17

Induced polarization is not a dominant factor for the
hydration of a large cation like K+, and satisfactory results
can be obtained with nonpolarizable models.84 Nevertheless,
adopting nonpolarizable models often leads to some com-
promises concerning the gas-phase properties (e.g., the
monohydrate properties)15 or the dynamic propeties (e.g.,
the self-diffusion constant).17 Furthermore, the nonpolarizable
models are calibrated for bulk solutions, and their validity
in different environments is uncertain. In contrast, the
polarizable force fields improve the transferability by captur-
ing the electronic polarization in different environments.28-30,84

The AMOEBA models, an extension of the induced dipole
model, developed by Ponder and co-workers,28,30 accurately
reproduce the various gas-phase and condensed-phase prop-
erties of ions, with more complex terms for electrostatics.
One important difference of the polarizable models developed
here compared to AMOEBA, where multipolar electrostatic
terms are required, is that all the interactions are charge-
charge Coulombic interactions and the functional form of
the potential energy terms can be implemented in standard
MD codes without major changes.

Another important difference concerns the parametrization
strategy. Here, the parametrization sought to reproduce the
well-established experimental data (i.e., the total hydration
free energy of neutral salts as well as the relative free energy
difference between different ions in the same series). By
virtue of this procedure, the monohydrate properties served
to lock down the absolute free energy scale. The parametri-

Table 5. Effective Self-Diffusion Coefficientsa of the
Neutral Salts in 10-5 cm2/s (the experimentally derived
values are in parentheses)95

Li+ Na+ K+ Rb+ Cs+

F- 1.32 (1.25) 1.45 (1.40) 1.77 (1.73) 1.89 (1.78) 1.95 (1.77)
Cl- 1.56 (1.53) 1.70 (1.68) 2.01 (2.01) 2.13 (2.05) 2.19 (2.05)
Br- 1.58 (1.56) 1.72 (1.71) 2.02 (2.03) 2.15 (2.08) 2.21 (2.07)
I- 1.66 (1.54) 1.80 (1.69) 2.11 (2.01) 2.23 (2.06) 2.29 (2.06)

Zn2+ Mg2+ Ca2+ Sr2+ Ba 2+

F- 0.85 (0.96) 0.99 (0.97) 1.08 (1.02) 1.08 (1.02) 1.09 (1.06)
Cl- 1.01 (1.14) 1.15 (1.15) 1.25 (1.20) 1.25 (1.20) 1.25 (1.25)
Br- 1.02 (1.16) 1.16 (1.17) 1.26 (1.22) 1.26 (1.22) 1.26 (1.26)
I- 1.08 (1.15) 1.22 (1.16) 1.31 (1.21) 1.31 (1.21) 1.32 (1.25)

a The effective self-diffusion coefficients for the neutral salts are
defined as Deff ) ∑izi

2Di/izi
2.
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zation of the ion models in AMOEBA followed a somewhat
similar route, focusing mainly on the monohydrate properties
and the neutral salts.28,30 This is in contrast with other efforts
aimed at fitting the actual single-ion hydration free energies
presented by a given experimental scale.13-18,96 As noted
previously,29 we consider this to be problematic because the
absolute hydration free energies measured experimentally
depend on an undetermined phase potential, which is
reflected in the large spread in the reported values. Coinci-
dentally, the final models presented here happen to be close
to the single-ion hydration free energies presented by Noyes
for the monovalent cations,79 although this scale was not
imposed during parametrization. However, the results from
the final models differ markedly from the single-ion hydra-
tion free energies presented by several of the experimental
scales, and if those values were imposed as target data, then
the unavoidable consequence would be a deterioration of the
monohydrate properties. These considerations highlight the
pitfalls with using the absolute single-ion hydration free
energy reported from experiments as target data for force
field parametrization.

4. Conclusion

In the current study, parameters for both cations and anions
(Table 1) were developed for the polarizable force field based
on classical Drude oscillator in conjunction with the SWM4-
NDP water model. The parameters for the ions have been
derived based on the gas-phase monohydrate properties and
the hydration free energies in the bulk phase. The various
gas-phase and condensed-phase properties (Tables 2-4) are
in reasonable agreement with the available experimental data
and ab initio calculations. The dynamic transport properties
of the models are in excellent agreement with experimental
estimates based on electrolyte conductivity (Table 5). Overall,
the set of models developed here should provide an important
tool for accurate studies of a wide range of biological and
physical processes involving ions in aqueous solutions.

The models for divalent cations from the present work
are somewhat less accurate than those of the monovalent
ions. The results from ab initio quantum chemistry calcula-
tions and the hydration free energy are not perfectly
reproduced. This could be in part due to the neglect of
charge-transfer effects and to the breakdown of linear
response.97 As shown previously, the deviations from linear
polarization response become quite severe with a perturbation
by a charge of +2.0e.97 In this case, it was necessary to
treat the overpolarization that occurs when the ion is in direct
contact with a water molecule. Analysis of the functional
form of the potential function showed that an overpolarization
catastrophe is unavoidable when the distance between a
polarizable water and the divalent cation is less than 1.97
Å. By contrast, monovalent cations require no special
treatment. Several strategies to avoid overpolarization for
the divalent ions were considered. The best approach turned
out to be introduction of a Thole-like screening function to
modulate the Coulomb electrostatic interactions between the
cation and the water molecule. Careful parametrization of
this functional form against the results from quantum
mechanical calculations led to reasonably accurate models.

A similar approach was used to model Mg 2+ and Ca2+ in
the context of the AMOEBA polarizable force field.30,52

The present effort at parametrizing a complete set of
ion models underlies the difficulties that arise when
considering single-ion bulk properties deduced from
experiments as objective target data. Experimental mea-
surement of ions in bulk liquid phases are performed on
globally neutral systems, and deriving single-ion properties
requires additional nonthermodynamic hypotheses. The
most meaningful comparisons are made with data directly
obtained from neutral salts. For example, while the models
do not match the single-ion diffusion coefficients deduced
from electrolyte conductivity measurements, the effective
diffusion coefficients for the neutral salts are in remarkably
good agreement with experiments (Table 5). Such issues
become particularly accute with respect to single-ion
hydration free energies. Experimental estimates often rely
on the free energy associated with the solvation of H + as
a reference. However, published experimental scales for
the alkali-halides solvation free energy can shift up and
down, depending upon the chosen reference. Some of the
experimental values may appear to be inconsistent with
one another, which increases the difficulties in developing
an accurate force field. These problems are further
compounded by the fact that absolute free energies of
charged species are affected by the air-liquid interfacial
potential. While the solvation free energies of neutral salts
reported in experimental tables are unambiguous and
independent of the interfacial potential, absolute hydration
free energies of ions are somewhat ambiguous and cannot
be readily utilized as the target data for parametrization.
Preserving complete consistency of the solvation free
energies of all ions has been a critical aspect of the present
effort. To extract a reliable set of target data for the
absolute hydration free energy as required to parametrize
our models, we previously adopted a strategy based on a
“solvation-consistent” scale.29 The consequences of this
scale are well illustrated by considering the K+ model.
The parameters of K+ have been adjusted to fit the
properties of small cluster hydrates in the gas phase (Table
4). Once used in bulk-phase simulations, this model yields
a (real) hydration free energy of -78.6 kcal/mol (Table
2). Further validating the K+ model was the level of
agreement of K+-water oxygen radial distributions for
the Drude model with results from both experimental and
ab initio Born-Oppenheimer and Car-Parrinello MD
simulations.84 Therefore, the absolute free energy scale
has been “locked down” by using the K+ model, which
then serves as a central reference for other ionic solutes.
This suggests that the parametrization of additional
charged moieties should be developed to be in accord with
the present solvation-consistent scale.

Finally, it is worth pointing out that at this stage the models
have been optimized to be accurate in the infinite dilution
limit. The problem associated with electrolyte solutions at
high concentrations, where issues of solubility and ion-ion
interactions are important, will be examined in the near
future. In particular, the models will be tested by calculating
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the osmotic pressure of concentrated salt solutions using a
new method.98
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Abstract: Computer simulations can complement experiments by providing insight into molecular
kinetics with atomic resolution. Unfortunately, even the most powerful supercomputers can only
simulate small systems for short time scales, leaving modeling of most biologically relevant
systems and time scales intractable. In this work, however, we show that molecular simulations
driven by adaptive sampling of networks called Markov State Models (MSMs) can yield
tremendous time and resource savings, allowing previously intractable calculations to be
performed on a routine basis on existing hardware. We also introduce a distance metric (based
on the relative entropy) for comparing MSMs. We primarily employ this metric to judge the
convergence of various sampling schemes but it could also be employed to assess the effects
of perturbations to a system (e.g., determining how changing the temperature or making a
mutation changes a system’s dynamics).

1. Introduction

Molecular dynamics simulations are a powerful means of
understanding both the thermodynamics and kinetics of
molecular processes like protein folding and conformational
changes. Unfortunately, such processes are highly sensitive
to the underlying chemical details. For example, point
mutations in the amino acid sequence of a protein may have
significant effects on its kinetics,1 and a small number of
point mutations can even drastically change the native
structure.2 Thus, atomistic simulations are required to make
quantitative connections with experiments.3,4

Advances in computing have made it possible to rapidly
generate huge data sets even at this level of chemical detail;5,6

however, these data sets are still insufficient. A typical
computer can only simulate ∼5 ns/day of protein folding
and would thus take over 500 years to simulate one
millisecond, an average folding time typical of proteins.
Whether one is interested in dynamics or merely equilibrium
probabilities, a kinetic perspective on this problem that
explicitly considers the rate of equilibration reveals that

metastability, or the presence of long-lived states that act as
“traps”, is a common source of inefficiency.

One approach to dealing with this issue is to make
tremendous investments in specialized software and hardware
for generating long simulations.7 While theoretically sound,8

this serial approach often only results in simulations that are
long relatiVe to standard trajectories. However, a truly long
simulation must be orders of magnitude longer than the
slowest relaxation time so that the probabilities of all states
and pathways can be estimated accurately. Even if such a
simulation were possible, the task of analyzing the data
would still remain.7,9 Moreover, serial approaches are
inherently inefficient, both due to parallelization overhead
and, more importantly, the fact that they waste hundreds of
years of computing time waiting for rare events.

A statistical approach provides a fundamentally different
perspective on model construction. Rather than attempting
to generate one realization of an entire process, one instead
aims to generate an ensemble of events in parallel. For
example, a number of methods have been developed for
exploiting statistical mechanics to simulate protein folding
more efficiently.10-13 Most of these approaches rely on the
fact that, in two-state protein folding, the waiting time for
observing a transition is exponentially distributed but the
actual transition times are quite rapid.14 Thus, proteins often

* Corresponding author e-mail: pande@stanford.edu.
† Biophysics Program.
‡ Department of Chemistry.

J. Chem. Theory Comput. 2010, 6, 787–794 787

10.1021/ct900620b  2010 American Chemical Society
Published on Web 02/17/2010



fold much faster or slower than the average folding time.
Such approaches are amenable to commodity hardware and
take far less wall-clock time than a serial approach with an
equivalent amount of sampling, particularly when combined
with grid computing.5 Unfortunately, these methods are
generally only applicable to two-state systems and may
require simulations of an unknown minimum length.15 Some
multistate generalizations exist16 but quickly become com-
putationally intractable.

Markov state models (MSMs) extend this work by
allowing for a tractable, multistate scheme that allows
efficient modeling of any system exhibiting metastability.17

A MSM is a network with nodes corresponding to metastable
states and edges describing the rates of transitioning between
pairs of states, akin to a map with cities connected by roads
labeled with speed limits. Rather than attempting to generate
one realization of an entire process, one can exploit the
decomposition of conformational space into multiple meta-
stable states to gather statistics on each step of the process
independently, allowing a problem to be broken up into more
manageable and trivially parallelizable pieces.

Mathematically, MSMs are represented as transition prob-
ability matrices, with the entry in row i and column j giving
the probability of transitioning from state i to state j within
a time interval called the lag time of the model. Building
MSMs is a challenging task, but significant progress has been
made over the past few years,18-21 leading to freely available
software for automatically constructing these models.18 While
MSMs could be used to analyze truly long simulations, their
ultimate value lies in their ability to facilitate efficient model
construction by allowing precise, parallel determination of
the transition rates between states by running many short
simulations from each of them.

AdaptiVe sampling algorithms for MSM construction take
this statistical approach a step further.22-24 In adaptive
sampling, one first obtains an initial model of the entire
process of interest by any means possible. One then
iteratively calculates the contribution of each step of the
process to uncertainties in some observable of interest via
Bayesian statistics and runs numerous parallel simulations
of the steps that can lead to the greatest increases in precision
until the desired level of statistical certainty is achieved. Such
an approach was recently shown to lead to dramatic
reductions in the statistical uncertainty in the observable of
interest relative to other refinement schemes.22

However, a number of important questions remain to be
answered. First, does adaptive sampling improve the global
model quality or just local components that are important
for the observable of interest? Exactly how much more
efficient is adaptive sampling? And finally, is adaptive
sampling capable of discovering previously unknown com-
ponents of a model, or is it only able to refine the initial
model it is given?

In this work, we address these questions using a MSM
for the villin headpiece (HP-35 NleNle) that was recently
constructed from atomistic simulations with explicit sol-
vent.19 We then move on to simple models, where the role
of the network is clear, to gain an intuition for our results
and test whether such methods could be more broadly

applicable to a wide class of different types of systems. These
analyses rely on a new distance metric for MSMs developed
in section 2.2, which should prove generally useful for
evaluating various sampling schemes and even assessing the
effects of perturbations to a system (like changes in tem-
perature or even mutations).

2. Theoretical Underpinnings

2.1. Adaptive Sampling. In adaptive sampling approaches
to MSM construction, simulations are run iteratively to
minimize uncertainties in some property of a model.22-24

In this work, adaptive sampling is performed as follows:
(1) Perform N simulations of L steps starting from a

particular starting state(s).
(2) Build a MSM only including those states identified so

far.
(3) Calculate the contribution of each state to uncertainty

in the slowest kinetic rate following ref 22.
(4) Start N new simulations of L steps distributed among

the states in proportion to their contribution to uncertainty
in the slowest rate.

(5) Repeat steps 2-4 for some number of iterations.
All the MSMs in this work were constructed and analyzed

with the MSMBuilder package (which is freely available at
https://simtk.org/home/msmbuilder/)18 modified such that
transition count matrices were not symmetrized by counting
the transitions that would have been observed if one watched
each simulation backward.

We note that, in the past, simulations in each round of
adaptive sampling were all started from the same initial state
(the one contributing most to uncertainty in the quantity of
interest).22 The intuition behind our alteration was that, as
the number of simulations (N) becomes large, starting all
the simulations from one state would be excessive as fewer
would be sufficient to drastically reduce the uncertainty.
Instead, it would be preferable to allocate some of these
excess simulations to reduce uncertainties in other states’
transition probabilities. Indeed, we have found that our
modified procedure yields better results for sufficiently large
N on reasonably complex networks and gives equivalent
results for simple networks and small N.

To demonstrate the utility of this algorithm, we carried
out adaptive sampling with synthetic trajectories generated
from transition count matrices. To generate synthetic simula-
tions from a transition count matrix, we first normalize each
row to obtain a transition probability matrix. At each time
step (or each lag time), the next state is chosen according to
the distribution of transition probabilities for the current state.
The prior described below is not used for these calculations,
so the matrices used to generate trajectories tend to be sparse.

2.2. Quantifying the Similarity between MSMs. In order
to monitor the convergence of any sampling scheme, it is
important to first develop a similarity metric that is capable
of measuring the global quality of a test model relative to
some reference model. Such a metric would also have broad
usefulness, as there are several reasons for comparing MSMs
quantitatively. For example, this metric could be used to
compare MSMs generated by two different simulation
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methods, allowing one to directly compare the resulting
dynamics. Alternatively, one could compare MSMs generated
by two somewhat different, but related systems, such as
comparing the simulations of the dynamics of two point
mutants of a given protein.

We have developed such a distance metric for MSMs that
is based on the relative entropy, which is a common measure
of the distance between two probability distributions in
information theory25 with important physical implications.26

The relative entropy between two normalized distributions
P and Q, over a common set of outcomes, is

where Pi is the probability of outcome i, P is a reference
distribution, and Q is some test distribution.

A MSM consists of one normalized distribution per state,
which gives the probability of transitioning to each other
state within one lag time. We define the relative entropy
between a reference and test MSM, with transition matrices
P and Q respectively, as

where Pi is the equilibrium probability of state i, Pij is the
probability of transitioning from state i to state j during one
lag time, and N is the number of states. Intuitively, our
relative entropy metric is the sum of the relative entropies
between the transition probability distributions for each state
weighted by their stationary probabilities.

One may derive our relative entropy metric for MSMs
more formally by considering that the entropy (H) of a
sample path of a stochastic process, normalized by its length,
is also called the entropy rate. An important theorem in
information theory is the following:

Theorem. For an ergodic stochastic process, X1, ..., Xn

For a Markov Chain, the right-hand side takes a very
simple form, because the conditional entropy only depends
on the previous step, which converges to the stationary
distribution.

In the following, we prove a similar statement for the
relative entropy between the paths of two Markov chains as
n goes to infinity. For two Markov chains p and q with state
space Ω, we would like to compute:

For simplicity, let us define lowercase xn ) {X1, ..., Xn}.
Then, by the chain rule for the relative entropy, we get

Equation 2.65 in Cover and Thomas27 defines the condi-
tional relative entropy above as the expectation of the relative
entropy between the conditional distributions of Xn given
xn-1, with respect to the distribution of xn-1. This means that

where we have grouped terms with the same final state in
the “history” y, which have the same relative entropy factor,
and summed their probabilities to obtain the marginal
probability over Xn-1.

Repeating the step that led to eq 2 many times yields

If the initial state is deterministic, the last term is just zero.
As for the first term, as n goes to infinity, the distribution of
Xm-1 goes to the stationary distribution of p, which we call
µ. Then, using the equation for the conditional entropy,

Since the terms in the series converge to a limit, their
Cesaro means converge to the same limit, so

The terms p(Y|Z) and q(Y|Z) are just the elements of the
transition matrices of p and q, respectively; so this is
equivalent to eq 1.

2.3. Prior for Relative Entropy and Adaptive
Sampling. There is always some probability of transitioning
between every pair of states, though these probabilities may
be low enough that no actual transitions are observed. To
account for this, as well as to reflect our lack of prior
knowledge about the transition probabilities, we add a
pseudocount of 1/N to every element of the transition count
matrix, where N is the number of states, before normalizing
each row to find the transition probability matrix, as in refs
22 and 28. The intuition behind this choice is that for a state
to exist we must observe at least one count in that state, but
before observing any real data the probability of this count
leading to any other state is equal. From a Bayesian
perspective, these pseudocounts equate to a uniform prior.
These pseudocounts also prevent the relative entropy metric
from becoming infinite whenever a zero is encountered in a
MSM’s transition probability matrix. It is often the case that
certain transitions are not observed, so this correction is of
great practical importance.

2.4. Villin Simulations and MSM. The simulation details
for the original ∼450 villin simulations are described in detail
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lim
nf∞

D(p(Xn|xn-1)| |q(Xn|xn-1)) )

∑
Z∈Ω

µ(Z) ∑
Y∈Ω

p(Y|Z) log[p(Y|Z)
q(Y|Z)]

lim
nf∞

1
n

D(p(X1, ..., Xn)| |q(X1, ..., Xn)) )

∑
Z∈Ω

µ(Z) ∑
Y∈Ω

p(Y|Z) log[p(Y|Z)
q(Y|Z)]
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in ref 29. In short, ∼450 constant temperature molecular
dynamics simulations with explicit solvent and up to 2 µs
in length were run from nine initial configurations drawn
from high temperature unfolding simulations at 373 K. Ref
19 describes the construction of a 10 000 microstate MSM
that faithfully reproduces the raw simulation data. For the
purposes of this work, we lumped these 10 000 microstates
into 500 macrostates exhibiting metastability and having an
equivalent Markov time (15 ns). This lumping was done with
the MSMBuilder package.18 The macrostates containing the
nine initial configurations used during the real simulations
were used as the starting points for adaptive sampling.
Simulations of just 30 ns were used for adaptive sampling.

2.5. Simple Models. The transition count matrices for
simple models S and P (CS and CP respectively) are

and

where the entry in row i and column j gives the number of
transitions observed from state i to state j.

Mean first passage times were calculated following ref 28.
The mean first passage times for S and P are ∼13 000 and
∼5000 steps, respectively. Other equilibrium properties can
be obtained by normalizing each row to obtain a transition
probability matrix and then solving for the eigenvalues and
eigenvectors of this matrix. For example, normalizing the
first eigenvector (e.g., the one corresponding to an eigenvalue
of 1) gives the equilibrium probabilities of each state.
Subsequent eigenvalue/eigenvector pairs give kinetic rates
and the states involved in these transitions, respectively.17

Once again, the MSMBuilder package18 was used for
analysis of these models.

Plots of the average relative entropy as a function of
simulation number and length were generated by running
600 simulations of 5000 steps for each model. Average
relative entropies over 10 random samples of N trajectories
from this pool were then calculated and plotted. Similar plots
for our adaptive sampling scheme were also generated by
averaging over 10 independent runs.

3. Results and Discussion

3.1. Application to Villin MSM. With these tools in
place, we are now in a position to assess the efficacy of
adaptive sampling using a previously calculated MSM for
the villin headpiece19 as a model system. In particular, we
would like to assess two types of efficiency. First, given our

desire to push the envelope of what is possible in a reasonable
amount of time, can adaptive sampling reduce the wall-clock
time necessary to achieve a given model quality? Second,
given our desire to mitigate negative impacts on the
environment, can adaptive sampling reduce the amount of
resources (in this case computer time) necessary to achieve
a given model quality?

To address these questions, we have performed adaptive
sampling with a variable number of simulations per iteration
generated from our villin MSM. We then assume each
simulation progresses at a rate of 5 ns/day, a typical value
for modern personal computers, and compare the conver-
gence of our adaptive simulations to the gold-standard model
from ref 19 (that was validated by comparison to both the
raw simulation data and experiments) with the convergence
of a single long reference simulation to the same gold
standard. Convergence to the gold-standard model is mea-
sured with our relative entropy metric for MSMs (described
in section 2.2).

Figure 1A shows that the wall-clock time efficiency of
adaptive sampling scales linearly up to 5000 simulations per
iteration. That is, adaptive sampling with N simulations per
iteration can reduce the wall-clock time necessary to achieve
a given model quality by a factor of N for N as high as 5000.
Using more simulations will help but will only reduce the
wall-clock time by a factor of RN, where R < 1. The crucial
result, however, is that one can reduce a calculation that
would take decades to run with traditional methods to a
calculation that can be run in a matter of days with adaptive
sampling.

Adaptive sampling can also greatly reduce the resource
requirements for achieving a given model quality. For
example, Figure 1B shows the computer time necessary to
achieve a given model quality for one long simulation and
adaptive sampling with a varying number of simulations per
iteration. This figure shows that adaptive sampling requires
about half as much computer time to achieve the same model
quality as one long simulation. Once again, the relative
efficiency of adaptive sampling begins to fall off beyond
some optimal number of simulations per iteration.

3.2. Application to Simple Models. To gain intuition for
the applicability of adaptive sampling to other systems, we
have also applied it to two classic network topologies, shown
in Figure 2A and defined more thoroughly in section 2.5.
These models are representative of problems with metasta-
bility; their equilibrium properties can be derived analytically
and used as an unambiguous reference, and truly long
simulations are feasible.

Both models have states with approximately the same
equilibrium and transition probabilities, such that differences
between their behaviors can be attributed to differences
between their topologies. More specifically, states 1-6 have
equilibrium populations of 6%, 1%, 1%, 1%, 1%, and 90%,
respectively. Drawing an analogy to protein folding, state 1
is the unfolded state, state 6 is the folded state, and the
remaining states are intermediates. Thus, S has a single
folding pathway, and P has parallel folding pathways.

The reduced connectivity in S results in longer time scale
transitions relative to P. In fact, the mean first passage time

CS ) [6000 3 0 0 0 0
3 1000 3 0 0 0
0 3 1000 3 0 0
0 0 3 1000 3 0
0 0 0 3 1000 3
0 0 0 0 3 90 000

]
CP ) [6000 2 2 0 0 0

2 1000 0 2 2 0
2 0 1000 2 2 0
0 2 2 1000 0 2
0 2 2 0 1000 2
0 0 0 2 2 90 000

]
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(MFPT) between states 1 and 6 is about three times longer
in S than in P, making S considerably harder to sample. In
addition, such linear models are often cited as a case where
the holistic, long-trajectory approach is absolutely necessary;
nevertheless, adaptive sampling is able to learn the network
more efficiently than traditional approaches, as shown in
Figure 2B. This figure shows how close various schemes
can approach the true model for S given a set amount of
wall-clock time and starting from state 1 to mimic the
practice of starting protein folding simulations from an
arbitrary conformation in the unfolded state.

To provide some intuition for our distance metric, Figure
3 shows the evolution of the relative entropy and the
estimated free energy of each state in S during adaptive

sampling. Adaptive sampling was carried out by running 10
simulations from state 1 and then repeatedly building a MSM
and starting 10 new simulations from the state contributing
most to uncertainty in the slowest process. Small jumps in
the relative entropy are found each time a state with a low
population is discovered (or, equivalently, when a new path
is discovered for this model), and a very large jump is evident
when the most populated state, state 6, is discovered. Slow
decay occurs between these jumps. Thus, our metric is most
sensitive to state and path discovery but still captures
improvements in estimates of the transition probabilities
along known paths. Such behavior is desirable as models
that miss important states or paths should be penalized more
than ones with imperfect transition probabilities.

Figure 4 shows a more thorough comparison of adaptive
sampling and reference simulations with an equal amount
of sampling for various numbers and lengths of simulations.
Evaluation of the reference simulations for both S and P
demonstrates that achieving a reasonable model quality by
naively starting simulations from state 1 requires simulations

Figure 1. Scaling for adaptive sampling of villin as the
number of parallel simulations (N) used during each round is
varied. (A) Wall-clock time scaling as N is varied. The black
line is a best fit to the linear portion of the data (circles), which
extends up to 5000 simulations per iteration. (B) Computer
time required to achieve a given model quality (relative
entropy) for various sampling schemes. L refers to one long
trajectory, and the numbers refer to the number of parallel
simulations used in each iteration of adaptive sampling. All
results come from averaging over 10 independent runs. Each
step equates to 15 ns.

Figure 2. (A) The two models, S and P. (B) Distance from
the true model (measured via the relative entropy) as a
function of wall-clock time for adaptive sampling versus one
long simulation of S (assuming 5 steps/day to mimic 5 ns/
day in protein folding simulations). The lines are one long
simulation (dashed line) and adaptive sampling with 10
simulations of 20 steps (solid line), 10 simulations of 200 steps
(dotted line), 100 simulations of 20 steps (dash-dot line), and
1000 simulations of 20 steps (black squares) per iteration.
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of some minimal length, though this minimal length is shorter
for P than S in terms of the absolute number of steps.
Moreover, adaptive sampling is able to gain valuable
information from much shorter and fewer simulations
regardless of the topology of the network, that is, whether
there is a single folding pathway or multiple pathways. This
figure also shows that adaptive sampling generally benefits
from using more parallel simulations but not longer ones.
An important point is that each data point in Figure 4B and
D depends on the data points to its left. For example, to fill
in the row corresponding to simulations of length 100, 10
independent adaptive sampling runs of 50 iterations were
performed. The first round of each adaptive sampling run
was used to compute average relative entropies for 1-10
simulations, the first and second round of each run (which
depends on the first round) for 11-20 simulations, and so
forth. As a result, there is some horizontal streakiness in these
figures. We also note that adaptive sampling results in smaller
uncertainties in the relative entropies shown in Figure 4 (see
Figures S1 and S2, Supporting Information).

Finally, we find that the scaling of adaptive sampling of
our simple networks is similar to that found for villin, as
shown in Figure 5. One noteworthy difference is that our
simple models saturate (i.e., fall short of linear scaling as
additional parallel simulations are run) earlier than villin.
Comparison of the two simple models also shows that S
saturates before P. For S, adaptive sampling scales linearly
up to 150 parallel simulations. For P, adaptive sampling
scales linearly up to 500 simulations. The improved scaling
for P is the result of the increased complexity of the network
topology of P compared to S. Each node in P has more

connections to learn, and the algorithm benefits from doing
this in parallel. Indeed, the complexity of our villin model
is much greater than either of these simple networks, and as
discussed previously, villin scales linearly up to 5000
simulations per iteration. Thus, we expect that we can achieve
linear scaling well beyond 5000 simulations per iteration for
systems that are more complex than the villin MSM that we
sampled from.

3.3. Applicability. The adaptive sampling algorithm
employed here was developed for application to MSMs with
metastable states. That is, it assumes that every state has a
self-transition probability greater than 0.5 such that a
simulation in one state is more likely to stay there than to
transition to a new state. This property helps to ensure a
separation of time scales (fast intrastate transitions, slow
interstate transitions) and, therefore, that the model is
Markovian because a simulation can lose memory of its
previous state before transitioning to a new one. Thus, the
procedure for ab initio adaptive sampling is (1) run some
initial simulations, (2) cluster all the simulation data into
microstates, (3) lump these microstates into metastable
macrostates, (4) calculate the contribution of each macrostate
to uncertainties in the slowest rate (or some other observable),
(5) start new simulations from each state in proportion to its
contribution to the overall uncertainty, and (6) repeat steps
2-5 until the desired level of statistical certainty is achieved.

Figure 3. Relative entropy (top) and free energy of each state
in kcal/mol (bottom) as a function of the adaptive sampling
iteration on model S.

Figure 4. Distance from the true model (measured via the
relative entropy) as a function of the number and length of
simulations averaged over 10 independent samples. (A)
Reference distribution for S, (B) adaptive sampling of S, (C)
reference distribution for P, and (D) adaptive sampling of P.
All simulations for the reference distributions started from state
1. The first 10 simulations for adaptive sampling started from
state 1, and subsequent batches of simulations started from
the state contributing most to uncertainty in the slowest
process. Black lines are contours of equal amounts of data.
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In the future, it will be interesting to explore whether this
adaptive sampling algorithm is equally applicable to more
fine grained divisions of conformational space (e.g., at the
microstate level) as the lumping stage would no longer be
necessary. In addition, recent work has shown that more fine
grained MSMs are better for obtaining quantitative predic-
tions of experimental observables,19,30,31 so it could be
advantageous to do refinement at this level.

The relative entropy metric assumes that the two models
being compared have the same state space. Comparing two
simulation data sets therefore requires the following steps:
(1) define a state space common to both data sets (i.e., by
using both data sets for clustering to define microstates and,
optionally, lumping to define macrostates), (2) compute
transition probability matrices for each data set indepen-
dently, and (3) compute the relative entropy between these
matrices.

4. Conclusions

Together, our results with villin and fundamental model
systems demonstrate the tremendous value of adaptive
sampling. Since model quality has been assessed with a
global metric and shows strong agreement between adaptive
sampling results and the true model, we can conclude that
adaptive sampling to minimize uncertainties in the slowest
kinetic rate improves the global quality of a model. More-
over, adaptive sampling is significantly more efficient than
a single long simulation, both in terms of the wall-clock time
and resources required to achieve a given model quality, up
to some saturation point. In fact, adaptive sampling with N
parallel simulations requires about a factor of 2 less
computer-time and a factor of N less wall-clock time.
Considering that N can easily be as large as 10 000 (or
more),5 this can be a truly dramatic advantage in wall-clock
time, turning calculations normally requiring decades into

Figure 5. Scaling for adaptive sampling of our simple models as the number of parallel simulations (N) used during each round
is varied. (A and B) Wall-clock time scaling as N is varied for simple models S and P, respectively. The black line is a best fit
to the linear portion of the data (circles). (C and D) Computer time required to achieve a given model quality (relative entropy)
for various sampling schemes applied to S and P, respectively. L refers to one long trajectory, and the numbers refer to the
number of parallel simulations used in each iteration of adaptive sampling. All results come from averaging over 10 independent
runs.
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routine calculations on the time scale of days. Finally, since
our simulations started from just a couple of states, we can
conclude that adaptive sampling is capable of discovering
new model components giVen no prior knowledge of the
system and is thus useful for model construction in addition
to model refinement.

The adaptive sampling method described here may be
directly applied to learn models from simulations of meta-
stable phenomena, leading to significant resource and time
savings in fields like molecular and quantum mechanics, but
is not limited to these applications. Given a means to prepare
samples within a given state, it could be applied equally well
to experimental techniques, such as single molecule FRET
and force extension experiments. More broadly, minimizing
uncertainties in a model is likely to prove valuable even when
metastability is not present. Similar methods may also be
useful for understanding other complex network dynamics,
as in signaling pathways.
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Abstract: A polarizable force field (PFF) using multiple fluctuating charges per atom, ABEEMσπ
PFF, is presented in this work. The fluctuating partial charges are obtained from the
electronegativity equalization principle applied to the decomposition scheme of atom-bond regions
into multiple charge sites: atomic, lone-pair electron, and σ and π bond regions. These multiple
partial charges per atom should better account for the polarization effect than single atomic
charge in other PFFs. To evaluate the PFF, structural and energetic properties for some organic
and biochemical systems, including rotational barriers; binding energies of base pairs; a
base-base interaction in a B-DNA decamer; and interaction energies of ten stationary conformers
of a water dimer, peptides, and bases with water molecules, have been calculated and compared
with the experimental data or ab initio MP2 results. Molecular dynamics simulations using the
PFF have been performed for crambin and BPTI protein systems. Better performances in
modeling root-mean-square deviations of backbone bond lengths, bond angles, key dihedral
angles, the coordinate root-mean-square shift of atoms, and the distribution of hydrogen bonds
have been observed in comparison with other PFFs. These results indicate that the fluctuating
charge force field, ABEEMσπ/MM, is accurate and reliable and can be applied to wide ranges
of organic and biomolecular systems.

Introduction

Molecular dynamics (MD) simulations using force fields (FF)
are still an important tool in understanding structure, dynam-
ics, and function properties for biological systems. Although
quantum calculations and ab initio MD modeling have
tremendously advanced in recent decades, they are limited
to relatively small systems.1,2 In a primitive force field,
molecules are represented by a collection of atom-centered
interaction sites with fixed partial charges. The electrostatic
energy is determined by the Coulombic interaction between
the partial charges without any inclusion of the polarization
effect. In view of the significance of the polarization effect,
much has been achieved since the 1970s in the development

and employment of the polarizable force field (PFF) for
biomolecule simulation, such as CHARMM,3-8 OPLS,9-16

AMBER,17-20 NEMO,21 AMOEBA,22,23 QMPFF,24-26 and
so forth. The first physically consistent microscopic study
of dielectric effects in nonpolar environments was reported
by Warshel and Levitt.27 Accounts and reviews of PFF are
available elsewhere.27,28 Two approaches have been em-
ployed to account for the polarization effect. One is through
the induced dipole or multipole (including Drude charge
oscillator and induced dipole mixed fluctuating charge
models), and the other is to use fluctuating partial charge.

In the induced dipole (multipole) PFF, the potential energy
function is augmented by an inductive term from the induced
dipole. The contribution of the electrostatic interaction comes
from both permanent charges and induced dipole moments
obtained from the atomic polarizabilities through an iterative
procedure.29 Karlström et al.21 have demonstrated the
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importance of the quadrupole moment. Higher order multi-
poles were included in the AMOEBA PFF.22 A new PFF of
this category, the X-POL potential,30 was recently proposed
by Xie and co-workers. The published CHARMM all-atom
parameters for nucleic acids4 and proteins5 provide a
consistent set for condensed-phase simulations of a wide
variety of biological molecules. Xie et al. developed a
polarizable intermolecular function for liquid amides and
alkanes by employing the “standard” CHARMM force field
plus a polarizable term.8 The OPLS series of force fields
have been developed for more than 20 years and have proved
to be highly successful in computing liquid state thermody-
namic properties15 and in dipeptide, protein, and protein-
ligand modeling.11-13 The AMBER force field has simulated
the structures, conformational energies, and interaction
energies of proteins, nucleic acids, and many related organic
molecules in condensed phases.18 Its point-charge all-atom
force field for proteins and united-atom force field for
simulations involving highly demanding conformational
sampling such as protein folding and protein-protein binding
have been advanced.20 The QMPFF24-26 was fitted solely
to QM data at the MP2/aTZ(-hp) level and had demonstrated
high accuracy and transferability in crystal and liquid
simulations as a result of its strong physical basis and explicit
polarizability. As is well-known, there are many other well-
developed useful force fields, such as MM1-MM4,31

MMFF,32 ECEPP,33 CFF,34 Tripos,35 GROMOS,36 etc.
In fluctuating charge models, whose basis is the electrone-

gativity equalization method (EEM) in density functional
theory (DFT),37,38 atomic partial charges of a molecular
system are allowed to change with geometry and ambient
environment. In the usual EEM scheme, using the atomic
partial charge and two characteristic parameters per atom,
the electrostatic energy is written as

where qa is the atomic partial charge at the a region (atom
and/or specified one), �a* and ηa*are the valence-state elec-
tronegativity and valence-state hardness of region a, Rab is
the separation between regions a and b, and the summation
for both a and b is over all sites. In DFT, the effective
electronegativity �a of a site a is equal to the partial derivative
of the electrostatic energy with respect to the partial charge
qa of site a. kab is a correction factor of the Coulombic
interaction energy between the partial charges qa and qb,
which stems from the reality that qa and qb involve the
electron clouds rather than the ideal point charges.39-42

According to the electronegativity equalization principle
based on DFT, at the equilibrium state, the effective
electronegativities of all sites are equal to the global
molecular electronegativity �mol, which constitutes the elec-
tronegativity equalization equation. By solving these equa-
tions with the charge constraint for a molecular system, the
partial charges of all sites in the system are directly and
quickly obtained.

There are several fine implementations of EEM to allow
rapid calculations of the partial charge distribution in

molecules. Mortier et al. proposed a systematic formulation43

to directly calculate atomic partial charges of a large
molecular system. York and Yang44 established a chemical
potential equalization model. Rappé and Goddard presented
the charge equilibration method39 for MD simulations. Stern
et al. formulated a combined fluctuating charge and polariz-
able dipole force field for water, amino acids, and peptides
based on ab initio data.45 Recently, Chelli and Procacci
developed a transferable polarizable electrostatic force field46

by generalizing Mortier’s method to include atom-based
dipolar distributions as done in the chemical potential
equalization model by York and Yang. A CHARMM
fluctuating charge force field7 for proteins has been applied
to MD simulations for bulk organic liquid and small proteins.
Notice that, in all the existing methods, only one partial
charge per atomic site is employed.

As recently pointed out by Jorgensen, broadly applicable
PFFs have yet to emerge.47 The development of PFFs
remains to be a frontier challenge in molecular modeling.
Key to the development of a reliable PFF is to effectively
account for the polarization effect. In this work, we present
a PFF with multiple fluctuating partial charges per atom,
ABEEMσπ/MM, based on the atom-bond electronegativity
equalization method (ABEEM) that we have recently
developed.48-54

Model

ABEEMσπ with Multiple Partial Charges per Atom.
Conventional EEM models partition a molecular system into
individual atomic regions, each having one partial charge
only. As is well-known, besides nuclei, electron densities
also concentrate around chemical bonds and lone-pair regions
to some extent. Henceforth, to better account for the
polarization effect, we suggested that a molecular system is
decomposed into atomic regions, lone-pair regions, and σ
and π bond regions, and each region is assigned by a partial
charge.46,49,51 Better elucidation of the polarization effect
from this partition scheme comes from the greater freedom
and larger flexibility in calculating the fluctuating partial
charge associated with each of the regions. In principle, if
the total number of charge sites approaches infinity, the
partial charge qi will resemble the continuous charge density,
the fundamental variable of DFT. This is the essence and
foundation of our ABEEMσπ model.

In Chart 1, as examples, we draw the charts of all regions
in water and N-methylacetamide (NMA) molecules in the

Ees ) ∑
a

(�a*qa + ηa*qa
2) + ∑

a<b

kab

qaqb

Rab
(1)

Chart 1. The Sketch of All Regions in (a) Water and (b)
NMA Molecules Defined in the ABEEMσπ Model
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ABEEMσπ model. In addition to atomic sites, some new
virtual sites including lone pair and σ and π bond sites are
placed according to the physical meaning. A water molecule
contains seven electron cloud regions in the ABEEMσπ
model: three atoms, two σ bonds whose angle is 104.5°, and
two lone pairs whose angle is 109.47°. As is known, there
are four electron pairs around the oxygen atom, which are
spread so as to point roughly toward the apexes of a
tetrahedron. Every atomic charge is placed in the position
of the corresponding atom. The σ bond charge is assumed
to locate on the point that partitions the bond length according
to the ratio of covalent radii of two bonded atoms, and the
lone pair sites are placed on the points which are 0.74 Å
from the oxygen nucleus with an intervening angle of 109.47°
between two lone pairs on oxygen atom. Thus, there are
seven partial charge sites for a water molecule in the
ABEEMσπ model.

Consider the NMA molecule, as shown in Chart 1b. The
C atom of carbonyl connects two single bonds and one
double bond. The geometry around this C atom is trigonal
planar. The geometry around the O atom is trigonal planar
too, because the O atom of carbonyl connects one double
bond and two lone pairs. All the angles between the two
lone pairs and CdO bond are 120°. The oxygen atom
involves six partial charges, namely, one centered on the
oxygen nucleus, one σ region, two π separate upper and
lower regions, and two lone pairs. The σ bond partial charge
shared by the oxygen and carbon atoms is on the bond at
the point that partitions the bond length according to the ratio
of covalent radii between O and C atoms; the π bond partial
charges are placed above and below the O atom at the
covalent radius (0.74 Å) of the O atom perpendicular to the
plane formed by the σ bonds and may have different values
depending on the environment; the two lone pair partial
charges are placed in the covalent radius of the oxygen atom
(0.74 Å). An electron pair of the N atom can be used to
make a delocalized π bond with carbonyl. There are also
similar π bond partial charges for the nitrogen atom and
carbon atom of carbonyl in NMA. So the nitrogen atom
involves six partial charges, including one atom and three σ
and two π regions. As a whole, besides 12 atomic sites, a
NMA molecule has an additional 19 sites: 11 σ bond sites,
6 π bond sites, and 2 lone pair sites.

For a molecule, the electrostatic energy is written as eq 1
in the ABEEMσπ model which contains the regions or sites
of the atoms, bonds, and lone pairs, as shown in Chart 1.
On the basis of DFT, the effective electronegativity �a of
every site a can be also expressed as the partial derivative
of the electrostatic energy with respect to the partial charge
qa of site a. According to the EEM, at the equilibrium state
the effective electronegativities of all sites, including atoms,
bonds, and lone pairs are equal to the global molecular
electronegativity �mol for every molecule, which constitutes
the electronegativity equalization equation, i.e., �a ) �b )
· · · ) �mol. It can be shown that the number of the equations
of EEM is equal to the number of the sites of molecules.
These equations, together with the charge constraint and
given parameters (valence-state electronegativity �a* and
valence-state hardness ηa* of region a), can be explicitly and

quickly solved to give the global molecular electronegativity
�mol and the partial charge qi on each site i. The detailed
formulation of ABEEMσπ is available in the Supporting
Information (SI1).

In NMA, the atomic partial charge plus four or five
negative partial charges around a non-hydrogen atom, like
the C, N, or O atom, may fluctuate, giving a proper response
to the geometry and the environmental change. For example,
charges of lpO2 and lp′O2 of NMA are -0.1689 and
-0.1639, respectively. In cluster NMA+H2O (Chart 2a), the
charges located on lp of O2 all become more negative than
that on lp electrons of O2 in NMA due to the intermolecular
HB. Because the H1 points to the lpO2, the charge located
on lpO2 (-0.1748) is more negative than that on lp′O2
(-0.1691). All the π bond charges of all carbon atoms in
benzene are -0.0135. In cluster benzene+H2O, as shown
in Chart 2b, the largest polarized regions are πC5 and πC6
partial charge regions, whose charges are -0.0141. All the
charges on πC1∼πC4 partial charge regions, which are
slightly polarized, are -0.0139; the charges on π′C1∼π′C6
partial charge regions are all -0.0134.

ABEEMσπ Polarizable Force Field, ABEEMσπ/MM. The
energy function EABEEMσπ of the ABEEMσπ polarizable force
field can be written as the sum of following terms:

where Eb and Eθ are the usual energy terms from bond
stretching and angle bending contributions modeled as
harmonicoscillators (orMorsefunctionforwater), respectively,

where kr and kθ represent the force constants of the stretching
and bending, r and θ are the actual values of the bond length
and bond angle, and req and θeq denote the equilibrium values
of the bond length and bond angle, respectively. Eφ is the
torsional energy for a bond rotation. The torsional term takes
the following form:

Chart 2. Sketch of (a) the Cluster NMA+H2O and (b) the
Cluster Benzene+H2O, Where Hydrogen Atoms in
Aromatic Ring and σ Bond Sites Are Omitted

EABEEMσπ ) Eb + Eθ + Eφ + Eimptors + Evdw + Eelec

(2)

Eb(r) ) ∑
bonds

kr(r - req)
2 (3)

Eθ(θ) ) ∑
angles

kθ(θ - θeq)
2 (4)
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and the improper dihedral angle term is written as

where V1, V2, V3, and V are the dihedral angle and improper
dihedral angle force constants, respectively. Evdw describes
the van der Waals nonbonded atom-atom interaction:

Geometric combining rules for the Lennard-Jones coef-
ficients are employed: σij) (σiiσjj)1/2 and εij ) (εiiεjj)1/2. The
summation runs over all of the pairs of unbonded atoms i
and j. If i and j are intramolecular, the coefficient fij ) 0.0
for any i-j pair connected by a valence bond (1-2 pairs)
or a valence bond angle (1-3 pairs), fij ) 0.5 for 1,4
interactions (atoms separated by three bonds), and fij ) 1.0
for all other intramolecular and intermolecular cases.

The key difference between the ABEEMσπ PFF and other
force fields is the treatment of the electrostatic interaction
energy. The electrostatic interaction energy, Eelec, is actually
expressed as

where rij is the distance between sites i and j. qi and qj are
the partial charges of regions or sites i and j, which are
calculated by the ABEEMσπ method. In reality, either qi or
qj involves or represents some sort of electron clouds.
Therefore, when we model them as point charges in EEM
or ABEEM, their electrostatic interaction energy is expressed
as kijqiqj /rij rather than the pure Coulombic form qiqj/rij. The
introduced parameter kij may be said to be a result of
considering the exchange, penetration, and shielding effect
in the interaction between the two pieces of electron clouds
i and j. There is a similar parameter, the electrostatic
interaction factor (modified Coulomb interaction), Jij(rij), such
as in the models of the charge equilibration of Rappé and
Goddard,39 Bakowies and Theil,40 as well as Dias and
co-workers,41,42 which was taken into account in their
electrostatic energy expressions and is related to the local
hardnesses of atoms i and j.

In our ABEEM or MEEM model, kij is optimized and set
to be 0.57 empirically, except for hydrogen-bond regions.
In the hydrogen bond interaction region,51,53 kij is replaced
by a kHB(rij) function to describe the electrostatic interaction
between the hydrogen atom and the lone-pair electron.

In molecular simulations, we use the ABEEMσπ method
to calculate partial charges of all regions, namely, atoms,
lone pairs, σ bonds, and π bonds, and then employ eq 2 to
compute the total energy of the system. If there is a
geometrical change, i.e., a change of bond length, angle,
dihedral angle, or relative position between molecules, we

will recalculate the partial charges using the ABEEMσπ
method, and then the total energy. In this manner, a
systematic way to account for the polarization effect by
allowing partial charge fluctuations in accordance with the
changingmolecularenvironment isprovidedbytheABEEMσπ
force field, termed in short as ABEEMσπ/MM.

ABEEMσπ/MM Parameters’ Determination and Cali-
bration. The systematic determination and calibration of
parameters in developing any force field is tedious, involving
tremendous amount of tasks in testing, calibrations, and
analyses. In our case, more than 2000 organic and biological
molecules were chosen. A large amount of efforts have been
invested to optimize the ABEEMσπ/MM parameters to make
them consistent, reliable, and transferable in accurately
reproducing structural, energetic, and dynamic properties.

As is known, FF involves a series of parameters, such as
bond stretching parameters, angle bending parameters,
torsional parameters, van der Waals parameters, as well as
the valence-state electronegativities and valence-state hard-
nesses in the electrostatic energy term etc. Strenuous and
time-consuming work is needed for calibration of the
parameters for development of a good FF.

The parameters �* and η* are fitted through a regression
and least-squares optimization procedure and are listed in
Table S1 (Supporting Information), where the scaling Pauling
electronegativity unit is used. The ABEEMσπ labels are
listed in Chart S1 (Supporting Information). The parameters
are fitted not only to reproduce the charges of the ab initio
calculation but also to fit the dipole moments, structures, and
dimer binding energies given by experimental measurements
and ab initio calculations. The fitting function kHB is extracted
from k in eq 8 to describe the electrostatic interaction between
the H atom and lp of the acceptor. A general formulation of
the kHB function is available in SI1 (Supporting Information).

It is well-known that parameters for the hard degrees of
freedom (bond stretching and angle bending) can be trans-
ferred from one FF to another without modification. For
example, for some bonds and angles in the amide system,
the same force constants, equilibrium bond lengths, and bond
angles are used in both OPLS-AA10 and AMBER18 FFs. So
we take the parameters of bond stretching and angle bending
of protein directly from OPLS-AA FF and those of DNA
from AMBER FF. The torsional terms are often regarded as
“soft” degrees of freedom, in which most of the variations
in structure and relative energy are due to the complex
interplay between the torsional and nonbonded contributions.
In ABEEMσπ FF, we take the torsional and improper tor-
sional parameters of OPLS-AA or AMBER as a reference
and refit them through the least-squares optimization procedure
to make the conformation energies and the key dihedral angles’
root of mean square deviation (rmsd) of the model molecules
be in good agreement with those calculated by the ab initio
method. In addition, the Lennard-Jones parameters are deter-
mined by fitting ab initio conformational energies, dimer
binding energies, dipole moments, and so on, using a regression
and least-squares method. All the parameters are summarized
in Table S1 (Supporting Information).

It should be pointed out that the parameters we have used
are transferable over a large amount of chemical and

Eφ(φ) ) ∑
torsions

[V1

2
(1 + cos φ) +

V2

2
(1 - cos 2φ) +

V3

2
(1 + cos 3φ)] (5)

Eimptors ) ∑
imptors

V(1 - cos 2φ) (6)

Evdw ) ∑
i<j

4fijεij(σij
12/rij

12 - σij
6/rij

6) (7)

Eelec ) ∑
i<j

kijqiqj/rij (8)
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biological species rather than needing to be reparameterized
for each molecule. The charge parameters, such as valence
electronegativity and hardness for a type of site or region,
are used for all molecules rather than only for one molecule
in the ABEEMσπ model. A site type in the ABEEMσπ
model is properly defined according to the type of its
surrounding chemical environment, so that the parameters
are transferable, only depending on the site types as in the
usual force fields.

For example, a single water molecule has 7 total sites:
three atomic sites, two σ bond sites, and two lone pair sites.
Each site has two charge parameters (one valence electrone-
gativity and one valence hardness). Besides the charge
parameters, a single water molecule has 9 other parameters
which contain rOH, θHOH, kHOH, εO, εH, σO, and σH, as well as
R and D, because the stretch vibration of every O-H bond
is described by the Morse potential function.

The ABEEMσπ/MM parameters and their calibration
results are available in SI1 (Supporting Information).

Computational Details of Molecular Dynamics. The
structures of Crambin, BPTI, and Trypsin from the protein
data bank were used as the initial geometries of MD
simulations. The MD simulations were performed using the
modified TINKER program in the NVT ensemble with
Berendsen thermostats, the velocity Verlet integrator, and a
time step of 1 fs. The systems were initially heated over 5
ps to 285 K. The cutoff radius for nonbonding interactions
was 10.0 Å with the minimum image convention if the
periodic boundary condition was used. For all simulations,
0.5 ns of a MD run for equilibration was performed, followed
by 9.5 ns of simulations for the calculation of various
properties. We recomputed the partial charges of all sites
using the ABEEMσπ method every 0.1 ps. The charges are
placed on some virtual sites according to the physical
meaning, including the sites of σ and π bonds and lone pairs,
for better calculating the electrostatic energy. When the MD
simulation was performed, the force was only acting on the
atoms with redistribution of the partial charges of bonds and
lone pairs to the connected atoms. The partial charge of one
σ bond is averagely assigned to two bonded atoms. The
charges of π regions and lone pairs are all assigned to the
connected atoms.

We performed simulations of 1crn by ABEEMσπ (1792
sites) and standard AMBER (642 sites) force fields, respec-

tively. These simulations have a time step of 1 fs, a
simulation time of 1 ns, and a cutoff radius of 10.0 Å. With
the same computational power, the AMBER fixed charge
FF expends 10851.52 s. If the partial charges were fixed,
the ABEEMσπ FF expends 12093.66 s, and if the partial
charges were recomputed every 0.1 ps, ABEEMσπ FF uses
149116.20 s.

In what follows, we present results for representative
systems obtained by the ABEEMσπ/MM and compare them
with experimental data or results from the ab initio method
at the MP2 level.

Results and Discussion

Rotational Barriers. Rotational energy profiles for the
central C-C bond of butane and isobutane, and for the C-O
rotation of methanol obtained at the ABEEMσπ/MM and
MP2/aug-cc-pVDZ levels of theory, are shown in Figure 1.
One can see that ABEEMσπ/MM accurately reproduces the
rotational energy profiles. The experimental syn rotation and
trans-gauche barriers of butane are 4.5655 and 3.30 kcal/
mol,56respectively.ThecorrespondingresultsfromABEEMσπ/
MM are 4.38 and 3.18 kcal/mol, whereas MP2 gives 4.95
and 2.72 kcal/mol, and AMBER57 FF yields 5.31 and 3.53
kcal/mol, respectively. The experimental energy difference
between trans and gauche isomers is 0.497-0.89 kcal/mol.58

The result of ABEEMσπ/MM, MP2, and AMBER FF is
0.86, 0.65, and 0.79 kcal/mol, respectively. For isobutene,
ABEEMσπ/MM yields 3.78 kcal/mol, comparable to the
experimental59 result of 3.90 kcal/mol and the AMBER57

and MP2/aug-cc-pVDZ results, which are 3.48 kcal/mol and
3.61 kcal/mol, respectively. The experimental60 barrier height
of methanol is 1.07 kcal/mol, and the corresponding value
from ABEEMσπ/MM and MP2/aug-cc-pVDZ is 1.12 and
1.14 kcal/mol, better than the results from MMFF9461 and
MM362 FF, which are 1.23 and 0.78 kcal/mol, respectively.

Structures of Peptides. Alanine dipeptide is a model
compound of the protein backbone, containing two peptide
linkages. We use the ab initio result at the level of MP2/6-
311++G(d,p)//HF/6-31G(d,p) as the reference. The same as
for the ab initio result, ABEEMσπ/MM is able to find all
six of its stable conformers, especially �2 and RL, which are
difficult to locate because they are shallow minima. Table
S3 (Supporting Information) shows conformational energies

Figure 1. Rotational energy profiles (a) for the central C-C bond rotation of butane, (b) for the C-C bond rotation of isobutane,
and (c) for the C-O rotation of methanol from MP2/aug-cc-pVDZ calculations and the ABEEMσπ force field.
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and rmsd’s of key dihedral angles for alanine dipeptide from
ABEEMσπ/MM, ABEEM/MM,53 OPLS-AA/L,12 OPLS-
PFF,13 FQ-dipole,45 and OPLS-FQ11 methods in comparison
with ab initio results. It is seen from the table that the
ABEEMσπ/MM method best reproduces both conforma-
tional energies and the dihedral angles for alanine dipeptide,
giving the lowest rmsd for both quantities. Its rmsd value
relative to the ab initio MP2/cc-pVTZ//MP2/6-31G(d,p)
result63 in conformational energies is merely 0.20 kcal/mol,
and that of the key dihedral angles is only 5.9°. In
comparison with ABEEM/MM, whose only difference from
ABEEMσπ/MM is without partial charge sites for lone pairs
and π bonds, a marked difference in rmsd values is also ap-
parent.

For alanine tetrapeptide, Table 1 displays a rmsd in
conformational energies and key dihedral angles obtained
from ABEEMσπ/MM and other methods, compared to ab
initio results. ABEEMσπ/MM gives a rmsd of 0.50 kcal/
mol in conformational energies and 6.3° in the key dihedral
angles relative to the MP2/6-311++G(d,p)//HF/6-31G(d,p)
data, whereas those quantities are 0.67 kcal/mol and 8.4°
for ABEEM/MM,53 0.56 kcal/mol and 10.4° for OPLS-AA/
L,12 and 0.69 kcal/mol and 19.1° for OPLS/PFF,13 respec-
tively.ForFQ-Dipole,45OPLS-FQ,11AMBER,19andCHARMM-
FQ,7 the rmsd in conformational energies is 0.71, 0.94, 1.14,
and 1.25 kcal/mol, respectively, in comparison with the
LMP2/cc-pVTZ(-f)//HF/6-31G(d,p) result. No dihedral angle
rmsd result is available for those latter approaches for this
system.

Table 2 summarizes rmsd values in conformational ener-
gies and key dihedral angles obtained for the ABEEMσπ/
MM, OPLS-AA/L, and OPLS/PFF methods in comparison
with the ab initio result for various neutral dipeptides and
tetrapeptide. The average rmsd in conformational energies
and key dihedral angles of neutral peptides are 0.36 kcal/
mol and 4.3° for ABEEMσπ/MM, respectively, but 0.47
kcal/mol and 10.1° for OPLS-AA/L12 and 0.43 kcal/mol and
10.5° for OPLS/PFF, respectively.13 For phenylalanine,
tryptophan, tyrosine, and histidine dipeptides containing at
least one aromatic ring, because ABEEMσπ/MM explicitly

adds partial charges to π bonds, significantly lower rmsd
values in angles are obtained, 3.4° on average for the four
dipeptides from ABEEMσπ/MM, whereas the corresponding
result from OPLS-AA/L12 and OPLS/PFF13 is 14.6° and
14.0°, respectively. Hydrogen bonding is closely related to
the orientation of lone pairs of polar atoms. For asparagine
and glutamine dipeptides with more hydrogen bonds, since
ABEEMσπ/MM explicitly augments partial charges sites for
lone pairs, noticeable improvements in rmsd are observed,
0.00 and 0.85 kcal/mol in conformation energies and 6.8°
and 4.8° in dihedral angles for the two peptides, respectively,
compared to 0.16 and 0.96 kcal/mol and 19.5° and 13.9°
from OPLS-AA/L12 and 0.02 and 0.92 kcal/mol and 8.7°
and 18.0° from OPLS/PFF13 for them. ABEEMσπ/MM
results agree well with OPLS-AA/L and OPLS/PFF results
for aliphatic amino acid dipeptides, such as valine, leucine,

Table 1. Conformational Energies (in kcal/mol), RMSD of Conformational Energies, and the Key Dihedral Angles (in deg)
for Alanine Tetrapeptide Relative to the ab Initio Dataa

ab initiob ABEEMσπ ab initioc ABEEMd OPLS-AA/Le FQ-Dipolef OPLS-FQg AMBERh CHARMM-FQi

1 4.36 4.85/2.8 2.71 2.88/5.6 3.19/4.4 2.88/- 3.03/- 3.52/- 5.15/-
2 3.76 2.54/3.5 2.84 1.94/8.3 3.19/6.5 1.84/- 3.97/- 3.74/- 3.42/-
3 0.00 0.00/3.7 0.00 0.00/7.8 -0.32/8.4 0.22/- 0.26/- 0.00/- -0.70/-
4 4.67 4.22/5.6 4.13 2.90/8.2 4.40/5.8 3.69/- 2.34/- 4.32/- 5.36/-
5 4.64 4.15/5.1 3.88 4.81/7.3 3.14/9.3 3.70/- 4.62/- 3.64/- 4.21/-
6 0.66 0.67/4.0 2.20 1.80/8.8 0.96/12.7 1.45/- 1.67/- 2.91/- 2.40/-
7 4.13 4.51/9.0 5.77 5.83/11.7 5.82/6.6 5.48/- 6.18/- 4.54/- 5.75/-
8 4.16 4.16/12.7 4.16 4.10/12.7 4.83/18.8 5.38/- 4.39/- 5.91/- 3.40/-
9 6.13 5.76/3.4 6.92 7.21/5.9 7.14/8.2 6.74/- 5.33/- 4.93/- 6.10/-
10 5.10 4.99/6.0 6.99 8.03/4.3 7.25/14.2 8.21/- 7.82/- 8.53/- 4.55/-
rmsd 0.50/6.3j 0.67/8.4k 0.56/10.4k 0.71k 0.94k 1.14k 1.25k

a The values before “/” are the conformational energies, and those after “/” are the rmsd of the key dihedral angles relative to HF/
6-31G(d,p) level geometries, which are listed in Table S2 (Supporting Information). The FQ-dipole, OPLS-FQ, AMBER, and CHARM-FQ
methods did not provide the definite dihedral information. b The conformational energies at the MP2/6-311++G(d,p)//HF/6-31G(d,p) level
calculated in this work. c The conformational energies at the LMP2/cc-pVTZ(-f)//HF/6-31G(d,p) level are cited from ref 5. d Ref 53, ABEEM
FF only involves the partial charge sites of atoms and bonds without adding lone pair sites and π charge sites. e Ref 12. f Ref 45. g Ref 11.
h Ref 19. i Ref 7. j The lowest rmsd relative to the results of the MP2/6-311++G(d,p) calculation. k The lowest rmsd relative to the results of
the LMP2/cc-pVTZ(-f) calculation.

Table 2. RMSDs in Conformational Energies (in kcal/mol)
and the Key Dihedral Angles (in deg) for Different Peptides
Relative to the ab Initio Result

molecule ABEEMσπ OPLS-AA/La OPLS/PFFb

Di-Ala 0.20/5.9 0.27/6.5 0.35/7.1
Tetra-Ala 0.50/6.3 0.56/10.4 0.69/19.1
Di-Phe 0.00/2.7 0.15/7.5 0.02/9.5
Di-Trp 0.68/4.2 0.50/24.2 0.49/19.4
Di-Tyr 0.27/3.4 0.39/8.1 0.27/8.9
Di-His 1.01/3.5 0.85/18.7 0.83/18.2
Di-Asn 0.00/6.8 0.16/19.5 0.02/8.7
Di-Gln 0.85/4.8 0.96/13.9 0.92/18.0
Di-Val 0.00/1.9 0.08/8.4 0.01/5.1
Di-Leu 0.30/3.0 0.34/6.1 0.35/5.1
Di-Ile 0.59/5.3 0.38/5.5 0.88/11.8
Di-Ser 0.33/5.4 0.44/4.9 0.34/8.1
Di-Cys 0.11/3.3 0.35/5.8 0.27/4.8
Di-Met 0.24/3.2 0.59/5.2 0.53/5.4
Di-Thr 0.37/5.3 0.87/7.1 0.75/8.9
average 0.36/4.3 0.47/10.1 0.43/10.5
Di-Asp 0.15/4.1 0.16 0.77
Di-Glu 1.29/5.0 1.53 1.47
Di-Lys 0.58/2.9 0.88 0.59
Di-Pro his 0.70/5.9 0.97 0.97
Di-Arg 1.14/4.1 1.15 0.79
average 0.77/4.4 0.94 0.92

a Ref 12. b Ref 13.
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and isoleucine dipeptides, and polar amino acid dipeptides,
including serine, threonine, cysteine, and methionine dipep-
tides. There is nevertheless an important difference, where
OPLS-AA/L and OPLS/PFF performed structure optimiza-
tions with all the key dihedral angles constrained to their ab
initio structure positions for the charged dipeptides, but in
ABEEMσπ/MM calculations no such constraints were ap-
plied. The average rmsd value in conformational energy was
0.77 kcal/mol for ABEEMσπ/MM, whereas that quantity was
0.94 and 0.92 kcal/mol for OPLS-AA/L and OPLS/PFF,
respectively. Furthermore, ABEEMσπ/MM obtained a rather
small average angular rmsd of 4.4°. Proline is a special case,
where disulfide bridges stabilize polypeptides and proteins.
We considered several conformations for them whose
calculated RMSDs were also found to be small, as listed in
Table S3 (Supporting Information).

Interactions in Base Pairs and Water Dimer, Dipep-
tide-Water and Base-Water Complexes. We computed the
interaction energies with ABEEMσπ/MM and compared
them with other FFs and MP2/6-31G(d)(0.25) results of 26
H-bonded base pairs from Hobza et al.64 Table 3 exhibits
their rmsd’s and linear regression analyses. The rmsd of
ABEEMσπ/MM is 0.90 kcal/mol, smaller than that of
CHARMM27,65 AMBER4.1,64 CFF95,64 and OPLS64 force
fields. The correlation coefficient R is 0.98, and the standard
deviation is 0.77 kcal/mol, with the intercept A and slope B
in the fitted linear function of Y ) A + Bx being -0.87 and
0.97, respectively. The average absolute deviation is 0.7 kcal/
mol, which is also the smallest among the methods tested.
The good agreement between ABEEMσπ/MM results and
high-level ab initio data indicates that ABEEMσπ/MM can
correctly predict the interaction energy between H-bonded
nucleic acid bases. The detailed information of the above
calculations is contained in Table S4 (Supporting Informa-
tion).

The stacked structures of A and T (denoted as ATs) and
C and G (denoted as CGs) base pairs are what we
investigated next. Their initial geometries (shown in Figure
2) are from ref 66. We calculated interaction energies of the
stacked bases as a function of the distance between two
planes formed by two base pairs. Single point calculations
were done with MP2/6-31G(d), MP2/6-311++G(d,p), and
ABEEMσπ/MM methods. The vertical separation between
A and T base planes and between C and G planes was varied
from 2.8 Å to 10.0 Å. The potential energy profiles of ATs
and CGs are shown in Figure 2a and b, respectively. One

local minimum is found with a vertical separation of 3.3 Å
for each profile. Table 4 summarizes the lowest interaction
energies of ATs and CGs from ABEEMσπ/MM, Nakagawa’s
polarizable model potential function,66 AMBER66 force field,
MP2/6-31+G(d), and MP2/6-311++G(d,p) calculations. The
interaction energies by Nakagawa’s model and AMBER are
underestimated. The lowest ABEEMσπ/MM interaction
energies for ATs and CGs are -6.8 and -9.3 kcal/mol,
respectively, in good agreement with ab intio results of -7.0
and -9.9 kcal/mol at the MP2/6-311++G(d,p) level of
theory, indicating that ABEEMσπ/MM is suitable to predict
the interaction energy for stacked nucleic acid base pairs.

We next considered the monoclinic B-DNA decamer
(CCAACGTTGG)2, which has five crystallographically dif-
ferent base pairs. Only nucleic acid bases are considered,
and sugar-phosphate units are omitted. The interaction
energy for H-bonded pairs, intrastrand stacking pairs, and
interstrand stacking pairs from the MP2/6-31G(d) (0.25)
(BSSE corrected) calculation, ABEEMσπ, CHARMM27,65

and AMBER force fields64 are reported in Table S5 (Sup-
porting Information). At the bottom of Table S5 is the sum
of different types of interacting pairs, including 10 H-bonded
interactions (ΣH), 18 intrastrand stacking interactions (ΣS),
18 interstrand stacking interactions (ΣI), and the total
interaction energies (ΣH + S + I). The sum of H-bonded
base pair interaction energy from the ABEEMσπ force field
is -212.23 kcal/mol, which is very close to the -209.4 kcal/
mol from the MP2 calculation. The intrastrand stacking
interaction energy from ABEEMσπ/MM is -52.76 kcal/mol,
higher than that from the MP2 calculation (-71.0 kcal/mol).
For the interstrand stacked base pairs, the dominant contribu-
tions of electrostatic and Lennard-Jones term are varied. The
MP2 interaction energy of interstrand stacked base pairs is

Table 3. RMSD and Linear Regression Analyses of
Interaction Energies for H-Bonded Nucleic Acid Bases
Relative to MP2/6-31G(d)(0.25) Values

force field rmsd R a SDb Ac Bc AADd

ABEEMσπ 0.90 0.98 0.77 -0.87 0.97 0.7
CHARMM27e 1.16 0.96 1.15 -0.34 0.96 0.9
AMBER4.1f 1.21 0.98 0.93 -0.59 1.10 0.9
CVFFf 4.83 0.88 1.30 0.79 0.62 4.4
CFF95f 1.72 0.95 1.05 1.64 0.80 1.2
OPLSf 2.65 0.95 1.76 -1.69 0.95 2.4

a Correlation coefficient. b Standard deviation (in kcal/mol).
c The equation is Y ) A + Bx, where A is intercept, B is slope,
and x represents the MP2/6-31G(d)(0.25) values. d Average
absolute deviation (in kcal/mol). e Ref 65. f Ref 64.

Figure 2. Potential energy profiles of stacked nucleic acid
base pairs. (a) ATs. (b) CGs.

Table 4. Lowest Interaction Energies of Stacked Nucleic
Acid Base Pairs (kcal/mol)

method ATs CGs

MP2/6-31+G(d) -6.0 -8.9
MP2/6-311++G(d,p) -7.0 -9.9
ABEEMσπ/MM -6.8 -9.3
PMPa -9.7 -10.9
AMBERa -8.7 -13.0

a Ref 66.
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well reproduced by ABEEMσπ/MM with a difference of less
than 1.2 kcal/mol. The above analyses suggest that there exits
a balance between H-binding and stacking interactions in
the system, and electrostatic and Lennard-Jones contributions
in base-base interactions can satisfactorily be treated by
ABEEMσπ/MM.

The treatments of the most stable conformer of water
clusters have been given elsewhere.51 Here, we present the
detailed study results for ten water dimer stationary conform-
ers. The ABEEMσπ force field can obtain all ten lowest
conformers of the water dimer and excellently reproduce the
structures obtained from counterpoise corrected MP2/aug-
cc-pVDZ calculations obtained in this work (Table S6,
Supporting Information). The binding energies of the
ABEEMσπ force field are comparable with those results of
high level ab initio CCSD(T)/6-311++G(3df,3pd) calcula-
tions (Table S7, Supporting Information).

We have further investigated other systems of dipeptide-
water and base-water clusters, such as (1) alanine dipeptide
with (H2O)1-4 by ABEEMσπ/MM and MP2/6-31+G(d)//
B3LYP/6-31G(d) methods and (2) bases with (H2O)1-3 by
ABEEMσπ/MM and MP2/6-311++G(d,p)//B3LYP/6-
311++G(d,p) methods, whose geometries, hydrogen bond
energies, and cooperative properties are presented in Table
S4 (Supporting Information). Results from all these systems
in SI1 (Supporting Information) confirm that reliable predic-
tions of interaction energies can be quantitatively obtained
from ABEEMσπ/MM.

Illustration of Partial Charges in a Protein/Ligand
Docking System. Protein-ligand recognition is a compli-
cated process, but mandatory for the structure-based drug
discovery and design. One quantity that is fundamentally
important and essential in the process is to reliably and
accurately calculate partial charges for ligands and protein,
especially for those atoms near the active site and the
interface between the donor and acceptor. For example, to
design inhibitors for serine proteinase (PDB ID: 1tni), three
hydrogen atoms (H1, H2, and H3) of the amine group at the
tail of the ligand are found to form hydrogen bonds and one
salt-bridge (between positively charged protonated amine and
negatively charged aspartic acid) with three receptor atoms
(see Figure 3), O1(LYS224), O2(GLY219), and O3(ASP189).
The partial charges on those three hydrogen atoms are 0.415,
0.535, and 0.536 at the ab initio HF/6-31G level,67 respec-
tively. When evaluated by ABEEMσπ/MM, which uses a
global scale factor k for the electrostatics energy calculations,
their charges are 0.443, 0.519, and 0.566, close to the ab
initio result and with the same trend. If OPLS-AA is used,
each of these three hydrogen atoms has a fixed charge of
0.330. In a recent calculation by Cho et al. using a QM/MM
model,68 their charges are 0.340, 0.360, and 0.440, much
smaller than the ab initio values. These results reveal that
ABEEMσπ/MM not only takes good care of the polarization
effect but it can also satisfactorily treat the salt-bridge effect.

MD Simulations for Proteins. To demonstrate the reli-
ability of ABEEMσπ PFF in molecular dynamics simula-
tions, we performed 10 ns MD simulations for crambin (PDB
ID: 1crn) and bovine pancreatic trypsin (PDB ID: 5pti),
examined the obtained protein backbone geometries, and then
compared them with those from the CHARMM force fields.
The average rmsd’s of the two proteins in backbone bond
lengths are 0.037 Å and 0.040 Å, and the rmsd’s in backbone
bond angles are 4.16° and 4.73°, respectively. The rmsd value
in backbone dihedral angles, �, Ψ, and ω, from ABEEMσπ/
MM is smaller than the result from CHARMM: 25.0°, 23.3°,
and 7.6° for crambin and 29.4°, 30.2°, and 7.8° for trypsin
from ABEEMσπ/MM and 26.0°, 29.6°, and 6.9° for crambin
and 40.8°, 36.2°, and 8.7° for trypsin from CHARMM,
respectively. These results demonstrate that ABEEMσπ/MM

Figure 3. The configuration of the active pocket of 1tni.

Figure 4. The rmsd in bond lengths, bond angles, and key dihedral angles (�, Ψ, and ω) between X-ray structures and the
ABEEMσπ/MM structures as a function of simulation time for 1crn and 5pti.
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can reliably reproduce the protein backbone from the X-ray
structure. Figure 4 details the coordinate rmsd of different
groups of non-hydrogen atoms, indicating that the structures
during the course of MD simulations were stable and the
simulations were in the equilibrium state. The rmsd averages
over CR, backbone heavy atoms, all heavy atoms, side chain
heavy atoms between experimental structures, and MD
simulations using ABEEMσπ are 2.075, 2.022, 2.222, and
2.502 Å for crambin and 1.786, 1.911, 2.800, and 3.461 Å
for trypsin; the rmsd averages over backbone heavy atoms,
all heavy atoms, side chain heavy atoms between experi-
mental structures, and MD simulations using CHARMM5

are 1.700, 1.910, and 2.160 Å for crambin and 2.580, 3.190,
and 3.730 Å for trypsin. Average hydrogen bond distances
of N · · ·O pairs and O · · ·O pairs of proteins are presented in
Table S8 (Supporting Information). ABEEMσπ/MM can
accurately describe hydrogen bond interactions for the protein
systems. Overall, the results of ABEEMσπ/MM are better
than those from CHARMM.5 This is because, in ABEEMσπ/
MM, there is more than one partial charge per atom site,
providing more flexibility to account for the polarization
effect by allowing different partial charges to adjust their
values in accordance with changing geometry and environ-
ment during the course of dynamic simulation processes.

Conclusions

A polarizable force field, ABEEMσπ/MM, with multiple
fluctuating partial charges per atom site is proposed and
evaluated in the present work. The main difference between
ABEEMσπ/MM and other force fields is the treatment of
the electrostatic interaction energy. In ABEEMσπ FF, partial
charges are evaluated and updated by the ABEEMσπ method
based on the electronegativity equalization principle. The
ABEEMσπ method explicitly considers contributions from
lone pairs, σ and π bond regions. This addition increases
the flexibility to better account for the polarization effect
for both intra- and intermolecular processes.

With high-level ab initio [MP2, MP4, and/or CCSD(T)]
calculation results or experimental data as the reference, we
tested and evaluated ABEEMσπ/MM with a number of
biomolecular systems. We found that it can satisfactorily
reproduce structural and energetic properties, such as rota-
tional energy profiles, dihedral angles for peptides, confor-
mational energies, partial charge distribution inside an active
site, and protein structures in MD simulations. The interaction
energies of H-bonded and stacked nucleic base pairs are in
good agreement with the available experimental data and
ab initio results. The ABEEMσπ polarizable force field also
provides reliable binding energies for ten stationary conform-
ers of water dimer, dipeptide-water, and base-water
clusters. These results indicate that the fluctuating charge
force field, ABEEMσπ/MM, is accurate and reliable and can
be applied to wider ranges of biomolecular systems, including
aqueous solutions.
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Abstract: The effects of a static external electric field on the ground state electronic structure
of a porphine-quinone (PQ) complex have been studied by using density functional theory
(DFT). The energies of the excited states have been calculated with time-dependent density
functional theory (TDDFT) and with the approximate coupled cluster singles and doubles (CC2)
method. The geometries of porphine and quinone have been optimized with B3LYP. The
influence of the external electric field on the PQ complex has been studied at six different
intermolecular distances between 2.5 and 5.0 Å with the BH&HLYP functional. An external electric
field clearly affects the orbitals localized mostly on quinone but not the orbitals localized on
porphine. Additionally, the effect of the external field increases with the increasing intermolecular
distance. The optical absorption spectrum of porphine obtained by using the BH&HLYP functional
is consistent with the Gouterman model and with the spectrum previously calculated with CAM-
B3LYP. The potential energy curves of the Q and B states and the lowest charge transfer (CT)
states of the PQ complex calculated by using the BH&HLYP with TDDFT functional have also
been compared with those obtained with the CC2 method. Both methods show that the lowest
CT state is clearly above the Q states when no external field is applied. Therefore, when the Q
states of a porphine-quinone system are excited, the conical intersection is not possible and
cannot thus provide a path for electron transfer (ET). The calculations show that the Q and B
states are affected by the field much less than the lowest CT state. Consequently, the calculations
show that the CT state crosses the Q and B states at certain field strengths. Thus, it is possible
that the external electric field triggers ET in porphine-quinone systems via conical intersection.

1. Introduction

Electron transfer (ET) plays a crucial role in the photosyn-
thesis taking place in a reaction center. The initial step of
photosynthesis is the photoexcitation of the light-harvesting
chlorophyll, which forms a so-called special pair with a
neighboring quinone, the whole system being embedded in
protein. Once chlorophyll is photoexcited, an electron is

transferred from chlorophyll to quinone. This initial ET in
the special pair is a starting point of several subsequent
electron transfer reactions in the reaction center.1 The initial
efficient ET step has attracted special attention over the years
as scientists have tried to establish the mechanism of the
ET reaction. Staab and co-workers2-4 have synthesized
relatively simple model systems for studying the first reaction
step of photosynthesis composed of porphyrin derivatives
linked covalently with cyclophane bridges to quinone for
studying the photoinduced ET. They have found out that,
when the porphyrin moiety of the zincporphyrin-quinone
donor-acceptor dyads is photoexcited into the energetically
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lowest excited state (the Q state), its fluorescence is quenched
on a picosecond timescale. This implies efficient electron
transfer from the porphyrin to the quinone, which has also
turned out to be insensitive for the solvent environment.3

On the contrary, in dyads consisting of a free-base porphyrin
(porphine) and quinone, the fluorescence lifetime is strongly
dependent on the polarity of the surrounding solvent. In polar
solvents, the lifetime is on the same order of magnitude as
in dyads consisting of zincporphyrin, but in nonpolar hexane
the fluorescence lifetime is almost 10 ns, which is comparable
to the lifetime of an unquenched porphine. Therefore, it has
been concluded that there is no ET taking place from
porphine to quinone in nonpolar solvents.2

Also, in several theoretical studies, ET from porphine
derivatives to quinone has been investigated.5-8 Worth and
Cederbaum have studied the potential energy curves of the
B, Q, and CT states of a zincporphyrin-quinone complex
along the intermolecular distance by using the CIS method.
They concluded that the CT states are in the same energy
region with the B states localized on zincporphyrin. Ad-
ditionally, the energies of the CT states depend more strongly
on the molecular geometry than those of the local porphyrin
states. Therefore, the CT states are likely to cross the B states,
and these crossing points are part of a conical interaction
seam proposed as a mechanism of formation of the CT state.5

Worth and Cederbaum continued their work with Dreuw and
Head-Gordon by studying a covalently linked zincpor-
phyrin-quinone dyad by using time-dependent density
functional theory (TDDFT) combined with ∆DFT/CIS. Their
calculations showed that two large-scale motions, the “swing-
ing-bridge” and the “twist motion” of the quinone moiety
with respect to porphyrin, may cause excited state crossings
between the locally excited Q states and the porphyrin-to-
quinone CT state. Thus, these motions can trigger ultrafast
ET from zincporphyrin to quinone via conical intersection,
which is a region of coordinate space where two potential
energy surfaces meet with a certain topology.6

Zheng et al. applied the INDO/S method to compute the
electronic couplings via the two-state generalized Mulliken-Hush
(GMH) approach of π-stacked poprhyrin-bridge-quinone
systems. The phenyl linkers were found to dominate the
mediation of the donor-acceptor coupling and the relatively
weak exponential decay of the rate with distance aroused from
the compression of the π-electron stack.7 Olaso-González et
al. studied the chlorin-quinone complex using CASPT2 and
CASSCF methods. They concluded that ultrafast ET in a
chlorin-quinone complex is possible only if the relative
orientation of the donor and acceptor molecules allows some
overlap of the LUMOs of the molecules. They agreed with
Worth et al.6 that large-scale motions must take place in the
photosynthetic reaction centers to fulfill the observed ultrafast
ET.8

The surrounding environment usually has a significant
influence on the molecular properties. For example, an
electric field induced by ambient molecules, for example,
by zeolites and peptides, is reported to affect the molecular
geometry, molecular orbital distribution, and dipole mo-
ments.9 Furthermore, high electric fields (up to 109 V/m)
induced by the large dipole moments of peptides are

proposed to affect the electron transfer taking place between
a donor and an acceptor embedded in between parallel
peptide chains.10 In some theoretical studies, the effects
induced by an external electric field on molecular and
electronic properties have been investigated. These studies
have been focusing both on single molecules9,11-14 and on
donor-acceptor dyads.15,16 However, cofacial dyads and
complexes have not been much studied theoretically under
the influence of an external electric field.17

Density functional theory (DFT) has been established as
an efficient and reliable method for studying the ground state
properties of molecules and solid systems. Furthermore,
TDDFT has proven to be a reliable and facile method for
calculating the properties of excited states.18 However, the
exchange-correlation functionals used currently in TDDFT
calculations are reported to suffer from some well-docu-
mented shortcomings. In particular, TDDFT is known to
underestimate the long-range CT excitations. This so-called
CT failure of TDDFT is a consequence of the local nature
of both the local density (LDA) and gradient corrected
(GGA) approximations to the exact energy functional, which
do not contain the derivative discontinuities required by the
exact exchange-correlation potential.18,19 Inclusion of a
fraction of nonlocal Hartree-Fock exchange has been shown
to improve results, as exemplified by the use of the “half
and half” functional BH&HLYP (BHandHLYP) in the
investigation of several excitations with CT character.20-22

In the current study, we have used DFT and TDDFT to
investigate the effect of the electric field, which can be also
induced by ambient molecules, on the excited state properties
of a cofacial porphine-quinone3,4 (PQ) donor-acceptor
complex by simulating the surrounding effects with a static
external electric field. The molecular structure of the studied
complex is presented in Figure 1. We have used the hybrid
BH&HLYP functional, which incorporates a high fraction
(50%) of HF exchange. For example, in the case of a chlorin
derivative bateriochlorophyll b, this functional has been
reported to yield a rather good excitation spectrum.23

However, as the BH&HLYP is not expected to completely
remedy the CT failure of TDDFT, we have complemented
our study by employing also the approximate coupled cluster
singles and doubles (CC2) method. The SV(P) basis set,
which is roughly identical to 6-31G*, has been used in all
density functional calculations. The 6-31G* basis set has
been previously successfully applied to calculations of the
excited states of an isolated porphine15 and a zincporphyrin-
quinone dyad.6 In CC2 calculations, we have used the TZVP
basis set, which has been reported to be adequate for CC
calculations of low-lying excited states not having Rydberg
character.24

The aim of this study has been two-fold. First, we have
studied the performance of the BH&HLYP functional in
calculating the optical absorption spectrum of porphine
because the current GGA functionals and hybrid functionals
with a low fraction of Hartree-Fock (HF) exchange have
been reported to yield qualitatively incorrect spectra for
porphyrins and chlorophylls.15 The second and the more
important aim has been to study the effect of an electric field

806 J. Chem. Theory Comput., Vol. 6, No. 3, 2010 Aittala et al.



aligned perpendicularly to the porphine and quinone planes
on the electronic properties of a PQ complex.

2. Computational Methods

The ground state geometries and the single-point energies
were calculated by using DFT.25,26 In geometry optimiza-
tions, Becke’s three-parameter hybrid functional (B3LYP)27-32

was applied, whereas in the single-point energy calculations,
the “half-and-half” hybrid functional BH&HLYP27-30,33

(BHandHLYP) was used. The BH&HLYP functional con-
sists of 0.5(LDA + B88) + 0.5HF exchange and LYP
correlation functionals. In all DFT calculations, the Karlsruhe
split valence basis set with one set of polarization functions
for all atoms except for hydrogen (SV(P))34 was applied.

Vertical excitation energies were calculated with
TDDFT35-37 by using the BH&HLYP functional. Only the
singlet states were considered. The computed transitions were
transformed into simulated absorption spectra by applying
a uniform Gaussian broadening with a standard deviation of
0.1 eV. The TDDFT-calculated excitation energies were
compared to the energies calculated with the approximate
coupled cluster singles and doubles (CC2)38 method, em-
ployed in the RICC2 module39-41 in Turbomole. In the CC2

calculations, the frozen-core approximation was employed
for the 1s orbitals of the carbon and nitrogen atoms. In the
excited state calculations, the SV(P) and TZVP34 basis sets
were applied, and in the CC2 calculations, an auxiliary basis
set42 of the same quality was used.

The order of the magnitude of the strength of the external
electric field (109 V/m) considered in this study corresponds
to the electric field observed in peptides, zeolites, and protein
cavities. Additionally, we have studied fields of 1 × 109 V/m,
2 × 109 V/m, and 4 × 109 V/m. In the calculations including
external electric field, the field (F) was applied in the
direction of a positive (+) or negative (-) z axis, that is,
perpendicularly to the porphine and quinone planes, see
Figure 1 b. The direction of the external electrostatic field
was defined as a direction of the movement of a positive
charge. All calculations presented in this study were per-
formed with the Turbomole 5.9-5.10 software packages.43

3. Results

3.1. Ground State Energies and Geometries. First, the
geometries of quinone and porphine were optimized. Second,
the two molecules were superimposed so that porphine was
set on the xy plane by setting its geometric center point to
the origin, and the z axis was directed through the geometric
center point of quinone. Eight conformers (A-H) were made
by rotating the quinone with respect to the z axis, that is, by
changing the rotation angle R, see Figure 1a for the details.
In all conformers, the intermolecular distance (RPQ) was set
to 2.5 Å. Thereafter, the conformers were optimized at the
DFT/B3LYP/SV(P) level.

Rotation angles R, optimized intermolecular distances, and
the relative energies are presented in Table 1. The absolute
energies are given in Table S2 in the Supporting Information.
In the lowest-energy conformer (H) presented in Figure 1b,
the two methyl groups of quinone are almost on the top of
the two free nitrogens of porphine, and the two hydrogens
of quinone are almost on the top of the center hydrogens of
porphine. The structural characteristics of conformer H are
given in Table S1 in the Supporting Information. The
energies of conformers A-H differ by 3.2 kJ/mol, at the
most. A slight distortion from the lowest-energy geometry
induces only a small change in energy, see the energies of
G and H. The optimized intermolecular distance (Ropt) of
the lowest-energy conformer H was found to be 3.82 Å at

Figure 1. (a) Top view of a porphine-quinone complex. The
rotation angle R is the angle between the axes drawn through
the two oxygens of quinone and through the two “center”
hydrogens of porphine. (b) Side view of the complex. RPQ is
the distance between the geometric center points of porphine
and quinone. The external electric field (F) has been applied
in the direction of a positive (+) or negative (-) z axis, that
is, perpendicular to porphine and quinone planes. The direc-
tion of the external electrostatic field has been defined as a
direction of the movement of a positive charge.

Table 1. Rotation Angles R (deg),a Optimized
Intermolecular Distances RPQ (Å), and the Relative
Energies E (kJ/mol) of A-H Calculated at the DFT/B3LYP/
SV(P) Level of Theory

conformer R RPQ E

A 0 4.01 1.6
B 15 4.05 2.2
C 45 3.89 1.8
D 60 3.93 2.6
E 90 3.92 3.2
F 110 3.92 2.6
G 120 3.85 1.3
H 135 3.82 0

a See Figure 1a for definition.
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the B3LYP/SV(P) level, and further calculations with
BH&HLYP yielded 3.60 Å.

In the current study, one of the aims is to investigate the
effect of the intermolecular distance RPQ on the electronic
properties of a porphine-quinone complex. Therefore, six
conformers were made from the most stable PQ complex H
in the following way. The optimized geometries of porphine
and quinone were kept frozen, and the RPQ was set to 2.5,
3.0, 3.5, 4.0, 4.5, and 5.0 Å. The complexes are denoted as
PQ2.5, PQ3.0, PQ3.5, PQ4.0, PQ4.5, and PQ5.0, respectively.
Single-point energy calculations were carried out at the
BH&HLYP/SV(P) level of theory for these structures.

Complexation energy, which indicates the stability of the
complex, was calculated as the difference between the sum
of the isolated porphine and quinone and the energy of the
interacting PQ complex. Table 2 summarizes the complex-
ation energies of the PQ2.5, PQ3.0, PQ3.5, PQ4.0, PQ4.5, and
PQ5.0 complexes calculated under the influence of an external
electric field of +4, +2, +1, 0, -1, -2, and -4 × 109 V/m.
The orientation of the external electric field has been defined
in section 2. Without the presence of the external field, the
PQ complexes with RPQg 3.5 Å have negative complexation
energies. The absolute value of the complexation energy of
PQ3.5, PQ4.0, and PQ4.5 exceeds the thermal energy at room
temperature (∼2.48 kJ/mol), and porphine and quinone are
therefore bound together in these complexes. The PQ2.5,
PQ3.0, and PQ5.0 would not exist without linkers because the
thermal fluctuation would dissociate the complexes. It is also
noteworthy that the single-point energy calculations predict
the minimum of complexation energy to be 3.5 Å, that is,
close to Ropt (3.6 Å). This implies that the geometries of
porphine and quinone are not much affected by the com-
plexation. The DFT does not, however, take into account
the van der Waals interactions, and calculations at the CC2/
TZVP level indicate much more stable complexes with
complexation energies of +13.4, -123.9, -97.7, -60.4,
-35.4, and -20.7 kJ/mol for PQ2.5, PQ3.0, PQ3.5, PQ4.0, PQ4.5,
and PQ5.0, respectively. Hence, the CC2 calculations predict
a minimum in the ground state potential energy curve (PEC)
at a shorter RPQ than DFT, and the minimum is also much
steeper than the rather flat PEC obtained with DFT (see also
Figure 5).

The complexation energies increase when the external field
increases, see Table 2. Additionally, the external field affects

less when the intermolecular distance RPQ increases. When
the external electric field increases by 1 × 109 V/m from
-4 × 109 V/m to +4 × 109 V/m, the complexation energy
of PQ2.5 increases by 2.1-3.6 kJ/mol. In PQ3.0, PQ3.5, PQ4.0,
PQ4.5, and PQ5.0, an increase of the external field by 1 ×
109 V/m increases the complexation energy by 1.3-2.5,
1.0-2.0, 0.8-1.5, 0.6-1.1, and 0.5-0.9 kJ/mol, respectively.
Therefore, the complexation energies are affected more by
the intermolecular distance between the porphine and quinone
than by the external electric field.

3.2. Ground State Electronic Structures. Without the
External Electric Field. The localizations and energies of
the molecular orbitals (MOs) reveal the nature of the excited
states and provide insight into the absorption spectra of the
PQ complexes. Therefore, we will concentrate here on the
orbitals that are involved in transitions giving rise to the Q,
B, and the lowest CT bands of the PQ complexes, see section
3.3. Additionally, isoamplitude surfaces, orbital energies, as
well as variation of the orbital energies in porphine-quinone
complexes as a function of the external electric field of the
HOMO-2, HOMO-3, HOMO-4, LUMO+3, and LU-
MO+4 orbitals is provided in the Supporting Information.
In order to illustrate the differences in localizations of the
MOs, isoamplitude surfaces of HOMO-1, HOMO, LUMO,
LUMO+1, and LUMO+2 of PQ2.5, PQ3.0, PQ3.5, PQ4.0, and
PQ4.5 are presented in Figure 2. Localization of the orbitals
of PQ5.0 is practically identical to that of the PQ4.5 complex,
and the isoamplitude surfaces of PQ5.0 have been thus
omitted. In complexes with short intermolecular distances
(PQ2.5 and PQ3.0), the interaction of porphine and quinone
increases the delocalization of the orbitals. Most of the
orbitals of these complexes are delocalized over the whole
complex and cannot be clearly related to the orbitals of either
the isolated porphine or quinone. However, in PQ3.5 the
delocalization of the orbitals is decreased, and the orbitals
of PQ4.0, PQ4.5, and PQ5.0 are almost entirely localized on
either porphine or quinone. In these complexes, the electronic
structure is roughly the combination of the orbitals of the
isolated porphine and quinone.

Comparison of the isoamplitude surfaces of the other
complexes with those of PQ3.5 reveals that LUMO and
LUMO+2 cross, that is, change places, when the intermo-
lecular distance increases to 4.0 Å, see Figures 2 and 3. These
orbitals retain their reversed order when the intermolecular
distance increases further.

The HOMO and HOMO-1 orbitals of the PQ complexes
arise from the degenerate HOMO and HOMO-1 of por-
phine. The LUMO and LUMO+1 of the PQ2.5, PQ3.0, and
PQ3.5 complexes and LUMO+1 and LUMO+2 of the PQ4.0,
PQ4.5, and PQ5.0 complexes arise from the degenerate LUMO
and LUMO+1 of the isolated porphine. The LUMO+2 of
the PQ2.5, PQ3.0, and PQ3.5 complexes and LUMO of the
PQ4.0, PQ4.5, and PQ5.0 complexes can be related to LUMO
of the isolated quinone. The energies of the two highest
occupied and three lowest unoccupied molecular orbitals of
PQ2.5, PQ3.0, PQ3.5, PQ4.0, PQ4.5, and PQ5.0 are presented in
Table 3. Additionally, the energies of the corresponding
orbitals of the isolated porphine and quinone are shown. The
energies of the orbitals localized on porphine in PQ3.5 differ

Table 2. Complexation Energies (kJ/mol) of the PQ
Complexes with Intermolecular Distances RPQ (Å) of 2.5,
3.0, 3.5, 4.0, 4.5, and 5.0 Å Calculated under the Influence
of an External Electric Field F of -4, -2, -1, 0, +1, +2,
and +4 × 109 V/m at the BH&HLYP/SV(P)//B3LYP/SV(P)
Level of Theory

RPQ

F 2.5 3.0 3.5 4.0 4.5 5.0

-4 305.9 11.6 -7.2 -5.7 -1.6 0.2
-2 301.7 9.1 -9.2 -7.2 -2.7 -0.8
-1 299.3 7.6 -10.4 -8.1 -3.5 -1.4

0 296.5 5.8 -11.8 -9.1 -4.3 -2.0
-1 293.5 3.9 -13.3 -10.2 -5.1 -2.7
-2 290.3 1.7 -15.0 -11.5 -6.1 -3.4
-4 282.8 -3.3 -19.0 -14.5 -8.3 -5.1
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Figure 3. Variation of the orbital energies in porphine-quinone complexes with intermolecular distances of 2.5, 3.0, 3.5, 4.0,
4.5, and 5.0 Å as a function of the external electric field. See Figure 1b for a definition of the direction of the field. Orbitals are
labeled according to the PQ complexes in the zero field. The energies are calculated at the BH&HLYP/SV(P)//B3LYP/SV(P)
level of theory.

Figure 2. Some of the orbitals of the PQ complexes with intermolecular distances of 2.5, 3.0, 3.5, 4.0, and 4.5 Å calculated at
the BH&HLYP/SV(P)//B3LYP/SV(P) level of theory without an external electric field. The isoamplitude surfaces of the orbitals
presented are 10% of the maximum positive (red) and minimum negative (blue) amplitudes of the wave functions.
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only very little (<0.09 eV) from the energies of the
corresponding orbitals of the isolated porphine. However,
the energies of the orbitals localized entirely on quinone in
the PQ complex are ∼0.5 eV smaller than the energies of
the corresponding orbitals of the isolated quinone.

Changing of the intermolecular distance affects the ener-
gies of the MOs in which the isoamplitude surface is either
delocalized to both porphine and quinone or localized entirely
on quinone (see Figure 2 and Table 3), whereas the energies
of the MOs localized on porphine remain practically constant.
Except for PQ2.5, the HOMO and HOMO-1 orbitals of the
other complexes, localized on porphine, are degenerate, and
the energies of these two orbitals do not depend on the
intermolecular distance.

The LUMO is delocalized over the whole complex in PQ2.5

and PQ3.0 and mainly or entirely localized on quinone at 3.5
e RPQ e 5.0 Å. The PQ2.5 complex has the lowest LUMO
energy. At 3.0 e RPQ e 4.0 Å, the orbital energy is constant
but decreases in PQ4.5 and PQ5.0 when the interaction between
porphine and quinone decreases.

Regardless of the intermolecular distance, the LUMO+1
orbital is entirely localized on porphine, and the energy of
the orbital is about the same. At 3.0 e RPQ e 5.0 Å, the
energy of the orbital changes by 0.08 eV at most.

In PQ4.0, PQ4.5, and PQ5.0, the LUMO+2 orbital is
localized mainly on porphine. Thus, the energy of the orbital
changes only a little between 4.0 and 5.0 Å. In PQ3.5, PQ3.0,
and PQ2.5, the decrease of the intermolecular distance leads
to a stronger interaction between porphine and quinone, and
the LUMO+2 becomes delocalized over the whole complex.
The decrease of the intermolecular distance from 4.0 to 3.5
Å increases the orbital energy by 0.08 eV. When the
intermolecular distance is decreased to 3.0 Å and further to
2.5 Å, the energy decreases by 0.30 and 0.33 eV, respectively.

The Effect of the External Electric Field. Variation of the
energies of the two highest occupied and three lowest
unoccupied MOs of the PQ2.5, PQ3.0, PQ3.5, PQ4.0, PQ4.5, and
PQ5.0 complexes is presented as a function of the external
electric field in Figure 3. Orbitals are labeled in the same
way as in the case of the complexes in a zero field. Generally,
the effect of the external electric field on the energies of the
molecular orbitals delocalized over the whole complex or
localized on quinone increases when the intermolecular
distance increases.

In PQ2.5, in which porphine and quinone interact strongly,
the external electric field affects the orbitals only slightly.
Therefore, neither the negative nor the positive electric field
induces crossing, that is, no changes in the order of MOs.

The orbital which is more strongly localized on quinone than
on porphine, that is, LUMO+2, is affected the most. An
increase of the positive electric field strength by 1 × 109

V/m increases the LUMO+2 energy by 0.1-0.16 eV. The
negative electric field affects the energies of the LUMO
slightly more than the positive field. The increase of the
negative field strength by 1 × 109 V/m decreases the orbital
energy by ∼0.1 eV, whereas the increase of the positive field
increases the energy by ∼0.06 eV. Every increase of 1 ×
109 V/m in the electric field strength increases the energy of
the HOMO-1, HOMO, and LUMO+1 orbitals by 0.04 eV
at the most.

Evidently, already in the PQ3.0 complex, the orbitals localized
mainly on porphine and mainly on quinone respond differently
to the external electric field. The energy of the LUMO+1
increases by 0.03 eV at the most with an increase of the electric
field by 1 × 109 V/m. The LUMO+2 crosses the LUMO when
the external field is increased from -1 × 109 to -2 × 109

V/m, see Figure 3. This causes some nonlinear variation in the
LUMO energy, but otherwise the energy of the orbital is
affected by the external field in the same manner as the
LUMO+1 localized on porphine by the external electric
stimulation. On the contrary, the LUMO+2 that mostly localizes
on quinone is affected much more. Every increase of 1 × 109

V/m in the strength of the electric field increases the energy of
the LUMO+2 by ∼0.2 eV, but the crossing with LUMO
between -1 × 109 and -2 × 109 V/m induces some exceptions
to the linear behavior, see Figure 3. Energies of the degenerate
HOMO and HOMO-1 are affected in the same way as the
energy of the LUMO+1; that is, when the strength of
the electric field increases by 1 × 109 V/m, the energy of the
HOMO and HOMO-1 increase by 0.03 eV at the most.

In the complexes with longer intermolecular distances (PQ3.5,
PQ4.0, PQ4.5, and PQ5.0), the external electric field changes the
energies of the orbitals linearly. The energies of the orbitals
localized on porphine are only slightly affected by the external
field. With a few exceptions, the energies of the degenerate
HOMO and HOMO-1 as well as the degenerate LUMO+1
and LUMO+2 (LUMO and LUMO+1 in PQ3.5) increase only
by 0.02 eV at the most, with a gradual increase of the strength
of the external electric field. Therefore, the energies of the
orbitals stay between -6.07 and -6.24 eV, -7.79 and -8.10
eV, and -1.72 and -1.90 eV, respectively (see Figure 3).

On the contrary, the energy of the LUMO (LUMO+2 in
PQ3.5) localized more strongly on quinone than on porphine
is significantly affected by the external stimulation. Also, in
this orbital, a linear dependence between the orbital energy
and the external field is observed. The increase in the

Table 3. Energies (eV) of Some Molecular Orbitals of the PQ Complexes with Intermolecular Distances RPQ (Å) of 2.5, 3.0,
3.5, 4.0, 4.5, and 5.0 Å and the Energies of the Corresponding Orbitals of the Isolated Porphine (P) and Quinone (Q)a

RPQ

orbital 2.5 Å 3.0 Å 3.5 Å 4.0 Å 4.5 Å 5.0 Å P Q

LUMO+2 -1.05 -1.38 -1.68 -1.76 -1.76 -1.76 0.32 1.84
LUMO+1 -1.91 -1.79 -1.82 -1.80 -1.78 -1.77 -1.72 0.79
LUMO -2.24 -1.93 -1.92 -1.91 -1.96 -2.01 -1.74 -2.27
HOMO -6.05 -6.14 -6.15 -6.14 -6.13 -6.12 -6.08 -9.00
HOMO-1 -6.16 -6.17 -6.16 -6.14 -6.13 -6.12 -6.08 -9.23

a The energies are calculated at the BH&HLYP/SV(P)//B3LYP/SV(P) level of theory.
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intermolecular distance increases the effect of the external
field on the orbital energy, and therefore the lines represent-
ing the change of the orbital energy become steeper along
with the increasing intermolecular distance. Consequently,
the longer the intermolecular distance, the smaller the
external electric field that is able to cause the crossing of
the orbital localized mostly on quinone with the orbitals
localized on porphine.

Because the unoccupied orbitals of the PQ complexes
localized on quinone and on porphine respond differently to
the external electric field, it is expected that the electric field
on the order of magnitude under consideration has a
significant influence on the excited states of the PQ com-
plexes. More specifically, the excited states mostly localized
on quinone versus on porphine are expected to be influenced
by the electric field more than the states localized only on
porphine. Therefore, on the basis of the ground state
electronic structure, it is expected that the external electric
field affects also the electron transfer in the PQ complexes.

3.3. Electronic Absorption Spectra. Porphine. Over 30
years ago, Gouterman presented a four-orbital model44 that
explained the characteristic Q and B bands of porphines and
chlorophylls. The model is widely accepted, but modern
TDDFT calculations have shown that one has to go beyond
the Gouterman model in order to explain all of the features
of the porphine and chlorophyll spectra, for example, also
the so-called N states. Among the traditional density func-
tionals, BP86 and B3LYP have been reported as an improve-
ment to the Gouterman model, but it has been recently
shown15 that only the spectra calculated with the computa-
tionally demanding CASPT2 method and the recent long-
range corrected density functional, that is, CAM-B3LYP, are
qualitatively consistent with experiments and support the
Gouterman model. The N states, arising from the excitations
from orbitals that are localized on two of the pyrrole rings
only instead of the whole porphine, have been shown to have
CT character. Hence, they respond to an external electric
field applied along the porphine plane.15 The N bands were
proven to be significant in porphyrin spectroscopy, but the
traditional density functionals underestimate the energies of
the N bands clearly. Therefore, it has been concluded that
in the TDDFT frame the CAM-B3LYP functional is manda-
tory for reliable theoretical investigations of the porphine
absorption spectra.15 It can be speculated whether the better
performance of CAM-B3LYP compared to the traditional
functionals is only due to the larger amount of the HF
exchange or because of the range separation which improves

the asymptotic behavior of the exchange potential of the
functional. Therefore, we have studied the performance of
the BH&HLYP functional, which does not contain the range
separation, in calculating the optical absorption spectrum of
porphine.

Table 4 summarizes the energies of the Qx, Qy, Bx, and By

bands of porphine calculated by using the TDDFT/BH&HLYP
and CC2 methods with the SV(P) and TZVP basis sets. In
addition, the energies calculated using CC2/SVP45 and
TDDFT/CAM-B3LYP/6-31G*15 are listed for comparison
along with the experimental46 values. The assignments of
the bands were verified by applying a static external electric
field of 2 × 109 V/m in the porphine plane, directed along
the x and y axes, see Figure 1a. The states shown in Table
4 were not affected by the external field and can thus be
confirmed as the Qx (2.27 eV), Qy (2.45 eV), Bx (3.62 eV),
and By (3.76 eV) bands. In contrast, the states lying above
the B bands responded to the external stimulation and are
thus assigned to the N states. These non-Gouterman states
contain mainly excitations from orbitals localized on two of
the pyrrole rings only (from HOMO-2 and HOMO-3 to
LUMO and LUMO+1).

In agreement with the Gouterman four-orbital model,
TDDFT combined with BH&HLYP includes only the
HOMO-1, HOMO, LUMO, and LUMO+1 orbitals in the
transitions forming the first four excitation bands. Addition-
ally, the energies of the Q and B bands calculated with
BH&HLYP are almost identical to those calculated by using
the CAM-B3LYP functional.15 The BH&HLYP functional
combined with the SV(P) basis set overestimates the ex-
perimental46 energies of the Q and B bands by 0.43 eV at
most, which is slightly less than the 0.5 eV reported in a
study of the bacteriochlorophyll b.23 The BH&HLYP/SV(P)
yields the lowest two N states at 3.97 and 4.33 eV, that is,
at slightly lower energies than CAM-B3LYP (∼4.3 and 4.5
eV). Compared to the results obtained with the SV(P) basis
set, the use of the TZVP basis set with BH&HLYP decreases
the energies of the Q states by 0.02 eV and those of the Bx

and By states by 0.03 and 0.07 eV, respectively. Our findings
confirm that, although the BH&HLYP functional overesti-
mates the energies of the Q and B bands slightly, the
spectrum is qualitatively consistent with the experiments and
is in agreement with the results obtained by CAM-B3LYP
and CASPT2. Therefore, we conclude that BH&HLYP is
also suitable for investigating the properties of porphine
derivatives.

Table 4. Energies E (eV) and Oscillator Strengths f of the Q and B Bands of Porphine Calculated with the TDDFT/
BH&HLYP, TDDFT/CAM-B3LYP, and CC2 Methodsa

Qx Qy Bx By

E f E f E f E f

BH&HLYP/SV(P) 2.27 0.002 2.45 0.002 3.62 0.877 3.76 1.254
BH&HLYP/TZVP 2.25 0.003 2.43 0.003 3.59 0.939 3.69 1.247
CC2/SV(P) 2.30 0.001 2.70 0.003 3.56 0.982 3.65 1.200
CC2/TZVP 2.28 2.67 3.49 3.56
CC2/SVPb 2.32 2.71 3.57 3.66
CAM-B3LYP/6-31G*c 2.2 2.4 3.5 3.6
experimentald 1.98 0.02 2.42 0.07 3.33 1.15 3.33

a Experimental values are shown for comparison. b Obtained from ref 45. c Adopted from ref 15. d Obtained from ref 46.
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The energies of the Q and B bands calculated by using
the CC2 method with the SV(P) basis set are equal to the
ones reported by Parac and Grimme45 and do not differ much
from the ones calculated with TDDFT/BH&HLYP/SV(P).
Additionally, the two methods yield very similar oscillator
strengths for these states. The CC2/SV(P) yields the Qx and
Qy (2.30 and 2.70 eV) bands at slightly higher energies than
TDDFT/BH&HLYP/SV(P), and thus the deviation from the
experimental values increase. On the contrary, the CC2/
SV(P)-calculated Bx and By energies (3.56 and 3.65 eV) are
closer to the experimental values than the ones obtained by
using TDDFT/BH&HLYP/SV(P). The use of the TZVP basis
set instead of SV(P) in the CC2 calculations decreases the
energies of the Qx, Qy, Bx, and By states by 0.02, 0.03, 0.06,
and 0.09 eV, respectively.

Porphine-Quinone Complexes. The vertical singlet ex-
citations of the isolated porphine and quinone were compared
to the excitations of the PQ2.5, PQ3.0, PQ3.5, PQ4.0, PQ4.5, and
PQ5.0 complexes. The simulated absorption spectrum ob-
tained from the TDDFT/BH&HLYP/SV(P) calculations and
the corresponding vertical excitations of PQ2.5, PQ3.0 and
PQ3.5 are presented in Figure 4a, b, and c, respectively.
Except for an additional band, the spectrum of PQ3.5 is in
principle a superposition of the spectra of the isolated
porphine and quinone (not shown). The simulated spectra
of the PQ4.0, PQ4.5, and PQ5.0 complexes are almost identical
with that of PQ3.5, and the assigning of the bands is
straightforward. The increasing interaction between porphine
and quinone changes the appearance of the spectra slightly
in the case of PQ3.0. Moreover, in the case of PQ2.5, the
absorption bands are clearly broader and the intensities of
the B bands are smaller, whereas the CT band is more intense
than in the spectra of the PQ complexes with longer
intermolecular distances. However, in both cases, the iden-
tification of the Q, B, and CT states is clear. The use of the
TZVP basis set instead of SV(P) affects the energies of the
Q, B, and CT bands only very little, and thus the SV(P) basis
set is used in the TDDFT calculations of the PQ complexes
throughout the rest of this study.

The low-energy excitations at 2.25 eV (HOMOf LUMO+1
and HOMO-1 f LUMO) and 2.42 eV (HOMO-1 f
LUMO+1 and HOMO f LUMO) in the spectrum of PQ3.5

are identified as the Qx and Qy bands of porphine, respectively.
The excitations with high oscillator strengths at 3.59 eV
(HOMO-1f LUMO+1 and HOMOf LUMO+2) and 3.67
eV (HOMO f LUMO+1 and HOMO-1 f LUMO+2) are
identified as the Soret band (Bx and By, respectively) of
porphine. The lowest states, which are localized on quinone,
are found at 3.19, 3.47, and 4.00 eV. All excitations between
4.5 and 5 eV are localized porphine states. The band arising
from two excitations having energies of 2.83 (HOMO f
LUMO and HOMO f LUMO+2) and 2.90 eV (HOMO-1
f LUMO+2 and HOMO-1f LUMO) is not present in the
superposition of the simulated spectra of porphine and quinone
and can thus be assigned to neither porphine nor quinone. The
band is a consequence of the interaction between porphine and
quinone and is identified as a porphine-to-quinone CT band.

3.4. Electron Transfer in Porphine-Quinone Systems.
Recent theoretical studies of the photoinduced ET in
zincporphyrin-quinone and in reduced chlorin-quinone
systems have shown evidence that conical intersections (CIs)
are involved in the underlying mechanism of this process.5,6,8

The CIs are regions of coordinate space where two potential
energy surfaces meet with a certain topology. Although
between two states of the same multiplicity an infinite
number of CI points form a crossing seam, the efficient
transition from one state to the other occurs usually at the
lowest CI. Thus the lowest minimum energy crossing point
is of special interest and will constitute a key element in
our investigation of the electric-field-mediated ET between
porphine and quinone.8

In contrast to the zincporphyrin-quinone dyads, the
fluorescence lifetime of the Q state of the porphine-quinone
dyads2 in nonpolar solvents is comparable to that of an
unperturbed porphine, thus indicating that there is no ET
from porphine to quinone. This would be evidenced by the

Figure 4. Simulated absorption spectra and the assignments
of the Q, B, and CT bands of the PQ complexes with
intermolecular distances of (a) 2.5 Å, (b) 3.0 Å, and (c) 3.5 Å
calculated without an external electric field at the BH&HLYP/
SV(P) level of theory.
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absence of a CI between the potential energy surfaces of
the locally excited Q state and that of the CT state. Polar
solvents decrease the fluorescence lifetime of porphine-
quinone dyads significantly, which indicates that ET from
porphine to quinone takes place in polar solvents2 and a CI
exists between the excited states. Thus, the question that
arises is whether an external electric field can induce an ET
between porphyrin and quinone in nonpolar solvents, leading
to the crossing of the potential energy surfaces of the locally
excited porphine states and the lowest CT state.

Without the External Electric Field. The PECs of the
ground state; Qx, Qy, Bx, By states; and the energetically lowest
CT state were calculated as a function of the intermolecular
distance RPQ of the PQ complex with the TDDFT/BH&HLYP
and CC2 methods by applying the SV(P) and TZVP basis sets.
The use of the TZVP basis set instead of SV(P) does not affect
the energies of the PECs calculated with TDDFT/BH&HLYP.
However, if the SV(P) basis set is used with CC2, the lowest
CT state crosses the Bx state at RPQ ) 5.0 Å, but if TZVP is
used instead the CT state remains below the B states at the
whole RPQ range studied. Hence, the SV(P) basis set can be
used in the TDDFT calculations, but in the CC2 calculations
the larger TZVP is needed. The PECs calculated at the (a)
TDDFT/BH&HLYP/SV(P) and (b) CC2/TZVP levels of
theory are presented in Figure 5. The PEC of the lowest CT
state calculated with TDDFT/BH&HLYP does not cross
either the Q or the B state (Figure 5a), thus indicating that
no ET would occur when porphine is locally excited to any
of these states. The CC2 calculations yield a similar picture
for the Q state (Figure 5b), although the excited state energies
are higher than the ones obtained with TDDFT/BH&HLYP.
The CC2 method does not predict a crossing between the

CT and B states in the studied RPQ range, either. However,
the CT state lies so close to the B states at 5.0 Å that the
states could cross at slightly larger distances. Thus, ET from
porphine to quinone could be possible, if the B states were
excited, which could be a possible process, although this has
not been investigated experimentally.

The Effect of the External Electric Field. The PECs of
the energetically lowest CT state calculated under the
influence of an external electric field of +4, +2, +1, 0, -1,
-2, and -4 × 109 V/m are illustrated in Figure 5a and b as
thin dashed lines. The curves of the excited states are plotted
relative to the ground state curve calculated without the
presence of an external field to allow an easier comparison.

Regardless of the direction and the strength, the external
electric field does not practically affect the excitation energies
of the Q and B states. Therefore, the potential energy curves
of these states calculated in the presence of the external field
are almost identical to the ones shown in Figure 5 as thick
lines, which represent the PEC in the absence of the external
field, and have been thus omitted for clarity.

Unlike the energies of the Q and B bands, the energy of
the lowest CT band is clearly affected by the external
stimulation. A positive orientation of the electric field shifts
the energies of the CT state upward toward higher values,
while a negative orientation shifts them down. Additionally,
the stabilization or destabilization of the CT state is different
at different intermolecular distances and depends also on the
strength of the electric field. As a consequence, the PECs of
CT can be influenced in such a way that they span a range
of approximately 3 eV and have different slopes, thus
intersecting the PEC of either the Q or the B states (see

Figure 5. Potential energy curves (PECs) of the ground state (GS); the Qx, Qy, Bx, and By states (thick solid lines); and the
energetically lowest CT state (thin solid line) as a function of the intermolecular distance of the PQ complex calculated without
an external electric field. Thin dashed lines represent the PECs of the lowest CT state calculated under the influence of an
external electric field of +4, +2, +1, -1, -2, and -4 × 109 V/m. The PECs of the Q and B states calculated in the presence
of an external field were almost identical to the ones obtained in a zero field (thick solid lines) and have thus been omitted for
clarity. The curves of the excited states are plotted relative to the GS curve calculated without the presence of an external field
to allow easier comparison. The curves have been calculated at the (a) TDDFT/BH&HLYP/SV(P) and (b) CC2/TZVP levels of
theory.
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Figure 5) at different intermolecular distances. This allows
tuning of the electron transfer process as described below.

According to the TDDFT results, with the presence of an
external field of +2 × 109 V/m, the CT state crosses the Bx

and By states at an RPQ of ca. 4.3 and 4.7 Å, respectively.
This means that under the influence of the positive field the
CT state would closely resemble the ground state equilibrium
structure, which would favor a fast electron transfer from
porphine to quinone. A further increase of the electric field
strength to +4 × 109 V/m leads to the crossing of the CT
and B states already in the inverted region at qn RPQ of
around 3.2-3.3 Å. Negative fields shift the PECs of the CT
state further away from the B states and thus clearly hinders
the ET if B states are excited. However, the CT state crosses
the Qy state already with the weakest studied negative field
at RPQ ≈ 5.0 Å. The negative field could thus ease the
forming of the CT state from the locally excited Q state.
There is, however, a threshold after which the increasing of
the negative field shifts the crossing of the Q and CT states
to the inverted region. When stronger negative fields are
applied, the CT crosses both Q states already at 2.5 < RPQ <
3.0 Å, and the CT state becomes the lowest excited state.
Although the general qualitative picture of the influence of
the electric field on the CT formation is preserved also by
the CC2 calculations, several quantitative conclusions are
different.

The external electric field affects the energies of the Q
and B states of the PQ complexes calculated by using CC2
(Figure 5b) by about the same amount as the energies
calculated by using TDDFT/BH&HLYP. As discussed
above, the CC2 calculations reveal that the lowest CT state
lies so close to the B states at 5.0 Å that it is likely that the
states cross at slightly large distances, when no external field
is applied. This means that, if the B states are photoexcited
in the zero field, the ET from porphine to quinone could be
possible. According to the CC2 calculations, the smallest
positive field shifts the crossing of the B states and the CT
state to ∼3.8 Å. An increase of the field to +2 × 109 V/m
shifts the PEC of the CT state above the B states already at
2.5 Å, and no crossing occurs. In the RPQ of 4.5 and 5.0 Å,
the CT state calculated under the influence of +4 × 109 V/m
lies so much above the B states that the calculation of the
CT state energies is not feasible. Thus, the corresponding
PEC is totally omitted. However, this PEC is of less
importance since it cannot cross the B states. The application
of a negative electric field of -1 × 109 V/m decreases the
CT state energy such that it lies clearly between the Q and
B states, and no state crossings are observed at the
intermolecular distances under consideration. When the
negative field is increased to -2 × 109 V/m, the energy of
the CT state decreases such that the CT state crosses the Qy

state at ca. 3.3 Å. Thus, CT formation from the Q states
becomes possible. When the negative field is increased to
-4 × 109 V/m, the CT state goes below the Q states already
at 2.5 Å, and thus ET is not possible.

Comparison of the Methods. A comparison of our
porphine-quinone calculations (TDDFT/BH&HLYP and
CC2) with the CIS5 and the combined TDDFT/BLYP and
∆DFT/CIS6 calculations of the zincporphyrin-quinone

system reveals differences between the two systems and
between the performances of the methods. To begin with
the locally excited porphine states, the BLYP yields the
lowest locally excited quinone state in the zincporphyrin-qui-
none dyad clearly below the Q states. In our calculations,
the lowest local quinone state is clearly above the Q states
with an energy almost identical to the energy of the lowest
excited state of the isolated quinone. This indicates, as
expected, that the interaction is clearly stronger between
quinone and zincporphyrin than between quinone and por-
phine. Moreover, the CIS calculations show that the interac-
tion with quinone breaks the degeneracy of the B states of
zincporphyrin, whereas in our CC2 calculations the perturba-
tion of quinone actually increases the degeneracy of the B
states of porphine.

Our CC2-calculated PEC of the lowest CT state of the
porphine-quinone complex is rather similar to the one that
has been calculated for zincporphyrin-quinone by using
CIS.5 Although the B states calculated with CC2 lie lower
in energy than the states predicted by CIS, the CT state lies
in both cases just below the B states at 5.0 Å, and it is likely
that also in the case of the porphine-quinone complex the
states would cross at about 5.5 Å, just like in CIS calculations
of the zincporphyrin-quinone complex. A comparison of
the CIS calculations with the ∆DFT/CIS calculations carried
out by Dreuw and co-workers6 reveals that the CIS method
overestimates the energies of the CT states of the zincpor-
phyrin-quinone system almost by 2 eVs. However, since
porphine is a weaker electron donor than zincporphyrin, the
CT states of the porphine-quinone system should lie higher
in energy compared to the zincporphyrin-quinone system.
Therefore, we expect that the CC2-calculated PEC of the
CT state of the PQ complex is not much overestimated.

Comparison between the TDDFT/BH&HLYP and CC2
calculations indicates that both methods predict in principle
a similar behavior for the PQ complex under the influence
of the external electric field, and only the intermolecular
distance, in which the locally excited porphine states (Q and
B states) and CT states cross, changes. Considering the quite
flat shape of the PEC of the CT state, it is clear that, despite
the high fraction of the HF exchange (50%), TDDFT/
BH&HLYP underestimates the CT energies at longer
intermolecular distances. It could be that the CAM-B3LYP
functional,47 which has been reported to perform best with
parameters that set the HF exchange to 65% in long
distances, yields some improvement to the PECs of the
lowest CT state. However, currently there is no study in
which the performance of BH&HLYP and CAM-B3LYP is
compared. The CAM-B3LYP functional has been reported
to yield clearly better CT energies than B3LYP,47 but also
BH&HLYP has been reported to improve the CT calculations
as compared to B3LYP.22 On the basis of the porphine
spectra calculated with BH&HLYP in this study and with
CAM-B3LYP in another study,15 we expect that the PECs
of the Q and B states obtained with these two functionals
would be very similar.

Regardless of the method (TDDFT/BH&HLYP or CC2),
the calculations show that the CT states of the porphine-qui-
none complexes can be controlled by an external field
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without perturbing the local porphine states. Therefore,
an external electric field can be useful in controlling ET
in porphine-quinone systems.

5. Conclusions
The influence of a static external electric field on the order
of magnitude of 109 V/m, corresponding to the magnitude
of an electric field induced by large dipole moments of
peptides, on the ground state electronic structure and the
singlet excited state energies of PQ complexes has been
studied by using DFT, TDDFT, and the CC2. Six different
intermolecular distances between 2.5 and 5.0 Å have been
investigated.

An external electric field affects the energies of the orbitals
localized mostly on quinone, whereas the orbitals localized
entirely on porphine are hardly affected. Moreover, the effect
of the external field on the orbital energies increases when
the intermolecular distance increases.

In the current study, we have also shown that BH&HLYP
yields a qualitatively correct porphine spectrum in which the
N states lie clearly above the Q and B bands. Moreover, the
calculated spectrum is almost identical to the one obtained
previously by using CAM-B3LYP.

The potential energy curves of the Q and B states and the
lowest CT state were calculated as a function of the intermo-
lecular distance of the PQ complex both in the absence and in
the presence of an external electric field. Both field directions,
that is, from porphine to quinone and from quinone to porphine,
were considered. Regardless of the direction or the strength,
the external electric field affects the energies of the Q and B
states only slightly. On the contrary, the energy of the lowest
CT state depends both on the strength and the direction of
the external field as well as on the intermolecular distance.
Both methods (TDDFT/BH&HLYP and CC2) show that,
depending on the strength and direction, the external electric
field is able to either induce or hinder crossing of the locally
excited porphine states (Q and B) and the lowest CT state.
Moreover, crossing can be induced to occur at geometries
close to those of the ground state, which would facilitate
fast electron transfer. Thus, we conclude that the external
electric field can be used to control ET in porphine-quinone
systems.
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(36) Bauernscmitt, R.; Häser, M.; Treutler, O.; Ahlrichs, R. Chem.
Phys. Lett. 1997, 264, 573–578.

(37) Furche, F.; Ahlrichs, R. J. Chem. Phys. 2002, 117, 7433–
7447. Furche, F.; Ahlrichs, R. J. Chem. Phys. 2004, 121,
12772–12773.

(38) Christiansen, O.; Koch, H.; Jørgensen, P. Chem. Phys. Lett.
1995, 243, 409–418.

(39) Hättig, C.; Weigend, F. J. Chem. Phys. 2000, 113, 5154–
5161.

(40) Hättig, C.; Hellweg, A.; Köhn, A. Phys. Chem. Chem. Phys.
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Abstract: Recent experimental studies of trans-formic acid (FA) in solid para-hydrogen (pH2)
highlighted the importance of vibrationally averaged dipole moments for the interpretation of
the high-resolution infrared (IR) spectra, in particular for the CdO stretch (ν3) mode. In this
report, dipole moments for the ν3 ground (v ) 0) and excited (v ) 1, 2, 3, and 4) anharmonic
vibrational states in trans-FA are investigated using two different approaches: a single mode
approximation, where the vibrational states are obtained from the solution of the one-dimensional
Schrödinger equation for the harmonic normal coordinate, and a limited vibrational configuration
interaction (VCI) approximation. Density functional theory (B3LYP, BPW91) and correlated ab
initio (MP2 and CCSD(T)) electronic methods were employed with a number of double- and
triple-� and correlation consistent basis sets. Both single mode and VCI approaches show
comparable agreement with experimental data, which is more dependent on the level of theory
used. In particular, the BPW91/cc-pVDZ level appears to perform remarkably well. Effects of
solvation of FA in solid state Ar and pH2 matrices were simulated at the BPW91/cc-pVDZ level
using a conductor-like polarized continuum model (CPCM). The Ar and pH2 solid-state matrices
cause quite a substantial increase in the FA dipole moments. Compared to gas-phase
calculations, the CPCM model for pH2 better reproduces the experimental FA spectral shifts
caused by interaction with traces of ortho-hydrogen (oH2) species in solid pH2. The validity of
the single mode approach is tested against the multidimensional VCI results, suggesting that
the isolated (noninteracting) mode approximation is valid up to the third vibrationally excited
state (v ) 3). Finally, the contribution of the ground anharmonic vibrational states of the remaining
modes to the resulting ν3 single mode dipole moments is examined and discussed.

1. Introduction

Electrostatic forces are responsible for the structure of
molecules and complexes, their spectroscopic detection, and
intermolecular interactions.1,2 Since an overwhelming major-
ity of molecules are polar, electric dipole moments dominate

in interactions with electric fields and form a basis for the
most fundamental models of the condensed phases.3

Solute-solvent electrostatic interactions can have profound
effects on the properties of studied molecules, including their
spectroscopic signatures,4 which provide insight into the
properties of both the studied solute species and the sur-
rounding solvent.5

Formic acid (FA) is a prototypical, highly polar molecule,
which has been subject to numerous vibrational spectroscopic
investigations in the gas phase,6-10 solution, and several low-
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temperature matrix isolation host materials.11-18 In our recent
study of trans-FA in low temperature para-H2 (pH2) matrices
using high-resolution FTIR spectroscopy,18 we observed
multiple closely spaced peaks for the CdO stretching
fundamental, commonly denoted as ν3,

10 as well as for the
2ν3 overtone band. We proposed that these multiplets arise
from preferential clustering of the quadrupolar ortho-H2 (oH2)
species, which is always present in ppm concentrations in
the pH2 matrix, to the FA dopant molecule. The electrostatic
interaction between the oH2 quadrupole moment and the
dipole moments of FA in the ground and excited ν3

vibrational states causes the splitting of the FA ν3 absorption.

Quantitative explanation of these spectral features requires
the value of the molecular dipole moment of FA in the ν3

ground and vibrationally excited states. While for the ground
and the first ν3 excited state the dipole moments have been
experimentally measured,8 they have not been reported for
higher excited states. Furthermore, no experimental dipole
moment data are available for FA in any solid matrix
environment. Since the solvent, or matrix, can have pro-
nounced effects on the vibrational frequencies and intensities,
especially those associated with polar bonds such as
CdO,19-24 it is likely that the permanent dipole moments
will also be sensitive to the solvent or matrix environment.
In this report, we present theoretical calculations of the
vibrationally averaged dipole moments for the ground and
excited states of the ν3 vibrational mode of FA in the gas
phase, as well as in an Ar and pH2 matrix environment,
treated by an implicit polarized continuum model.

Theoretical determination of the vibrationally averaged
dipole moments necessitates accurate modeling of the
anharmonic vibrational states. Unfortunately, no universal
approach exists for obtaining vibrational properties of sizable
molecules beyond the harmonic limit.25 In this study, two
different approaches are explored. The first is based on a
one-dimensional (1D) anharmonic vibrational energy and
dipole moment function calculated for the ν3 normal mode
of the FA. The normal mode coordinate is treated as
independent from all other vibrational degrees of freedom.
This approach is analogous to the simple local mode model,26

which has proven very useful in the investigations of overtone
vibrations involving predominantly X-H stretching,27,28

including the O-H stretch of FA.9,29,30 Since our treatment
is based on the normal mode, we use the term “single mode
method” to distinguish this approach from the conceptually
different local mode theory of molecular vibrations.31-33 The
second approach is a multidimensional limited vibrational
configuration interaction (VCI) methodology,25,34 which
includes all vibrational coordinates. A third approach, the
multidimensional degeneration-corrected second-order per-
turbation theory,25 was also tested with very similar results
to those obtained by VCI, as observed previously for other
vibrationally averaged properties.35

2. Computational Methods

2.1. Single Mode Model. In the single mode picture26

the vibrational states (wave functions) are found as solutions
to the 1D Schrödinger equation:

where m is the reduced mass and V(R) is the potential
energy as a function of the ν3 normal coordinate R. We
use the symbol “R” for the non-mass-weighted normal
coordinate, to distinguish it from the mass-weighted
normal coordinates (Q) used in the next section. R and m
were obtained from harmonic vibrational calculations
using the Gaussian 98/03 quantum chemistry package.36

Density functional theory (DFT, B3LYP, and BPW91
functionals) and correlated ab initio [MP2 and CCSD(T)]
methods were employed along with a number of basis sets
(see Results). The effects of the solid-state Ar and pH2

matrices were simulated using the conductor polarized
continuum model (CPCM)37,38 with the dielectric constant
ε ) 1.43 for Ar and ε ) 1.294 for pH2.

39 Additional
CPCM parameters (default in Gaussian 03) were the united
atom (UA0) topological model for the solute radii (2.125,
1.75, and 1.85 Å radii for the CH, O and OH groups,
respectively), the solvent radius of 1.875 Å, and the
average tesserae area of 0.2 Å2.

At each level of theory, the FA geometry was fully
optimized, followed by a harmonic vibrational frequency
calculation. The optimized geometries are listed and
compared to available experimental data in Supporting
Information, Table S1. Energies V(R) and dipole moments
µ(R) were computed for a series of 49 structures [25
structures for CCSD(T)/aug-cc-pVTZ level] generated at
discrete steps along the ν3 normal mode displacement R.
The points were quadratically distributed from -0.35 to
+1.0 Å with respect to the energy minimum to ensure
adequate sampling of the potential near its maximum
curvature. Gaussian was used for all calculations except
CCSD(T), for which the population analysis is not
implemented and the energy surfaces and dipole moments
were calculated using ACESII.40

The Schrödinger equation (eq 2) for the resulting potential
energy profile was solved numerically using the grid
variational method41,42 with MATLAB (Mathworks Inc.
Mattick, MA) codes written in-house. The wave function
was expanded as a linear combination of coordinate grid
points |ri〉:

Substituting eq 2 into 3 and applying the standard
variational principle with respect to ψ(ri) subject to the
normalization constraint lead to the following system of
linear equations

where

[- p2

2m
d2

dR2
+ V(R)]ψ(R) ) Eψ(R) (1)

|ψ(R)〉 ) ∑
i)1

Ngrid

ψ(ri)|ri〉 (2)

∑
j)1

Ngrid

(Hij - Eδij)ψ(rj) ) 0 (3)

Hij ) 〈ri| -
p2

2m
d2

dr2
+ V(r)|rj〉 (4)
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The grid consisted of 401 points from req - 0.3 Å to req

+ 0.5 Å. A fifth-order finite difference method was used for
the second derivative:

The potential energy is diagonal, i.e. 〈ri|V(ri)|rj〉 ) V(ri)δij;
values of V(ri) at the individual grid points were interpolated
from 40 single-point Gaussian energies (above). The five
lowest eigenvalues and eigenvectors of the Hamiltonian
matrix (eq 5), corresponding to the vibrational states V ) 0,
1, 2, 3 and 4, were calculated using iterative sparse matrix
methods as implemented in MATLAB. Vibrationally aver-
aged dipole moments were obtained as

The dipole moments at the grid points µ(ri) were again
interpolated from the values obtained from the quantum
mechanical calculations.

2.2. Multidimensional Anharmonic Calculations. All
vibrational degrees of freedom were considered in the Taylor
expansion of the potential in the (mass weighted) normal
mode coordinates Qi up to the fourth order:

where all cubic and semidiagonal normal mode quartic
constants (i.e., with two and more identical indices, such as
dijkk) were considered, obtainable by back and forth normal-
mode numerical differentiation of harmonic force fields; ωi

are the harmonic frequencies and M ) 3 × number of atoms
- 6. The harmonic force fields were obtained from Gauss-
ian36 at four levels of theory: B3LYP/6-311++G(d,p),
BPW91/cc-pVDZ, MP2/6-311++G(d,p), and CCSD(T)/6-
311++G(d,p). As for the single mode method, Ar and pH2

matrices were included at BPW91/cc-pVDZ level by CPCM
solvent model, with the same parameters as detailed above.
The program S443,44 was used for the anharmonic computa-
tions, enabling vibrational configuration interaction (VCI)
within the harmonic oscillator basis functions. To limit the
size of the VCI Hamiltonian, the harmonic basis was
restricted to the ground and first five excited state wave
functions. The effects of the size of the harmonic basis
including up to seven excited states were tested for the
BPW91/cc-pVDZ level calculations (Supporting Information,
Table S3).

The dipole moment µV was calculated from the VCI wave
function ψV for each selected state V as a quantum average

where the molecular dipole moment µ was expanded as

where � ) {x, y, z} and P are the first and D the second
normal mode dipole derivatives. The tensor P was obtained
from the Cartesian dipole derivatives Π (atomic polar
tensors) as

where S is the normal mode-Cartesian transformation
matrix. The second derivatives D were obtained in normal
modes from P, using a two-step differentiation formula,

with ∆ ) 0.0022 au for the CCSD(T) computation; however,
the first (P�,i) and diagonal second (D�,ij with i ) j) dipole
derivatives were obtained from a two-step numerical dif-
ferentiation of dipoles at CCD/6-311++G(d,p) level; the off-
diagonal second dipole derivatives (D�,ij with i * j) were
neglected in this case.

3. Results

3.1. Single Mode Approximation. A typical one-
dimensional (1D) potential and dipole moment function for
the ν3 normal mode (calculated at BPW91/cc-pVDZ level)
are shown in Figure 1a. Potential energy and dipole moment
functions for additional levels of theory are shown in the
Supporting Information (Figure S1). The corresponding
solutions of the 1-D Schrödinger equation (eq 1) for V )
0-4 are shown in Figure 1b. From these solutions, the
vibrational parameters, frequencies, and spectral intensities,
as well as the vibrationally averaged dipole moments, were
obtained as detailed in the Computational Methods.

The computed vibrationally averaged dipole moments,
along with the equilibrium structure values and available
experimental data, are shown in Table 1. To highlight the
resulting trends, the vibrationally averaged dipole moments
are also plotted in Figure 2. All calculations predict the dipole
moment to increase with the vibrational excitation, in
agreement with the available experimental data for the
ground and the first excited states. In all cases, the ground
vibrational state dipole moment is greater than that for the
minimum structure. The DFT methods generally overestimate
the dipole moments, in particular with the augmented
correlation consistent basis sets. The exception is the ground-
state dipole computed with BPW91/cc-pVDZ, which is
slightly lower (by ∼0.002 D) than the experimental value
and in the best overall agreement. The first vibrationally
excited state dipole moments are without exception computed
too high and generally with larger error than the ground state
ones. The closest to experiment is again BPW91/cc-pVDZ,
yielding a ∼0.012 D greater value. The post-HF methods
uniformly predict lower dipole moments than DFT with the
same basis sets, but similar trends with respect to the basis

〈ri|
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dr2
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set size and type are observed. Namely, diffuse basis
functions generally increase the computed dipole moments
and augmented correlation consistent basis sets yield greater
dipole values than 6-311++G(d,p). As a consequence, MP2
and CCSD(T) with the smaller basis sets severely underes-
timate the experimental dipole moments; however, the
agreement improves with larger basis sets, in contrast to DFT.
In particular, the CCSD(T)/aug-cc-pVTZ ground vibrational
state dipole moment is in very good agreement with
experiment (∼0.005 D lower).

CPCM calculations for Ar and pH2 matrices with BPW91/
cc-pVDZ show a significant increase in the dipole moments
with respect to the gas phase. The ground-state dipole
moment in Ar is calculated to increase by ∼0.16 D and in

pH2 matrix by ∼0.11 D. A similar relative increase with
respect to the gas phase is computed for all vibrationally
excited states, the differences getting slightly smaller for
higher V. These large matrix effects may seem somewhat
surprising, given the rather subtle changes in FA geometry
and vibrational frequencies (Supporting Information, Tables
S1 and S6), but they are consistent with the increase in the
spectral intensity (Supporting Information, Table S7).

As apparent from Figure 2, despite a wide variation in
the dipole moments computed at various levels of theory,
there is a systematic increase in the dipole moment with the
vibrational state. It is therefore interesting to explore the
changes in the computed excited state (V ) 1, 2, 3, and 4)
dipole moments with respect to the ground state (V ) 0) as
shown in Figure 3. The computed changes are systematically
greater than the only available experimental reference (for
V ) 1), but more severe overestimation can be expected for
the higher excited states. While the difference dipole
moments are more consistent among all the methods, similar
trends as those observed for the absolute values are still
apparent: methods that gave higher absolute dipole moments
also tend to give higher increments in the vibrationally
excited states (Table 1, Figure 2). However, comparison of
the dipole moment differences more clearly highlights the
effects of basis sets. As evident from Figure 3, the same
basis set yields relatively similar dipole moment changes
irrespective of the method, and the greatest values are
generally obtained with the largest (triple-�) augmented basis
sets.

3.2. Multidimensional Anharmonic Calculations. The
vibrationally averaged dipole moments obtained from the
VCI anharmonic calculations for the ground and excited ν3

states are summarized in Table 2. Generally, the VCI dipole
moments are lower than those obtained in the single mode
approximation. The difference is smallest for the ground
vibrational state, about 0.05 D for all methods, but increases
in the excited states. The V ) 0 dipole moments are computed
lower than those for the minimum energy structure, by ∼0.02
D (DFT methods) and ∼0.03 D (post-HF methods), in
contrast to the single mode approximation, which systemati-
cally predicted greater vibrationally averaged dipole moments
compared to the minimum energy structure. The most
dramatic difference is predicted for the fourth (V ) 4) excited
state, where the VCI dipole moments are smaller, by
approximately 0.25 D, than those obtained in the single mode
approximation.

These differences are also reflected in trends with respect
to the ν3 vibrational state, as can be seen from Figure 4.
Both DFT methods predict the dipole moment to increase
up to V ) 3, but the changes are significantly smaller than
in the single mode approximation (Figures 2 and 3). The
MP2 and CCSD(T) on the other hand yield a slightly smaller
dipole moment for V ) 2 than that for V ) 1. While the
gas-phase experimental dipole moment for V ) 2 is not
available, from the oH2-induced frequency shifts in pH2

matrix experiments18 (also see below) it is evident that the
dipole moment increases compared to the V ) 1 (and V )
0) states. These qualitatively incorrect MP2 and CCSD(T)
results may be explained by more anharmonic energy

Figure 1. One-dimensional single mode representation of the
ν3 vibration in trans-FA. (a) The ν3 normal mode of trans-FA.
The molecule is oriented in the x-y plane, with axes parallel
to the principal axes of the moment of inertia. The coordinate
origin is at the center of nuclear charge. (b) Potential energy
(black circles), the dipole moment components (x, green
triangles; y, blue triangles), and magnitude (red squares)
calculated at BPW91/cc-pVDZ level as functions of the ν3

normal mode coordinate (R). (c) Solutions of the 1D Schrö-
dinger equation for the potential energy function from part a
shown as black circles. The dashed red line is the harmonic
potential.
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surfaces resulting from the wave function methods, compared
to the DFT.24,45 The limited VCI based on the post-HF
calculations may therefore not be adequate even for the
vibrational quantum numbers as low as V ) 2. From V ) 2
to V ) 3 all methods compute a significant increase, followed
by a rather dramatic decrease of the dipole moment from V
) 3 to V ) 4 vibrational states. These nonuniform trends,
contrasting the fairly systematic single mode results, are
particularly apparent from the difference dipole moment
values (with respect to V ) 0) in Figure 4b.

In comparison with experiment, the B3LYP/6-311++G(d,p)
calculated dipole moments are too large, while those obtained
with the other methods, in particular the post-HF, are too
small (Figure 4a). The BPW91/cc-pVDZ values fall in
between and, while lower than experiment, are again in the
closest agreement. These results are consistent with the single
mode approximation at the same levels of theory. Comparing
the relative values of the first excited vibrational state (V )
1) dipole moments with respect to V ) 0 (Figure 4b), the
B3LYP/6-311++G(d,p) calculation almost exactly repro-

Table 1. Vibrationally Averaged Dipole Moments (in D) for the ν3 (CdO Stretch) Vibrational States in trans-FA in Single
Mode Approximation

level equilibrium v ) 0 v ) 1 v ) 2 v ) 3 v ) 4

B3LYP/6-31G(d,p) 1.4426 1.4601 1.4958 1.5318 1.5681 1.6047
B3LYP/6-31+G(d,p) 1.5315 1.5589 1.6132 1.6671 1.7207 1.7741
B3LYP/6-311++G(d,p) 1.4988 1.5245 1.5792 1.6337 1.6879 1.7419
B3LYP/cc-pVDZ 1.4243 1.4459 1.4894 1.5325 1.5753 1.6178
B3LYP/cc-pVTZ 1.5288 1.5755 1.6275 1.6793 1.7308 1.7821
B3LYP/aug-cc-pVDZ 1.5106 1.5346 1.5825 1.6302 1.6775 1.7245
B3LYP/aug-cc-pVTZ 1.5463 1.5710 1.6240 1.6768 1.7294 1.7817
BPW91/6-31G(d,p) 1.4181 1.4385 1.4797 1.5204 1.5609 1.6010
BPW91/6-31+G(d,p) 1.4867 1.5124 1.5640 1.6152 1.6661 1.7168
BPW91/6-311++G(d,p) 1.4592 1.4854 1.5383 1.5908 1.6430 1.6950
BPW91/cc-pVDZ 1.4026 1.4231 1.4645 1.5055 1.5461 1.5864
BPW91/cc-pVTZ 1.4911 1.5273 1.5771 1.6266 1.6759 1.7249
BPW91/aug-cc-pVDZ 1.4728 1.4957 1.5418 1.5875 1.6328 1.6779
BPW91/aug-cc-pVTZ 1.4984 1.5235 1.5742 1.6244 1.6744 1.7241
MP2/6-311++G(d,p) 1.3222 1.3440 1.3888 1.4329 1.4765 1.5197
MP2/cc-pVDZ 1.2763 1.2928 1.3266 1.3598 1.3923 1.4243
MP2/cc-pVTZ 1.3866 1.4059 1.4447 1.4828 1.5204 1.5574
MP2/aug-cc-pVDZ 1.4215 1.4426 1.4859 1.5286 1.5709 1.6129
MP2/aug-cc-pVTZ 1.4329 1.4557 1.4997 1.5433 1.5864 1.6291
CCSD(T)/6-311++G(d,p) 1.3307 1.3508 1.3981 1.4453 1.4921 1.5385
CCSD(T)/aug-cc-pVDZ 1.4281 1.4474 1.4938 1.5397 1.5854 1.6301
CCSD(T)/aug-cc-pVTZ 1.4041 1.4201 1.4693 1.5157 1.5632 1.6104
BPW91/cc-pVDZ/CPCM(Ar) 1.5583 1.5802 1.6256 1.6708 1.7156 1.7600
BPW91/cc-pVDZ/CPCM(pH2) 1.5160 1.5348 1.5693 1.6046 1.6404 1.6766
experiment (gas phase)a - 1.4253 1.4512 - - -

a Reference 8.

Figure 2. Dipole moments calculated in single mode ap-
proximation at various levels of theory for ground (v ) 0, black
circles) and excited (v ) 1, red triangles; v ) 2, pink triangles;
v ) 3, green squares; and v ) 4, blue diamonds) ν3 vibrational
states. Experimental values for v ) 0 (black) and v ) 1 (red)
are shown as solid lines.

Figure 3. Difference dipole moments (with respect to v ) 0)
calculated in the single mode approximation at various levels
of theory for excited ν3 vibrational states (v ) 1, black circles;
v ) 2, red triangles; v ) 3, green triangles; and v ) 4, blue
squares) with respect to the ground state. The experimental
value (for v ) 1) is shown as a solid black line.
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duces the experimental difference. The BPW91/cc-pVDZ,
MP2/6-311++G(d,p), and CCSD(T)/6-311++G(d,p) all
underestimate the dipole moment increase. This is again in
contrast with the single mode results, where all the calcula-
tions systematically overestimated the experimental differ-
ences.

In the simulated solid matrices, an increase of ∼0.17 D
in Ar and ∼0.12 D in pH2 with respect to the gas phase is
predicted for all vibrational states. These changes are nearly
identical to the single mode results, only slightly larger, and
again approximately correspond to the changes in the
equilibrium structure dipole moments due to the reaction field
of the matrix. Unlike the single mode calculations, however,
the VCI differences between the gas and matrix phases show
a slight increase, rather than decrease, with the vibrational
quantum number.

3.3. Effects of Residual oH2 Clustering in pH2

Matrices. Finally, we return to the original motivation for
this computational study: modeling the IR spectral frequency
shifts due to the clustering of quadrupolar oH2 to the FA in
pH2 matrix.18 The interaction between the quadrupolar oH2

and FA can be expressed as

where µ1 is the dipole moment of molecule “1” (FA), Θ2

the quadrupole moment of molecule “2” (oH2, 0.194116 au),
the angles are assumed to correspond to the minimum energy
configuration (θ1 ) θ2 ) 
 ) 0), and R ) 3.79 Å, the nearest
neighbor spacing of the pH2 crystal. Note that the minimum
energy configuration refers to the orientation of the electric
moments rather than a particular orientation of the oH2 and
FA molecules: the oH2 quadrupole moment arises from the
J ) 1 state and therefore is inherently averaged over the
J ) 1 rotational wave function.

In the original paper,18 the single mode BPW91/cc-pVDZ
dipole moments computed in the gas phase were used to
estimate the oH2-induced frequency shifts. In the present
study, the matrix effects were included using CPCM solvent
model at a BPW91/cc-pVDZ level, which is computationally
inexpensive and, as shown above, yields perhaps the best
overall agreement with the gas phase as well as Ar and pH2

matrix experimental data. Both single mode and VCI
anharmonic calculations were performed, which allow us to
reexamine the earlier results. Comparison with the experi-

Table 2. VCI Dipole Moments (in D) for the ν3 (CdO stretch) Vibrational States in trans-FA

level equilibrium v ) 0 v ) 1 v ) 2 v ) 3 v ) 4

B3LYP/6-311++G(d,p) 1.4988 1.4791 1.5044 1.5199 1.5488 1.4912
BPW91/cc-pVDZ 1.4026 1.3779 1.3884 1.4059 1.4158 1.3623
MP2/6-311++G(d,p) 1.3222 1.2893 1.2952 1.2915 1.3120 1.2688
CCSD(T)/6-311++G(d,p)a 1.3534 1.3270 1.3588 1.3422 1.3817 1.3139
BPW91/cc-pVDZ/CPCM(Ar) 1.5583 1.5422 1.5579 1.5716 1.5898 1.5306
BPW91/cc-pVDZ/CPCM(pH2) 1.5160 1.4945 1.5103 1.5244 1.5408 1.4776
experiment (gas phase)b - 1.4253 1.4512 - - -

a Molecular dipole moment calculated at the CCD/6-311++G(d,p) level. b Reference 8.

Figure 4. Dipole moments for ν3 vibrational states of trans-FA calculated by VCI at various levels of theory. (a) Absolute dipole
moments for the ground (v ) 0, black circles) and excited (v ) 1, red triangles; v ) 2, pink triangles; v ) 3, green squares; and
v ) 4, blue diamonds) ν3 vibrational states calculated in single mode approximation at various levels of theory. Experimental
values for v ) 0 (black) and v ) 1 (red) are shown as solid lines. (b) Difference dipole moments in excited ν3 vibrational states
(v ) 1, black circles; v ) 2, red triangles; v ) 3, green triangles; and v ) 4, blue squares) with respect to the ground state.
Experimental value (v ) 1) is shown as a solid black line.

Vdq(R, θ1, θ2, 
) )
3µ1Θ2

2R4
[cos θ1(3 cos2 θ2 - 1) +

2 sin θ1 sin θ2 cos θ2 cos 
] (12)
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mentally observed frequency shifts due to oH2 clustering also
provides an additional, albeit indirect, experimental check
of the computed dipole moments.

Interaction potentials for V ) 0, 1, and 2 ν3 vibrational
states (eq 12) and the estimated oH2-induced frequency shifts
are summarized in Table 3. For comparison, the correspond-
ing gas-phase results and experimentally observed frequency
shifts are also included. The gas-phase dipole moments
calculated in the single mode approximation yield frequency
shifts that are considerably higher, while the VCI somewhat
lower, than the experiment. This reflects the differences
between the excited and ground vibrational state dipole
moments computed by the single mode and VCI methods
(Figures 3 and 4b). With the pH2 matrix, approximated by
the CPCM model, the single mode frequency shifts become
smaller, while the VCI ones increase. Both result in better
agreement with the experimental values, despite the quali-
tatively opposite effect of the matrix. This is a consequence
of the subtle differences in the influence of the pH2 reaction
field on the dipole moments in the ground and vibrationally
excited states: the VCI with the CPCM gives slightly steeper
dipole moment dependence on the vibrational excitation than
the corresponding gas-phase calculation, while the opposite
is true for the single mode treatment. Therefore, it appears
that CPCM indeed improves the experimental frequency shift
prediction; however, given the very small magnitude of these
changes and inaccuracies of the computational methods, these
results have to be regarded with caution.

4. Discussion

The vibrationally averaged dipole moments obtained using
two different approximations, the single mode and VCI
anharmonic calculations, reveal some systematic differences.
For example, the dipole moments from the VCI calculations
are consistently lower than the single mode results. The single
mode treatment also uniformly predicts a greater increase
of the dipole moment with vibrational excitation than VCI.
Comparison of the anharmonic frequencies and IR intensities,
presented in the Supporting Information, also shows that the
VCI yields systematically lower fundamental and first
overtone ν3 frequencies and infrared intensities (Supporting
Information, Tables S6-S9). On the other hand, for the
higher overtones the VCI predict higher vibrational frequen-
cies, and a reversal in the relative intensities is also observed
for the third ν3 overtone. The overall agreement with the
available experimental data, including frequencies and IR
absorption intensities,6-18 is, however, comparable for both
the single mode and VCI approaches and is more signifi-

cantly dependent on the particular level of theory used in
the calculation. The VCI calculations tend to agree better
with the experimental frequencies and intensities (Supporting
Information), especially for the fundamental transitions. The
single mode calculations, by contrast, give closer agreement
with the experimental dipole moments.

The fundamental assumption of the single mode method
is that the vibrational motion follows the normal mode
coordinate, which is equivalent to the neglect of interactions
with the other normal modes. Although the ν3 is not expected
to strongly interact with the other modes, since it is localized
and energetically well separated from other transitions, it is
likely that the single mode picture breaks down for higher
excited vibrational states. To estimate the validity of the local
mode assumption, we examine the dependence of the
molecular dipole moment on the vibrational quantum number
V. For an isolated mode the dipole moment increases linearly
with the vibrational state.46 In fact, this linearity has been
used as evidence for the local character of the OH stretching
in HOCl46 and H2O.47,48 Therefore, it is not surprising that
at all levels of theory the single mode treatment yields a
near-perfect linear fit of the vibrationally averaged dipole
moment as a function of the vibrational state (V) with
correlation coefficients better than 0.9999. Linear extrapola-
tion from the calculated dipole moments for the ground (V
) 0) and first excited (V ) 1) states to V ) 2, 3, and 4
predicts the actual computed dipole moments to better than
0.0009 D for V ) 2, 0.0022 D for V ) 3, and 0.004 D for V
) 4. Therefore, if the single mode approximation were valid,
this near-perfect linear relationship would allow a straight-
forward estimation of the true dipole moments based on the
known experimental values for the ground and first excited
ν3 vibrational states of FA (Table 1). With the most
conservative estimation of the error, these values would be
1.4771 ( 0.0009 D for V ) 2, 1.503 ( 0.002 D for V ) 3,
and 1.529 ( 0.004 D for V ) 4.

Examination of the linearity of this relationship predicted
by the VCI anharmonic calculations provides an independent
test for the “locality” of the CdO stretching mode. Unfor-
tunately, the dipole moment dependence on V in the VCI
calculations varies widely, depending on the level of theory
used. The DFT methods yield a very good linear relationship
for V ) 0, 1, 2, and 3 with the correlation coefficient of
0.994 for both B3LYP/6-311++G(d,p) and BPW91/cc-
pVDZ. On the other hand, for the post-HF levels, there is
hardly any linear trend. This qualitative inconsistency
illustrates that the VCI method is also subject to inherent
approximations and errors. The truncated Taylor expansions

Table 3. Interaction Energies (Vdq) and Frequency Shifts (∆) Due to Quadrupole-Dipole Interaction between oH2 and
trans-FA in Ground and Excited ν3 (CdO Stretch) Vibrational States

gas phase CPCM pH2

single mode VCI single mode VCI

state Vdq (cm-1) ∆ (cm-1) Vdq (cm-1) ∆ (cm-1) Vdq (cm-1) ∆ (cm-1) Vdq (cm-1) ∆ (cm-1) experiment:a ∆exp (cm-1)

v ) 0 27.28 26.41 29.42 28.86
v ) 1 28.07 -0.79 26.61 -0.19 30.08 -0.66 28.95 -0.30 -0.32
v ) 2 28.86 -1.58 26.95 -0.54 30.79 -1.37 29.22 -0.57 -0.66

a Reference 18.
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of the potential energy (eq 7) and dipole moment (eq 9) are
expected to introduce errors, especially for higher excited
vibrational states, which are more sensitive to the energy
and dipole surfaces further away from the energy minimum.
Moreover, the limited harmonic oscillator basis (to states
where the sum of quantum numbers for all modes is less of
equal to five) will also likely affect the results for the higher
vibrationally excited state properties.

We have tested the convergence of the dipole moment
values for V ) 0 to V ) 4 vibrational states, obtained with
BPW91/cc-pVDZ parameters, with the size of the VCI
harmonic basis, which included from four up to seven excited
state wave functions (Supporting Information, Table S3).
While the dipole moments in all vibrational states are
somewhat dependent on the harmonic basis size, up to V )
3 the computed values are essentially stable. The V ) 4 dipole
moment, as might be expected, is the most sensitive to
inclusion of additional basis functions. The qualitative trend
of the decrease in the dipole moment from V ) 3 to V ) 4,
however, is not affected. Furthermore, the larger the har-
monic basis, the more significantly the V ) 4 vibrational
state becomes mixed with other harmonic modes. For
example, with the largest harmonic basis tested, including
up to seven excited harmonic functions, the contribution of
the ν3 normal mode to the VCI anharmonic wave function
is only 27%. As a consequence, the V ) 4 vibrational state
can no longer be considered a pure ν3 mode, which is
consistent with the breakdown of the linear dependence of
the dipole moment on the vibrational quantum number.

All combined, it is apparent that the fourth (V ) 4) excited
vibrational state cannot likely be treated as an isolated mode
and the single mode approximation cannot be expected to
yield reliable dipole moment values. On the other hand, as
suggested by the DFT VCI results, up to V ) 3 the
approximation may hold, in which case the above prediction
for the gas-phase V ) 2 and V ) 3 dipole moments in the
neighborhood of 1.48 and 1.50 D, respectively, should be
valid. The experimental study of the dipole moments of OH
stretching vibrational states in HOCl46 and H2O

47 found the
single (local) mode picture to hold up to V ) 4. Furthermore,
based on the comparison of the VCI calculations at different
theory levels and the convergence tests with the size of the
harmonic basis, it is also unlikely that the multidimensional
VCI results are reliable for V ) 4. Neither of the two

approaches, therefore, appears well-suited for computing
molecular properties for highly excited vibrational states
(V > 3).

Interaction and mixing of the individual normal modes is
only one of several potential problems associated with the
single mode approximation. Even in the complete absence
of intermode coupling, this treatment neglects the contribu-
tion of the zero point energy (ZPE) states of the remaining
(anharmonic) modes to the property of interest, in this case
the dipole moment. In order to estimate this effect, we keep
the assumption of the noninteracting, separable normal
modes, which allows writing the total wave function as a
product of the one-dimensional functions

where Ri is the normal coordinate (non-mass-weighted), as
above. The applicability of the single mode approximation
for calculation of the dipole moment also requires a separable
dipole moment operator

i.e., all derivatives of the type (∂2µ/∂Ri∂Rj) in the Taylor
expansion of the dipole moment are negligible for i * j.
This, to some extent, resembles the “second harmonic
approximation” used in calculation of absorption intensities
in the (harmonic) vibrational spectra. The dipole moment
expansion, however, is not truncated at the linear term; only
the cross derivatives are neglected:

where R ) {x, y, z} and µ0 is the minimum energy structure
(equilibrium) dipole moment. Then the ZPE-corrected dipole
moment for the ν3 (CdO stretch) vibrational state V is

Under these assumptions, the contribution of the additional
normal modes can be evaluated using only 1D potential
energy surfaces for each mode. It must be stressed, however,
that assumptions analogous to those made for ν3 are not
automatically valid for all normal modes. Especially the
highly anharmonic, low frequency vibrations may not be
separable.

For this “ZPE-corrected” single mode approximation, we
have calculated the potential energy and dipole moments as
functions of normal coordinate displacements for all nine
normal modes of FA at the BPW91/cc-pVDZ level (Sup-
porting Information, Table S4). In analogy to the computa-
tions of the vibrationally averaged dipole moments for the
ν3 as described in Computational Methods, the vibrational

Table 4. Dipole Moments (in D) for the ν3 (CdO Stretch)
Vibrational States in trans-FA in Single Mode
Approximation, with the Correction for the ZPE States of
the Remaining Modes and from VCI Anharmonic Theory at
the BPW91/cc-pVDZ Level

method v ) 0 v ) 1 v ) 2 v ) 3 v ) 4

single mode 1.4231 1.4645 1.5055 1.5461 1.5864
single mode ZPE

corrected
1.3935 1.4349 1.4759 1.5165 1.5568

anharmonic VCI 1.3779 1.3884 1.4059 1.4158 1.3623
experiment

(gas phase)a
1.4253 1.4512 - - -

a Reference 8.

|Ψ(R1, R2, ..., RN)〉 ) |ψV1
(R1)ψV2

(R2)...ψVN
(RN)〉

(13)

µ(R1, R2, ..., RN) ) µ1(R1) + µ2(R2) + ... + µN(RN)
(14)

µR ) µ0,R + ∑
i

(∂µi,R

∂Ri
Ri +

1
2

∂
2µi,R

∂Ri
2

Ri
2 + 1

3!

∂
3µi,R

∂Ri
3

Ri
3 + ...)

) µ0,R + ∑
i

(µi,R - µ0,R) (15)

µR(ν3) ) µR,0 + 〈ψV(Rν3
)|µν3,R - µ0,R|ψV(Rν3

)〉 +

∑
i*ν3

〈ψ0(Ri)|µi,R - µ0,R|ψ0(Ri)〉 (16)
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wave functions for each mode can be obtained and substi-
tuted into eq 16. In Table 4, we compare the vibrationally
averaged BPW91/cc-pVDZ dipole moments computed for
the local ν3 mode only (eq 6, Table 1) with those including
the ZPE correction for all vibrational modes (eq 16).

The ZPE contribution of the remaining modes causes a
noticeable decrease in the ν3 vibrationally averaged dipole
moments by approximately 0.03 D for all states. The shift
towards lower dipole moment values, although relatively
small (J2%), is qualitatively consistent with the BPW91/
cc-pVDZ VCI anharmonic results, for convenience also
shown in Table 4. The ground vibrational state dipole
moment for the ZPE-corrected single mode is just ∼0.015
D greater than the VCI anharmonic result, but also more
than 0.03 D lower than the experimental dipole. The
differences with respect to the VCI calculations increase for
the excited states due to a steeper dependence of the single
mode dipole moment on the vibrational state (Figures 2 and
4), which is obviously unaffected by the correction. The V
) 1 dipole moment is also lower than the experiment, but
the error is approximately equal to the noncorrected single
mode calculation.

The ZPE contribution also accounts, at least in part, for
one of the discrepancies between the single mode and VCI
calculations as to whether the vibrationally averaged dipole
moment for the ground ν3 state is smaller (VCI calculations)
or greater (single mode calculations) than the equilibrium
(minimum energy) structure. The ZPE-corrected single mode
dipole moment value becomes lower than that computed for
the minimum energy structure (1.4026 D).

We note that the single mode treatment of all vibrational
modes also gives, within this approximation, the vibrational
frequencies and intensities of the fundamental and overtone
transitions for all nine vibrational modes of FA. These results
are presented in the Supporting Information (Tables S10 and
S11) and compared with the experimental data (as well as
with the VCI calculations) to provide additional tests for the
performance of the single mode approximation at the
BPW91/cc-pVDZ level. In addition, vibrationally averaged
dipole moments for the excited vibrational states of all
vibrational modes can be obtained. For reference, we present
the computed dipole moments for the first excited vibrational
states (V ) 1) (Supporting Information, Table S4) along with
the full anharmonic VCI results (Supporting Information,
Table S5).

Our calculations have also provided tests for the perfor-
mance of different levels of theory, including DFT, post-
HF correlated wave function methods, and a number of basis
sets. The errors in the computed molecular properties at
different levels of theory as compared to experiment are
reflected in both single mode and VCI anharmonic calcula-
tions, and some systematic trends can be inferred. For
example, with the same basis sets, the post-HF dipole
moments are uniformly smaller than those from the DFT.
These trends are already apparent from the dipole moments
within the harmonic approximation. As a consequence, with
smaller basis sets the DFT yields dipole moments closer to
experiment, while the post-HF ones are too low. With larger
basis, however, in particular the correlation consistent basis

sets augmented with diffuse functions, the calculated dipole
moment values systematically increase and the post-HF
predictions improve relatively to the DFT ones, which
become much too large.

One of the interesting results was a surprisingly good
overall performance of the BPW91/cc-pVDZ level. We have
used this particular level of theory previously in simulations
of the vibrational amide I (predominantly amide CdO
stretch) spectra of model amides, since it appeared to give
the best agreement of the harmonic vibrational frequency
with the experimental gas-phase value for N-methylacetamide
(NMA).20-22 In this study, within the single mode ap-
proximation, we obtained the best agreement between
BPW91/cc-pVDZ calculations with experiment for the dipole
moments as well as the frequencies and IR intensities
(Supporting Information). In the anharmonic VCI calcula-
tions, the agreement of both the predicted frequencies and
dipole moments with experiment is worse, but still remark-
ably good in comparison with the other levels tested.

The unusually good performance of BPW91/cc-pVDZ
must be due to a fortuitous cancellation of errors of the
density functional and the basis set. The results obtained with
the BPW91 systematically differ from those computed with
the other methods: e.g., the harmonic vibrational frequencies
are systematically lower (Supporting Information, Table S6).
On the other hand, the cc-pVDZ basis set with all the
computational methods produces higher vibrational frequen-
cies than any other basis except 6-31G(d,p). These errors
seem to compensate for each other very well in the
combination BPW91/cc-pVDZ. With larger basis sets BPW91
tends to underestimate the vibrational frequencies, while for
the other methods as the computed frequencies become lower
with increasing basis set size, the agreement with experiment
improves. For dipole moments, the BPW91 results are not
as dramatically different from the other methods but fall in
between the higher B3LYP values and the too low post-HF
ones. The cc-pVDZ basis, however, again gives systemati-
cally the lowest dipole moments. While MP2 with this basis
yields dipole moments that are much too small compared to
the experiment and B3LYP/cc-pVDZ dipoles are systemati-
cally too high, the BPW91/cc-pVDZ-calculated dipole again
falls very close to the experimental value. Thus, on an
empirical basis, the BPW91/cc-pVDZ level of theory appears
as a useful and computationally cheap model for the
vibrational properties of the carbonyl group.

5. Conclusion

The explanation of multiple closely spaced peaks of the
trans-FA ν3 band in low-temperature, solid pH2 required a
reliable estimate of dipole moments in different ν3 vibrational
states. Calculations of vibrationally averaged molecular
dipole moments represent a challenge, in particular for higher
vibrationally excited vibrational states. We have tested two
different methodologies: the single mode treatment and
multidimensional limited VCI calculations. With both meth-
ods, very good results for the ground and first excited state
dipole moments were obtained; however, the reliability of
the predictions for higher excited states is difficult to verify.
The linearity of the dipole moment as a function of
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vibrational energy quanta, independently obtained from the
VCI calculations at two DFT levels, suggests that the single
mode picture is valid up to the third excited state (V ) 3).
Apart from the breakdown of the single mode picture due
to combination with other normal modes and/or nonsepara-
bility of the dipole operator, the single mode approximation
also neglects the zero point contribution of the remaining
modes to the vibrationally averaged dipole moment. This
contribution is non-negligible and the resulting dipole
moments more closely correspond to those obtained from
VCI. Unfortunately, even the VCI calculations are unlikely
to be reliable for highly excited vibrational state properties,
due in part to the anharmonic corrections based on the
truncated Taylor series and in part to the truncation of the
VCI harmonic basis, dictated by the computational cost of
the VCI calculation. Of the different computational levels
tested, we found the BPW91/cc-pVDZ to give remarkably
good overall performance. In general, DFT results, while
quite close with smaller basis sets, seem to depart increas-
ingly from the experiment upon increasing the basis set size.
In contrast, post-HF methods, while requiring large basis sets,
appear to converge to better agreement with the available
experimental data. A more detailed evaluation of the
performance of different computational methods remains
difficult due to the scarcity of the dipole moment experi-
mental data. However, the results demonstrate that the
computational methodology provides robust tools for studies
of the molecular electrostatic properties in various vibrational
states as well as interactions with the environment. In
particular, the predicted vibrationally averaged dipole mo-
ments well-explained the quadrupole-dipole splitting of the
IR lines of the FA in the solid pH2 matrix.
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(24) Andrushchenko, V.; Matějka, P.; Anderson, D. T.; Kaminský,
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Abstract: Impressive growth of computer facilities and effective implementation of very accurate
quantum mechanical methods allow, nowadays, the determination of structures and vibrational
characteristics for small- to medium-sized molecules to a very high accuracy. Since the situation
is much less clear for open-shell species, we decided to build a suitable database of harmonic
and anharmonic frequencies for small-sized free radicals containing atoms of the first two rows
of the periodic table. The level of theory employed is the CCSD(T) model in conjunction with
triple- and quadruple-� basis sets, whose accuracy has been checked with respect to the available
experimental data and/or converged quantum mechanical computations. Next, in view of studies
of larger open-shell systems, we have validated the B3LYP/N07D model with reference to the
above database: our results confirm previous suggestions about the remarkable reliability and
reduced computational cost of this computational method. A number of test computations show
that basis set extension has negligible effects and other density functionals (including last
generation ones) deliver significantly worse results. Increased accuracy can be obtained, instead,
by using CCSD(T) harmonic frequencies and B3LYP/N07D anharmonic corrections.

1. Introduction

Computational chemistry experiments have already been
proventoprovidehighlyaccurateresults forsmallmolecules,1-5

clearly demonstrating their potentiality as key tools for the
prediction and understanding of spectroscopic properties of
all kinds of molecular systems. At present, thanks to the
progress in hardware and software, the a priori prediction
of accurate low-lying vibrational levels of semirigid poly-
atomic molecules is becoming a viable task. It is now widely
recognized that the computation of semidiagonal quartic force

fields at the CCSD(T) (Coupled Clusters with Single, Double,
and perturbative inclusion of Triple excitations)6 level in
conjunction with sufficiently large basis sets (at least of
triple-� quality) followed by an effective second-order
perturbative treatment usually provides results with an
accuracy on the order of 10-15 cm-1 for fundamental
transitions.7-19 Although perturbative vibrational treatment
remains highly cost-effective for quite large systems, the
unfavorable scaling of the CCSD(T) model with the number
of active electrons limits the determination of quartic force
fields to molecules containing at most five to six atoms.
Additionally, a simple reduction of computational cost by
combining correlated quantum mechanical (QM) methods
with a small basis set should not be recommended, due to
the quite unpredictable accuracy of the results. Thus,
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extension of computational studies to larger systems requires
cheaper yet reliable electronic structure approaches.

Recently, several authors have reported anharmonic force
fields for small- and medium-sized semirigid molecules
computed by methods rooted in density functional theory
(DFT).20-25 Among the functionals tested, the hybrid ones
provide satisfactory results when coupled to basis sets of at
least double-� plus polarization quality supplemented by
diffuse sp functions. An even more effective approach in
terms of good accuracy, obtained at a computationally
reduced cost, is based on the additivity of DFT anharmonic
corrections to CCSD(T) harmonic force fields. This is well-
known to further improve the agreement with experimental
data.26-30 The situation is much more involved for open-
shell systems since experimental data are scarce and often
of questionable reliability. Recently, we decided to start a
comprehensive research project to extend the spectroscopic
accuracy for studies of open-shell systems. To this purpose,
some of the results available in the literature in this
framework (HCO, HOC, HSiO, HOSi, HCS, HSC, HCCO,
H2CN, F2CN, and F2BO radicals) will be used here to build
a representative set of reference force fields. Furthermore, a
number of additional radicals have been purposely investi-
gated for the present work (FCO, FSiO, FCS, FSC, NH2,
PH2, HOCl+, H2BO, Cl2CN, NH3

+, PH3
+, H2CO+, HCNN,

and HNCN) in order to enlarge the benchmark set dimensions.

The present work has a 3-fold aim: (i) harmonic frequency
results obtained by means of the B3LYP/N07D computa-
tional model, recently proposed for spectroscopic studies of
free radicals, are validated by the comparison with corre-
sponding computations at the CCSD(T) level; (ii) anharmonic
corrections to vibrational frequencies computed from CCS-
D(T) quartic force fields are employed to confirm good
performance of the B3LYP/N07D model in evaluating
anharmonic contributions; (iii) the performances of last
generation density functionals and basis set convergence are
tested for both harmonic and anharmonic frequencies on a
reduced set of radicals. Although, in order to facilitate
comparison with CCSD(T) results, we have limited our
benchmark set to the tri- and tetratomic radicals, we consider
it significant, as molecules containing first- as well as second-
row elements are included.

The manuscript is organized as follows. In the next section,
all the computational details concerning the CCSD(T) and
DFT calculations as well as the methodology employed are
described. Then, the results are presented and discussed in
the frame of the aims presented above.

2. Methodology and Computational Details

2.1. Coupled-Cluster Computations. The coupled-cluster
(CC) computations have been performed at the CC level of
theory with single and double excitations augmented by a
quasi-perturbative account for triple substitutions [CCSD(T)].6

The adequacy of the coupled-cluster model to treat the
systems under consideration has been checked by means of
the T1

31,32 and D1 (ROCCSD)33 diagnostics, which provide
values lower than 0.025 and 0.045, respectively, for all
radicals considered. All CCSD(T) computations have been

carried out in conjunction with the correlation-consistent
polarized (aug)-cc-pVnZ, with n ) T and Q, basis sets,34,35

in the frozen core (fc) approximation. The CFOUR program
package36 has been employed, and the unrestricted Hartree-
Fock (UHF) wave function has been used as a reference in
the CCSD(T) computations.

Once the required geometry optimizations have been
performed at the level of theory considered; anharmonic force
field calculations have been carried out only for the main
isotopic species of each radical under study. The harmonic
part of the force field has been obtained using analytic second
derivatives of the energy,37 and the corresponding anhar-
monic force field has been determined in a normal coordinate
representation via numerical differentiation of the analytically
evaluated force constants as described in refs 11 and 38.
Subsequently, the force field has been used to compute
spectroscopic parameters, such as anharmonic frequencies,
by means of the vibrational second-order vibrational pertur-
bation theory (VPT2),39 as implemented in the CFOUR

package.36

2.2. Density Functional Theory Computations. Density
functional theory computations have been performed with
the B3LYP/N07D model, defined by a combination of the
well-known B3LYP40 density functional with the recently
developed polarized double-� N07D basis set,41-43 properly
tailored for studying free radicals. This basis set has been
constructed by adding a reduced number of polarization and
diffuse functions to the 6-31G set (see refs 41 and 42 for
details), leading to an optimum compromise between reli-
ability and computer time.

All structures have been optimized using tight convergence
criteria followed by computations of anharmonic frequencies
by means of the VPT2 approach,39,44 as implemented in the
Gaussian package.45 Semidiagonal quartic force fields have
been evaluated by the numerical differentiation (with the
standard 0.025 Å step) of analytical second derivatives. As
VPT2 computations are sensitive to the proper treatment of
Fermi resonances, it is crucial to automatically neglect nearly
singular contributions (deperturbed computations). This is
performed by effectively removing interactions in the second-
order treatment, which are more properly treated in the first
order. For this purpose, the VPT2 implementation44 makes
use of the criteria proposed by Martin and Boese,23 imple-
mented in an automated scheme that has already been shown
to provide accurate results for at least fundamental bands.46

In addition to computations with the B3LYP functional,
known to provide reliable predictions of vibrational proper-
ties,20,21 it seemed important to check also the performance
of other density functionals, in view of the recent develop-
ments aiming at improvement of long-range effects, i.e., the
proper description of dispersion interaction or of the proper-
ties of excited electronic states. Concerning spectroscopic
studies, an unsatisfactory description of vibrational frequen-
cies computed by the M05(6)-2X47,48 or LC-ωPBE49 func-
tionals has been found in the study of adenine,50 in contrast
to the accurate results obtained for functionals originating
from the B3LYP one, such as B3LYP-D(M)51,52 or CAM-
B3LYP.53 In this context, we decided to extend our
benchmark to a broader range of recently introduced density
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functionals, namely, M06,48 the wB97 family,54,55 and
HSE06,56 to check their performance in evaluating vibra-
tional properties of open-shell systems. For the sake of
completeness, the parameter-free PBE0 functional57 has also
been taken into consideration, and the basis set effect has
been accounted for by comparison with the aug-cc-pVTZ35

results.

All DFT computations have been performed employing
the Gaussian suite of programs for quantum chemistry.45

2.3. Computations with Hybrid CCSD(T)/DFT Ap-
proach. As already mentioned in the Introduction, the hybrid
CCSD(T)/DFT approach has also been applied to evaluate
anharmonic frequencies. Such a methodology takes into
account that CCSD(T) computations can be prohibitively
expensive, even for medium-sized systems, whenever ex-
tended samplings of potential energy surfaces (PES) are
required, whereas the main discrepancies between anhar-
monic frequencies computed at the CCSD(T) and B3LYP
levels are related to the inaccuracies within the harmonic
part.26-28 In this respect, the hybrid CCSD(T)/DFT
scheme26-30 stands as a viable route to extend predictions
of accurate anharmonic frequencies to relatively large
systems.

In the present case, two possible approaches have been
implemented. In the most simple one (DPT2), the harmonic
frequencies computed at the CCSD(T) level are a posteriori
corrected by anharmonic contributions (∆ν) derived from
VPT2 computations performed at the DFT level: νCCSD(T)/DFT

) ωCCSD(T) + ∆νDFT. Such an approximation has already been
validated for several closed and open shell systems (see for
instance refs 26-29). The second option is based on the
introduction of the harmonic frequencies evaluated at the
CCSD(T) level into the VPT2 computations along with
the 3rd and 4th force constants obtained at the DFT level.
Such an approach is available in the Gaussian package
through the InDerAU and InFreq options and might signifi-
cantly improve the quality of the results in difficult cases,
i.e., when large discrepancies between harmonic frequencies
computed at the DFT and CCSD(T) levels or Fermi
resonances take place.

3. Results and Discussion

3.1. Equilibrium Structure. Evaluation of harmonic as
well as anharmonic frequencies implies accurate prediction
of molecular structures, which need to be computed at the
corresponding level of theory. Therefore, in view of the
connection between molecular structure and vibrational
frequencies, we start our discussion by assessing the accuracy
of the geometry parameters obtained at the computational
levels subsequently applied to frequency evaluation. The
results are organized as follows. In Table 1, optimized
geometries for those radicals for which a systematic basis-
set investigation at the CCSD(T) level is available are
reported, while in Table 2 the structures computed at the
CCSD(T) and B3LYP levels are compared to the available
experimental data. For all the other radicals, molecular
structures obtained at the CCSD(T) and B3LYP levels are
collected in the Supporting Information.

Before proceeding in this discussion, general notes on the
accuracy of CCSD(T) and B3LYP optimized geometries are
deserved. Concerning coupled-cluster determinations, ac-
cording to ref 58, the accuracy of molecular structures of
closed-shell systems optimized at the CCSD(T) level in
conjunction with the (aug)-cc-pVQZ basis sets is expected
to be on the order of 0.002-0.004 Å for distances and
0.1-0.3° for angles. This accuracy range is not straightfor-
wardly applicable to open-shell molecules as for them the
situation is more involved from a theoretical as well as
experimental point of view. The accuracy of CCSD(T)/(aug)-
cc-pVQZ optimized geometries can be derived from the
comparison to computed geometries for which extrapolation
to the complete basis set limit (CBS) and core correlation
(CV) effects are accounted for. This comparison is sum-
marized for selected radicals in Table 1. On the basis of the
results available in the literature5,15,26,27,59,60 and those of
Table 1, we can conclude that the overall accuracy is
analogous to that of closed-shell systems. Going a little more
into detail, we note that quadruple-� bases tend to provide
geometrical parameters quite close to the CBS limit, in
particular when only first-row elements are involved. The
discrepancies are in general in the ranges 0.001-0.01 Å for
distances and 0.01-0.1° for angles, where the larger values
refer to the parameters involving second-row atoms. CV
corrections range from 0.001 to 0.005 Å for bonds and from
0.01 to 0.1° for angles. Once again, larger values are
observed when second-row elements are involved.

Concerning the accuracy of DFT structures, in benchmark
studies performed to validate and develop the B3LYP/N07D
computational model, it has been pointed out that the overall
performance of the N07D basis set is comparable to that of
the aug-cc-pVDZ one,41 but with increased computational
efficiency. Additionally, recent B3LYP/N07D studies per-
formed on vinyl,61 propyl, and phenyl radicals62 showed
agreements within 0.01 Å for C-C and C-H bond lengths,
and 2° for angles with respect to highly accurate computa-
tional studies at the CCSD(T)63,64 and multireference64 levels
in conjunction with extended basis sets. Further hints on the
accuracy of geometric structures computed at the B3LYP/
N07D level of theory can be obtained from the analysis of
the data reported in Tables 1 and 2. Comparison with
CCSD(T)/VQZ results shows that in most cases DFT slightly
overestimates bond lengths by about 0.005-0.02 Å, while
larger discrepancies, 0.026 and 0.034 Å, have been found
for two difficult cases: the C-S and Si-O bonds, respec-
tively. In contrast, C-N and B-O bond lengths are slightly
(less than 0.01 Å) underestimated by DFT, whereas all angles
agree within 1.5°. In view of the good accuracy of the
CCSD(T)/VQZ structures, similar conclusions can be drawn
from the comparison of B3LYP/N07D structures with most
elaborated computational methodologies. In summary, B3LYP/
N07D optimized geometries differ by about 0.01 Å and 1°
from their CCSD(T) counterparts. Thus, B3LYP/N07D
structures can be considered sufficiently accurate for studies
not requiring extreme accuracy, and this is particularly
encouraging for large systems for which expensive coupled
cluster calculations are still unfeasible.
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As far as the comparison with experiment is concerned,
the results of Table 2 allow us to point out that equilibrium
structures obtained at the CCSD(T) level usually well agree
with the experimental ones when the latter are accurately
determined. On the other hand, in most cases, the accuracy
and reliability of experimental determinations for open-shell
species are quite limited; for such cases, best estimates
(CBS+CV) such as those reported in Table 1 represent better
reference geometries. We furthermore note that the B3LYP/
N07D level of theory is able to provide a good semiquan-
titative description of equilibrium structures, with geometrical
parameters usually overestimated by about 0.01-0.02 Å for
bond lengths. In view of this, we do not expect any particular
effect of molecular structures on vibrational frequencies. We
only note that larger discrepancies have been observed for
FSC, HSiO, and FSiO, for which at the DFT level the F-S
and F-Si distances are overestimated by about 0.1 Å, the
Si-O bond length is longer by more than 0.03 Å, and the
∠HSiO and ∠FSiO angles are underestimated by ∼4 and
∼2°, respectively. For these molecules, we actually noticed
for some vibrational modes discrepancies in harmonic
frequencies larger than the average (i.e., on the order of 100
cm-1), but a clear correspondence between anomalies in the

molecular structure and large deviations for vibrational
frequencies cannot be drawn.

3.2. Vibrational Frequencies. We start the analysis of
vibrational frequencies by discussing the accuracy of har-
monic frequencies computed by different methods as well
as that of the corresponding anharmonic contributions. This
is then followed by the validation of the computational
approaches considered in this work against available experi-
mental data.

Concerning harmonic frequencies computed at the
CCSD(T) level, it is well-known from the literature that
for closed-shell systems they have an overall accuracy of
15-20 cm-1 when basis sets of at least triple-� quality
are used (see for example refs 19 and 65). For radicals,
the situation is not so well assessed, but some recent
investigations seem to confirm that an analogous accuracy
can be reached (see for instance refs 5, 26, and 27). Hints
on the quality of CCSD(T) anharmonic frequencies can
be derived from Table 3, where they are compared with
the available experimental data. From this comparison, it
is apparent that, on average, anharmonic frequencies
computed at the CCSD(T)/cc-pVQZ level for the harmonic
part and employing either a triple-� or a quadruple-� basis

Table 1. Basis-Set Effects on Equilibrium Geometrical Parameters Computed at the CCSD(T) Levela

molec./param. B3LYP/N07D CCSD(T)/VQZ CCSD(T)/V5Z CCSD(T)/V6Z CCSD(T)/CBS CCSD(T)/CBS+CV

HCSb

R(CH) 1.0942 1.0877 1.0872 1.0872 1.0872 1.0854
R(CS) 1.5783 1.5660 1.5622 1.5610 1.5594 1.5554
∠HCS 131.61 131.99 132.21 132.24 132.28 132.49
HSCb

R(SH) 1.3850 1.3671 1.3662 1.3662 1.3662 1.3639
R(CS) 1.6773 1.6517 1.6457 1.6442 1.6421 1.6370
∠HSC 103.72 102.89 103.01 103.04 103.08 103.06
NH2

c

R(NH) 1.0312 1.0250 1.0248 1.0247 1.0246 1.0233
∠HNH 103.55 102.72 102.95 103.01 103.08 103.21
PH2

c

R(PH) 1.4358 1.4186 1.4183 1.4183 1.4183 1.4155
∠HPH 91.7 91.87 91.88 91.88 91.88 91.81
H2CNd

R(CH) 1.1016 1.0947 1.0946 1.0946 1.0946 1.0933
R(CN) 1.2479 1.2493 1.2486 1.2482 1.2479 1.2451
∠HCN 121.78 121.16 121.11 121.10 121.09 121.10
H2BO
R(BH) 1.2132 1.2046 1.2046 1.2046 1.2046 1.2025
R(BO) 1.2861 1.2927 1.2915 1.2911 1.2909 1.2868
∠HBO 120.33 118.99 119.00 119.00 119.00 119.08
F2CNe (aug) +(diff)
R(CF) 1.3177 1.3079 (1.3087) 1.3076 1.3074 1.3074 1.3056
R(CN) 1.2572 1.2565 (1.2570) 1.2560 1.2558 1.2557 1.2532
∠FCN 124.55 124.51 (124.52) 124.52 124.52 124.52 124.5
F2BOe (aug) +(diff)
R(BF) 1.3311 1.3133 (1.3142) 1.3129 1.3128 1.3125 1.3102
R(BO) 1.3602 1.3640 (1.3648) 1.3636 1.3634 1.3632 1.3602
∠FBO 119.4 119.30 (119.29) 119.29 119.29 119.29 119.28
Cl2CN
R(CCl) 1.7508 1.7354 1.7242 1.7236 1.7232 1.7195
R(CN) 1.2458 1.2493 1.2491 1.2489 1.2488 1.2474
∠ClCN 122.04 122.00 121.88 121.88 121.88 121.88
NH3

+c

R(NH) 1.0281 1.0212 1.0210 1.0210 1.0210 1.0201
∠HNH 120.0 120.0 120.0 120.0 120.0 120.0
PH3

+c

R(PH) 1.4124 1.3974 1.3972 1.3972 1.3972 1.3946
∠HPH 113.15 113.21 113.21 113.21 113.21 113.24

a DFT results are given for comparison. b Ref 15. c Ref 70. d Ref 5. e Ref 27.
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for the anharmonic contributions are able to reproduce
experimental data within 10-20 cm-1. Some larger
deviations, i.e., more than 40 cm-1, are observed only for
C-H stretching modes: ν1 of HCO and H2CO+ and ν5 of
H2CN. Interestingly, in the two former cases the B3LYP/
N07D computations led to significantly better agreement
with respect to the experiment. For the ν5 vibration of
H2CN, the discrepancy should be attributed to difficulties
in assignment of the experimental band, as already
discussed in refs 5 and 66, rather than to possible
anharmonic resonances, as supported by the good agree-
mentbetweenvariational andperturbativecomputations.66-68

However, it should be noted that, for molecular systems
which are significantly plagued by resonances, improve-
ments with respect to perturbative results are expected
by performing fully variational frequency computations.

The good performance of the B3LYP model for the
computation of harmonic frequencies of open-shell species
has already been pointed out,69 and data collected in Table
3 are in line with such findings. Indeed, the comparison
between harmonic frequencies computed at the CCSD(T) and
B3LYP levels shows that the latter are on average off by
only 1.5% from the CCSD(T) reference, with a maximum
error of about 4.5%. Nevertheless, such an overall good
agreement leads in absolute terms to discrepancies in the

range of -30 to +60 cm-1, which implies that the B3LYP/
N70D level of theory might not be adequate for accurate
spectroscopic studies. More interestingly, both methods
predict very similar anharmonic corrections which agree
within about 10 cm-1. The only exceptions are FCO and
H2CO+, but in both cases the largest discrepancies are related
to the incorrect prediction of Fermi resonances at the DFT
level. It should be stressed that, in the VPT2 implementation
employed, vibrational modes which might be involved in
Fermi or Darling-Denison resonances are excluded from the
perturbative treatment44 and are thus treated separately at
the variational level. However, as such mode selection is
performed on the basis of harmonic frequencies, any inac-
curacy in the latter strongly influences the final results. In
fact, as soon as accurate harmonic frequencies are included
in the VPT2 treatment (and also used to predetermine
resonances), significant improvements are achieved.

The first conclusion that can be drawn is that the good
accuracy of anharmonic corrections computed by DFT
validates the use of a hybrid scheme in which the harmonic
part is computed with high accuracy by means of coupled
cluster theory while anharmonic contributions are obtained
by relatively inexpensive DFT computations. As men-
tioned before, the standard approach is to simply add DFT
anharmonic contributions, ∆ν, to harmonic frequencies
computed at the CCSD(T) level; however, sometimes the
second approach, where harmonic CCSD(T) frequencies
are directly used in perturbative vibrational analysis along
with 3rd and 4th force constants computed at the DFT
level, might be more suitable.28 This is indeed the case
for FCO and H2CO+, where application of corrected
harmonic values leads to much better agreement (within
3 cm-1 for FCO and 15 cm-1 for H2CO+) between the
hybrid scheme and full CCSD(T) results. It seems,
therefore, that hybrid computations using CCSD(T) qua-
dratic force fields and B3LYP/N07D cubic and semidi-
agonal quartic force constants closely approach the
accuracy of complete CCSD(T) anharmonic computations
at a much reduced computational cost. Anharmonic
frequencies derived from full B3LYP/N07D force fields
also agree fairly well with the experiment, but in most
cases the improvements achieved by the hybrid CCSD(T)/
cc-pVQZ//B3LYP/N07D scheme are significant: for ex-
ample, for F2CN, the mean absolute error (MAE) reduces
from 18 cm-1 to 6 cm-1. The hybrid scheme is thus
advisable whenever possible.

In the following analysis, anharmonic DFT and hybrid
frequencies will be compared with benchmark CCSD(T)
values which have been shown to yield results in good
agreement with the experiment. Tables 4 and 5 list such
results for the triatomic and tetratomic radicals not
considered in Table 3, respectively. From these tables,
the conclusions drawn from Table 3 are confirmed: with
only a few exceptions (some of them already discussed
in the previous section), the anharmonic B3LYP/N07D
frequencies agree with their CCSD(T) counterparts within
5-60 cm-1. All the discrepancies are then removed once
the hybrid approach is considered; in fact, in almost all
cases, the agreement is within 1-30 cm-1. For the

Table 2. Equilibrium Geometric Parameters Computed at
the CCSD(T) and DFT Levels of Theory for Selected Tri-
and Tetra-Atomic Free Radicals

B3LYP/N07D CCSD(T)/VnZ exptl

HCO n ) Q re
a

R(CH) 1.1274 1.1162 1.1191(50)
R(CO) 1.1804 1.1759 1.1754(15)
∠HCO 124.36 124.57 124.43(25)
HSiO n ) Q re

b

R(SiH) 1.5393 1.5209 1.4971(fix)
R(SiO) 1.5672 1.5331 1.5286(2)
∠HSiO 115.84 119.63 116.8(1)
HCS n ) Q r0

c

R(CH) 1.0942 1.0877 1.079(3)
R(CS) 1.5783 1.5660 1.56228(3)
∠HCS 131.61 131.99 132.8(3)
HSC n ) Q re

d

R(SH) 1.3850 1.3671 1.379(3)
R(CS) 1.6773 1.6517 1.6343(5)
∠HSC 103.72 102.89 104.2(2)
NH2 n ) Q re

e

R(NH) 1.0312 1.0250 1.0254 (12)
∠HNH 103.55 102.72 102.85 (14)
H2CN n ) Q r0

f

R(CH) 1.1016 1.0947 1.11(postulated)
R(CN) 1.2479 1.2493 1.247
∠HCN 121.78 121.16 121.65
F2CN n ) Q (aug) r0

g

R(CF) 1.3177 1.3087 1.31(postulated)
R(CN) 1.2572 1.2570 1.265
∠FCN 124.55 124.52 123.25
F2BO n ) Q (aug) r0

i

R(BF) 1.3311 1.3142 1.30(5)
R(BO) 1.3602 1.3648 1.40(5)
∠FBO 119.4 119.29 126(5)
NH3

+ n ) Q re
k

R(NH) 1.0281 1.0212 1.014
∠HNH 120.0 120.0 120.0

a Ref 71. b Ref 72. c Ref 73. d Ref 74. e Ref 75. f Ref 76. g Ref
77. i Ref 78. k Ref 79.
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molecules gathered in Tables 4 and 5, the simple DPT2
hybrid scheme usually provided satisfactory results,
whereas, for more demanding cases like HOC, FSiO, and

Cl2CN radicals, good accuracy has only been achieved
with the InFreq approach. For the latter radical, in analogy
to what was discussed above for FCO and H2CO+, the

Table 3. Harmonic (ω) and Anharmonic (ν) Vibrational Frequencies (in cm-1) Computed at Various Levels of Theory for
Selected Tri- and Tetra-Atomic Free Radicals

B3LYP/N07D CCSD(T)a CCSD(T)+DFTb

ω ν ω ν ν exptlc

HCO CBS/aCV CBS+QZ
ν1 2677 2441 2717 2460 2481 2435
ν2 1930 1906 1905 1878 1882 1868
ν3 1099 1066 1120 1093 1087 1081

FCS augVQZ aVTZ
ν1 1306 1275 1338 1308 1306 1297
ν2 934 919 933 919 918 918
ν3 456 451 461 456 456 457

FCO augVQZ augVTZ
ν1 1915 1847 1900 1864 1862d 1862
ν2 1022 977 1054 1025 1028d 1026
ν3 621 610 634 624 624d 628e

NH2 VQZ VQZ
ν1 3346 3193 3377 3219 3223 3219
ν2 1518 1475 1549 1504 1505 1497f

ν3 3450 3281 3471 3297 3301 3301
PH2 VQZ VQZ

ν1 2353 2254 2401 2305 2302 2298
ν2 1120 1096 1127 1101 1103 1102
ν3 2364 2262 2409 2310 2306

HOCl+ VQZ VQZ+augVTZ
ν1 3463 3276 3524 3338 3337
ν2 1257 1221 1288 1248 1251
ν3 888 875 915 901 902 830 ( 50

HCCO VQZ VQZ+VTZ
ν1 3348 3217 3352 3214 3221 3232g

ν2 2085 2047 2097 2056 2058 2022h

ν3 1258 1250 1246 1245 1239
ν4 546 553 567 576 574
ν5 497 447 505 467 455 494i

ν6 488 517 500 524 529
H2CN VQZ VQZ

ν1 2985 2822 3000 2836 2837 2820j

ν2 1720 1692 1706 1672 1677 1725k

ν3 1384 1346 1383 1343 1346 1330
ν4 988 968 989 967 969 950
ν5 3044 2867 3069 2893 2893 3103k

ν6 931 912 939 913 919 909
F2CN augVQZ aVQZ+augVTZ

ν1 1790 1759 1811 1781 1781 1771
ν2 957 941 974 957 958 955
ν3 540 535 552 546 546
ν4 666 658 679 673 671 660
ν5 1239 1206 1295 1262 1263 1257
ν6 492 487 501 496 497 497

NH3
+ VQZ VQZ

ν1 3351 3206 3375 3231 3230 3232l

ν2 873 914 865 910 906 917m

ν3 3538 3365 3559 3388 3386
ν4 3538 3365 3559 3388 3386 3389n

ν5 1532 1492 1551 1507 1510 1507o

ν6 1532 1491 1551 1507 1510
PH3

+ VQZ VQZ
ν1 2448 2361 2497 2400 2410
ν2 726 652 751 670 678 695p

ν3 2525 2435 2568 2469 2477
ν4 2525 2436 2568 2469 2479 2462
ν5 1040 1018 1054 1029 1032 1044
ν6 1040 1017 1054 1029 1031

H2CO+ VQZ VQZ
ν1 2783 2603 2807 2625 2635d 2580
ν2 1711 1742 1676 1636 1652d 1675
ν3 1251 1207 1263 1210 1220d 1210r

ν4 1062 1037 1068 1039 1044d 1036s

ν5 2873 2675 2915 2711 2724d 2718r

ν6 848 858 848 823 810d 823s

a CCSD(T) data from HCO/HOC, ref 80; HCCO, ref 81; H2CN/F2CN, ref 5; NH3
+/PH3

+, ref 70; others, this work. b Anahrmonic corrections
at the B3LYP/N07D level. c Experimental results from references: HCO,82 FCS,83 FCO,84 NH2,85 PH2,86 HOCl+, 87 H2CN,88 F2CN,77 PH3

+,89

H2CO+.90,91 d Anahrmonic corrections computed with CCSD(T) harmonic frequency and 3rd and 4th force constants obtained at the B3LYP/
N07D level. e Ref 92. f Ref 93. g Ref 94. h Ref 95. i Ref 96. j Ref 97. k Ref 98. l Refs 99, 100 and 101. m Ref 102. n Ref 79. o Refs 103, 104,
100, and 105. p Also, ref 106. r Also, refs 107 and 108.
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difficulties are related to Fermi resonances. On the other
hand, for HOC and FSiO, abnormally large discrepancies
(over 100 cm-1) between harmonic frequencies computed
at the CCSD(T) and DFT levels are an issue.

The last part of our work is devoted to the analysis of the
performance of several recently developed density functionals
for computation of vibrational frequencies within both the
DFT/N07D and hybrid models. For this purpose, Table 6
compares mean absolute errors (MAEs), with respect to
CCSD(T) computations, over all normal modes of H2CN,
N2H+, and FCS radicals, for which a good agreement with
both the experiment and the benchmark CCSD(T) studies
has been obtained at the B3LYP/N07D level. First of all,
we discuss the overall accuracy of harmonic frequencies
obtained by means of the functionals under study. It has to
be noted that an accuracy only slightly lower than that of
B3LYP, with discrepancies on the order of 15-25 cm-1 with
respect to CCSD(T) results, has been achieved by most
functionals, except LC-ωPBE and wB97(X), which show
MAEs in range 40-50 cm-1. Such findings are also valid
for anharmonic frequencies, for which most functionals show
MAEs lower than 30 cm-1. However, larger discrepancies
are observed for higher frequencies, as depicted in panel a
of Figure 1. Additionally, in two cases, namely, for LC-
ωPBE and M06-2X, the MAE exceeded 60 cm-1: in the
former case, the error originates from the inaccurate harmonic
frequency values, but in the latter case the problems are
directly related to anharmonic corrections. All functionals
have been also tested for their performance within hybrid

models, and the results obtained applying both hybrid
approaches (the simple DPT2 correction and the InFreq) are
listed in Table 6. Additional insights can also be drawn from
panel b of Figure 1, which shows differences with respect
to CCSD(T) results as a function of the frequency for all
normal modes of the selected radicals. It is immediately
apparent that among the tested functionals those originated

Table 4. Anharmonic Frequencies (in cm-1) for Triatomic
Radicals Obtained with B3LYP/N07D, CCSD(T), and
Hybrid Models

B3LYP/N07D CCSD(T) CCSD(T)+DFTa

HOC VQZ
ν1 2887 3144 3117b

ν2 1337 1375 1374b

ν3 1075 1108 1109b

HSiO V5Z(PES)//VQZ
ν1 1774 1828//1829 1847//1842
ν2 1068 1166// 1168 1162//1161
ν3 558 622// 622 624//627
HOSi V5Z(PES)//VQZ
ν1 3634 3667//3667 3671//3671
ν2 797 869//869 860//859
ν3 749 743//749 755//760
HCS CBS(PES)//VQZ
ν1 2962 2993//2992 2979//2977
ν2 1175 1188//1181 1187//1180
ν3 807 794//802 791//798
HSC CBS(PES)//VQZ
ν1 2196 2252//2256 2264//2266
ν2 881 930//920 931//921
ν3 745 773//768 785//779
FSC aVTZ
ν1 1030 1046 1046
ν2 518 626 622
ν3 214 241 242
FSiO aVTZ
ν1 1064 1206 1181b

ν2 758 845 844b

ν3 265 308 301b

a Anharmonic corrections at the B3LYP/N07D level. b Anharmonic
corrections computed with the CCSD(T) harmonic frequency and 3rd
and 4th force constants obtained at the B3LYP/N07D level.

Table 5. Anharmonic Frequencies (in cm-1) for Tetratomic
Radicals Obtained with B3LYP/N07D, CCSD(T), and
Hybrid Models

B3LYP/N07D CCSD(T) CCSD(T)+DFTa

HCNN VQZ+VTZ
ν1 3013 3020 3015
ν2 1828 1746 1742
ν3 1233 1176 1176
ν4 830 861 871
ν5 533 530 534
ν6 485 519 518
HNCN VQZ+VTZ
ν1 3304 3313 3308
ν2 1881 1781 1773
ν3 1188 1131 1137
ν4 1019 1037 1030
ν5 491 472 473
ν6 470 461 465
H2BO VQZ+VTZ
ν1 2312 2327 2331
ν2 1384 1355 1354
ν3 949 975 988
ν4 881 912 900
ν5 2323 2364 2368
ν6 545 547 564
F2BO aVQZ+VTZ
ν1 1372 1427 1425
ν2 842 873 873
ν3 442 462 460
ν4 648 662 659
ν5 1330 1427 1423
ν6 362 389 387
Cl2CN VQZ+VTZ
ν1 1710 1577 1575b

ν2 564 589 583b

ν3 363 364 364b

ν4 495 492 490b

ν5 776 828 837b

ν6 281 283 283b

a Anharmonic corrections at the B3LYP/N07D level. b Anharmonic
corrections computed with CCSD(T) harmonic frequency and 3rd and
4th force constants obtained at the B3LYP/N07D level.

Table 6. Performances of Modern Density Functionals in
the DFT/N07D Modelsa

DFT/N07D CCSD(T)harm + DFTanh

MAE [cm-1] Harm Anh DPT2 InFreq

B3LYP 15.0 14.5 2.4 4.1
B3LYP-D 19.9 18.7 4.0 4.3
CAM-B3LYP 20.0 24.3 4.4 3.0
PBE0 19.6 22.3 4.9 3.6
LC-ωPBE 50.9 61.1 11.5 6.5
M06 25.2 23.2 13.9 15.3
M06-2X 25.5 74.9 54.0 52.4
wB97 39.0 31.4 18.6 23.5
wB97X 33.7 27.1 12.4 15.7
wB97XD 21.9 26.5 17.3 20.0
HSE06 17.6 20.9 6.0 4.7

a Mean absolute error (MAE) with respect to CCSD(T) computa-
tions over all normal modes of H2CN, NH2

+, and FCS.
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from B3LYP and PBE0, together with the recently introduced
HSE06, yield accurate anharmonic frequencies, with MAEs
as low as 3-7 cm-1. It should be noted that, in the case of
the LC-ωPBE model, such good agreement can be achieved
only by the InFreq approach, due to large errors in harmonic
frequencies. In contrast, recently developed functionals
belonging to the M06 and wB97 families yield significantly
less accurate results, with MAEs in the range 12-55 cm-1,
and with discrepancies up to 150 cm-1, thus far off the
accuracy required for spectroscopic studies. It is also
noteworthy that the performance of M06 functionals is
significantly worsened by the addition of Hartree-Fock
exchange (2X). A further check of the above conclusions
has been performed by comparing frequencies obtained using
DFT/N07D models with much more expensive DFT/aug-
cc-pVTZ computations. The results are listed in Table 7 for
the H2CN radical showing that indeed the large errors in
anharmonic corrections obtained at the M06/N07D and
wB97/N07D levels are not removed by the larger basis set.

4. Conclusions

The present paper has been devoted to the validation of the
DFT/N07D and hybrid CCSD(T)/DFT models for studying

vibrational properties of free radicals. In this respect, we have
chosen several small radicals containing first- and second-
row elements for which it was possible to compare meth-
odologies rooted in the density functional theory with
computations at the CCSD(T) level. At the same time,
comparison with several experimental results allowed ex-

Figure 1. Performance of different density functionals in prediction of vibrational frequencies beyond harmonic approximation.
(a) Perturbative computations performed fully at the DFT level. (b) Hybrid CCSD(T)+DFT scheme. Relative discrepancies from
the values computed at the CCSD(T) level are shown for each normal mode of H2CN, NH2

+, and FCS, which are listed according
to their wavenumbers.

Table 7. Harmonic Frequencies and Anharmonic
Contributions Computed by Several Modern Density
Functionals with N07D and aug-cc-pVTZ Basis Setsa

harmonic frequencies anharmonic contribution

MAE [cm-1] N07D aVTZ N07D aVTZ

B3LYP 10.4 20.4 2.9 3.5
B3LYP-D 16.5 26.6 6.7 7.4
CAM-B3LYP 19.7 15.8 5.6 6.3
PBE0 14.7 16.5 6.6 7.2
LC-ωPBE 43.8 29.9 12.3 12.7
M06 24.0 36.4 26.0 20.6
M06-2X 20.7 12.7 55.5 66.2
wB97 35.9 28.9 31.4 23.0
wB97X 31.1 22.7 21.4 16.5
wB97XD 17.8 11.0 30.5 24.7
HSE06 13.5 16.0 6.7 6.2

a Mean absolute errors (MAE) with respect to benchmark results
from CCSD(T) computations for the H2CN radical.

Harmonic/Anharmonic Vibrational Frequencies J. Chem. Theory Comput., Vol. 6, No. 3, 2010 835



ploration of the ability of the DFT/N07D and CCSD(T)/DFT
models to critically analyze results from spectroscopic
studies. It has been shown that the accuracy of the CCSD(T)
model is nearly the same for closed- and open-shell systems:
this finding is by itself significant since the reliability of
experimental data is usually strongly reduced when going
from closed-shell to open-shell systems, essentially because
of the short lifetime of the latter ones. On the other hand,
the B3LYP/N07D model is fairly robust for geometries and
harmonic and anharmonic frequencies and becomes nearly
quantitative when used only for anharmonic contributions
to be added to harmonic force fields obtained at more
sophisticated levels. Furthermore, extension of the N07D
basis set has only marginal effects, and the use of other
functionals (including the most recent ones) does not improve
the results. As a matter of fact, some of the most successful
last generation functionals (M06-2X and wB97X) provide
quite disappointing results: this suggests that vibrational
frequencies should be added to the databases used for the
optimization of parameters in this kind of functionals. In
conclusion, we think that the B3LYP/N07D model can
represent a very effective tool coupling a remarkable
reliability in the computation of geometric and vibrational
properties of organic and inorganic free radicals with a very
favorable scaling with the number of electrons. Furthermore,
empirical dispersion terms (leading to B3LYP-D) can be
added without worsening the performances of the model
whenever dispersion interactions come into play. The
relatively low computational cost of the B3LYP/N07D
computational model allows taking into proper account the
vibrational effects beyond the harmonic approximation even
for quite large systems of biological and/or technological
interest.
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Abstract: Electronic excitation energies are often significantly affected by perturbing surround-
ings such as, for example, solvent molecules. Correspondingly, for an accurate comparison
between theory and experiment, the inclusion of solvent effects in high-level theoretical
predictions is important. Here, we introduce the CCSDR(3)/MM model designed for an effective,
flexible, and accurate prediction of electronic excitation energies in solution. The method is based
on a hybrid coupled cluster/molecular mechanics (CC/MM) strategy including interactions
between a solute described by CC methods and a solvent described by polarizable MM methods.
The CCSDR(3)/MM includes triples effects in a computational tractable noniterative fashion.
The resulting approach allows for both high-accuracy inclusion of triples effects and inclusion
of solute-solvent interactions with polarization effects, as well as being applicable for averaging
over many solvent configurations derived from, for example, molecular simulations. We test the
proposed model using as a benchmark the two lowest-lying valence singlet excitations (n f π*
and π f π*) of acrolein, formamide, and N-methylacetamide in aqueous solution as well as
liquid water, demonstrating how a systematic inclusion of many different effects leads to good
agreement with experimental values. In doing so we also illustrate the theoretical challenges
involved when investigating UV properties of solvated molecules.

1. Introduction

In traditional quantum chemistry the major focus is on
obtaining accurate energies and properties of isolated mol-
ecules. However, facing the experimental demand of solVated
molecules while simultaneously requiring a flexible descrip-
tion of the one- and N-electron space poses a formidable
challenge to modern quantum chemistry. Brute-force large-
scale macromolecular calculations using high-accuracy ab

initio theory are currently unfeasible for the most popular
methods. Therefore, many schemes have been suggested in
order to incorporate the perturbing effects of the surroundings
in an approximate fashion.1 One successful approach is based
on the combined quantum mechanics/molecular mechanics
(QM/MM) scheme,2,3 which is also the approach we follow
in this study. The QM part is defined as the chemically most
important region. Therefore, invoking the well-established
CC approximation is very satisfactory from a theoretical point
of view. Combined with molecular mechanics, CC/MM
allows for an accurate calculation of molecular properties.
The development of CC/MM and similar methods is an
active research area,4–9 and in this work we consider further
development of a strategy that includes polarization interac-
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tion between the QM and MM systems in the context of
electronic excitation energy calculations.

The development of systematic CC models is an essential
tool for the continuing investigation of molecular properties.
Especially, these models serve as a reference for the
computationally less expensive density functional theory
(DFT) methods. In a series of papers,10,11 the CC hierarchy
of modelssCCS, CC2, CCSD, and CC3swas established
and tested in benchmark calculations.12 It was also shown
in past publications13 how a noniterative analogue to CC3,
CCSDR(3), could be designed providing excitation energies
of seemingly similar quality to the CC3 model. The
CCSDR(3) model is more appealing from a computational
perspective as it incorporates effects due to triply excited
configurations (henceforward denoted triples effects) in a
noniteratiVe fashion. The usefulness of CCSDR(3) and its
ability to give very similar excitation energies to CC3 has
recently been confirmed by Sauer et al. in an extensive study
of medium-sized organic molecules.14 The CC3 and CCS-
DR(3) methods were derived in a response theory framework.
Related frameworks include equation-of-motion CC (EOM-
CC)15 (providing CCSD excitation energies identical to CC
response theory) and symmetry adapted cluster/configuration
interaction (SAC-CI).16 Over the years a number of other
approximate methods for inclusion of higher excitations in
coupled cluster calculations of electronic excitations have
been suggested also within these frameworks; see the lists
in refs 8, 15, 17–19. A few of these have been successfully
combined with a point-charge description of the surroundings
and applied for instance in a study of the excited states of
uracil8 as well as in a retinal proteins investigation.20 Here,
we maintain the focus on CCSDR(3) and introduce the
CCSDR(3)/MM model designed especially for the calculation
of excitation energies in solution, and we stress the inclusion
of polarization effects in addition to point charges.

In order to rigorously compare with experiment, it is
mandatory to account for the effect of dynamics. This is
routinely done by molecular dynamics (MD) or Monte Carlo
sampling techniques, where the effect of the surroundings
(here a solvent) is accounted for by a force field. Extracting
conformations allows for an approximate sampling of the
actual molecular environment by ultimately averaging the
properties at hand over the conformations in a suitable
fashion. This averaging requires many single-point calcula-
tions, emphasizing further the need for efficiency and thus
the attractiveness of a noniterative triples approach like
CCSDR(3) relative to an iterative approach.

Recently, some of us published21 an extensive study of
s-trans-acrolein, where the two lowest-lying singlet excita-
tions were categorized in great detail. In the present study
we use the same molecular geometries as in the former
investigation, allowing us to directly ascertain the effects of
triples in the aforementioned excitations energies. As a
further test of the model, we also calculate electronic
excitation energies and oscillator strengths of two amides,
formamide and N-methylacetamide (NMA), demonstrating
in the process the challenges involved in both the theoretical
assignment of valence excitation energies as well as the direct
comparison with experiment. Finally, we also investigate

liquid water formerly studied by some of us without inclusion
of triples.22,23

This paper is organized in the following way: In section
2.1 we outline the CC approximation and the use of CC
response theory to calculate vertical excitation energies,
including a definition of an excitation energy in CCSDR(3).
In section 2.2, we briefly review the inclusion of solvent
effects in the CC methodology, ending the section by defining
the CCSDR(3)/MM model. In section 3, we outline the
computational details, while we present the calculated values
for solvated acrolein, formamide, NMA, and liquid water in
section 4. Finally, section 5 contains the concluding remarks.

2. Theory

2.1. Excitation Energies in Coupled Cluster Theory.
In conventional CC theory for isolated molecules the energy
and amplitude equations take the form

where |HF〉 is the Hartree-Fock reference state, T̂ ) ∑µ, itµi
τ̂µi

is the cluster operator, and 〈µi| is the excitation projection
manifold. In the CCSD approximation i ) 1, 2, such that
the cluster operator is approximated to include only singles
and doubles excitations T̂ ) T̂1 + T̂2. The basic CC
approaches are now textbook material, and we refer to ref
24 for further detail.

In response theory, the excitation energies for the exact
wave function are found as poles of the linear response
function. Similarly for approximate CC wave functions, the
excitation energies are found by solving the CC response
eigenvalue equations either for the right eigenvector

or for the left eigenvector

Here A is the CC asymmetric Jacobian

Using this definition of the Jacobian, we note that the
identification of the eigenvalues of the CC Jacobian as the
excitation energies holds also for intermediate models such
as CC2 and CC3.25 Choosing the excitation vectors to be
biorthonormal, LiRj ) δij, the excitation energy can be
written as

A careful analysis of the order of the excitation energies
in the CCSD model (see, for example, ref 11) reveals that
the singles- and doubles-dominated excitations are correct
through second and first order in the ground state fluctuation
potential, respectively. In the CC3 and CCSDR(3) models,11,13

on the other hand, the most important (in a perturbational
sense) triples contributions are included such that both

ECC(t) ) 〈HF|Ĥ exp(T̂)|HF〉 (1)

eµi
(t) ) 〈µi|exp(-T̂)Ĥ exp(T̂)|HF〉 ) 0 (2)

ARk ) ωkRk (3)

LkA ) Lkωk (4)

Aµiνj
) 〈µi|exp(-T̂)[Ĥ, τ̂Vj

]|CC〉 (5)

ωk ) LkARk (6)
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models yield excitation energies correct to third and second
order for the single- and double-dominated excitations,
respectively.

In short, the iterative CC3 model is defined by invoking
two approximations compared to the full CCSDT model: (1)
the form of the singles and doubles amplitude equations is
retained while the triples amplitude equation is restricted to
the terms entering in lowest nonvanishing order in the
fluctuation potential (second order), and (2) the singles are
treated as zeroth-order parameters, thus implicitly accounting
for orbital relaxation due to an external potential giving good
response functions.

The main drawback of CC3 is the iterative N7-scaling step
motivating the development of the noniterative analogue:
CCSDR(3).13 The CCSDR(3) excitation energy is defined
as

Here ωSD is the CCSD excitation energy while LSD and
RSD are CCSD response eigenvectors and

In eq 7 we have implied a partitioning of the Hamiltonian
into the Fock operator and the fluctuation potential Ĥ ) F̂
+ Û.

Ũ is in turn a T1 similarity transformed operator according
to

ASD(t1*, t2*) is the CCSD Jacobian constructed with the
triples-corrected amplitudes defined as

where T̂3 is constructed on-the-fly from the CCSD amplitudes
according to

where a canonical representation has been implied. ωµi

contains orbital energy differences between occupied and
virtual orbitals. In the CCSDR(3) approximation, a one-step
perturbative correction is applied while this same correction
is performed until convergence in the CC3 model.

In passing, we note that the excitation energies are no
longer found as poles of any response functions due to the
perturbational nature of CCSDR(3).

2.2. Environmental Effects. In order to include the
effects of a surrounding environment, in the present case a
solvent, a set of interaction terms are augmented to the
vacuum energy expression. This implies a partitioning of the
terms into a vacuum and a solvent part. This partitioning
carries over to the Jacobian such that the total Jacobian may
be written as

where the form of Avac is still given by eq 5, but using the
in-solution amplitudes, while the solvent Jacobian is given
by

The effective operators T̂g and T̂gνj are introduced as

where we have applied the auxiliary state 〈Λ| ) (〈HF| +
∑iµi

tjµi
〈µi|) exp(- T̂). The notation used here is very general

and is used due to the flexibility, allowing for a simultaneous
description of the CC/MM model as well as the more
simplified dielectric continuum description of the surround-
ings, denoted the CC/DC model.26 In the latter implicit
description of the solvent, the solute is placed in a (spherical)
cavity surrounded by a continuum described by a dielectric
constant. This may in eqs 14 and 15 be represented by
dropping the term with the summation over p and letting
the sum over q represent a multipole expansion for the charge
distribution of the solute, thus implying that in the case of
CC/DC Ŷq ) Ẑq are related to multipole operators. The
explicit CC/MM model describes the surroundings using a
molecular mechanics force field such that the effective
operators in eqs 14 and 15 describe the electrostatic interac-
tion between solute and solvent. Thus, the sum over p is
related to the partial charges distributed in the MM region
while the effects of polarization are incorporated in the sum
over q. In both cases concrete expressions of these operators
can be found in ref 5. We emphasize that the appearance of
the solvent Jacobian in eq 12 is a direct consequence of the
explicit inclusion of polarization effects thorugh the polar-
izabilities. If no polarization is included (e.g., a simple point-
charge model), no extra term in the Jacobian appears
provided that the partial point-charges have been absorbed
into the Hamiltonian, and it would be sufficient to use the
in-solution amplitudes in the expression for the vacuum
Jacobian. Clearly, this more widespread approximation leads
to much simpler equations, but here it is not taken as default.

In a straightforward CC3 approach, one would iteratively
introduce the effects of triples in both the description of the
solute and the solute-solvent interaction terms. However,
it is currently intractable to perform such high-accuracy

ω ) LSDASD(t1*, t2*)RSD+ ∑
µi,i)1,2

Lµi

SD ∑
V3

×

〈µi|[Ũ*, τ̂V3
]|HF〉〈ν3|[Ũ*, R̂2

SD] + [Ũ*, R̂1
SD], T̂2*|HF〉

ων3
- ωSD

+

∑
µ2

Lµ2

SD〈µ2|[[Û, R̂1
SD], T̂3*]|HF〉 (7)

R̂i
SD ) ∑

νi

Rνi

SDτ̂νi
for i ) 1, 2 (8)

Ũ ) exp(-T̂1)Û exp(T̂1) (9)

tµi
* ) tµi

SD +
〈µi|[H̃, T̂3]|HF〉

ωµi

(10)

tµ3
) -

〈µ3|[Ũ, T̂2]|HF〉
ωµ3

(11)

Atot ) Avac + Asolv (12)

Aµiνj

solv ) 〈µi|exp(-T̂)[T̂g, τ̂νj
]|CC〉 + 〈µi|exp(-T̂)T̂gνj|CC〉

(13)

T̂g ) ∑
p

λpX̂p + ∑
q

γq(〈Λ|Ẑq|CC〉Ŷq + 〈Λ|Ŷq|CC〉Ẑq)

(14)

T̂gνj ) ∑
q

γq(〈Λ|[Ẑq, τ̂νj
]|CC〉Ŷq + 〈Λ|[Ŷq, τ̂νj

]|CC〉Ẑq)

(15)
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triples corrections, and we herein propose a CCSDR(3)/MM
model which explicitly incorporates triples corrections in a
noniterativefashionfor thesoluteonly,while thesolvent-solute
interaction is essentially described at the CCSD/MM level.
Thus, we use the CCSD/MM vectors, in place of the vacuum
CCSD vectors, as well as the triples-corrected operators in
eq 7 and obtain a highly flexible description of the excitation
energies of a molecule in a solvent. The proposed CCSDR(3)/
MM model is illustrated in Figure 1.

3. Computational Details

The theory outlined in the previous section is here illustrated
using various molecular systems: acrolein in aqueous solu-
tion, formamide in aqueous solution, NMA in aqueous
solution, and liquid water. The effects of introducing a water
solvent are incorporated by using molecular mechanics. The
strategy behind the current QM/MM implementation is as
follows: First, we determine partial charges and polarizabi-
lites to be placed in the MM region. The latter are the key
ingredient for determining induced dipoles allowing for a
description of polarization between the two subsystems.
Using these parameters a force field is constructed and
subsequently applied in a molecular dynamics (MD) simula-
tion using suitable settings for the macroscopic parameters
(T, V, etc.), thus effectively simulating the effects of a
nonzero temperature. From this simulation a set of 120
uncorrelated configurations, sufficient to obtain converged
excitation energies,21 is extracted and stored independently.
Next we perform 120 independent QM/MM calculations until

certain convergence criteria are satisfied; e.g., in the present
implementation the induced dipoles are converged. Finally,
we perform a statistical analysis of the 120 different
excitation energies and oscillator strengths in order to
estimate a number for the final valence excitation energy.

However, a straightforward averaging procedure over the
different excitation energies ordered with respect to energy
is problematic. Indeed, the excitations often become heavily
mixed, as discussed in the next section. Thus, often it is very
difficult to estimate a single vertical transition energy using
a simple averaging technique. However, we may still
construct a spectrum of the solvated sample, and to do so
we introduce a broadening of the stick spectrum. We do this
by assigning an explicit broadening using for each state of
each configuration a Gaussian function of a finite width23

(for simplicity fixed to 0.1 eV for all states in all molecules)
designed such that the integral of each Gaussian gives the
oscillator strength. We note that this identification is
somewhat arbitrary and may be altered at our convenience
if better resemblance to the experimental spectrum is strived
for. The final spectrum will thus consist of a superposition
of these distributions appropriately scaled by the inverse of
the number of configurations to describe the averaged
spectrum. Thus, the integral of the superposed Gaussians will
give the averaged oscillator strength if one well-separated
state is studied. This procedure has the advantage of giving
a well-defined spectrum also in the case of mixed states,
where the calculation of an average oscillator strength is
problematic. The absorption strengths reported in some
figures are the oscillator strength distributions as defined
above. Finally, we compare the position of the band
maximum to experiment, and if the experimental spectrum
is readily available, we include a (scaled) version for ease
of comparison. Note that we do not aim for exact agreement
between the theoretical and experimental spectra, since we
do not incorporate effects like vibronic coupling known to
potentially change the appearance of the spectrum.

A basis set investigation21 revealed that the basis set aug-
cc-pVDZ27 is sufficient for the description of the excitation
energies of interest in acrolein. Similarly, for the NMA
molecule we also apply the aug-cc-pVDZ basis, while we
further augment diffuse functions (d-aug-cc-pVDZ) for the
description of formamide. Finally, for the smaller water
molecule the large d-aug-cc-pVTZ basis set is used.22 We
aim solely at improving the N-electron space, while the
choice of basis set is kept fixed. All calculations use frozen
1s orbitals for the heavy atoms. Furthermore, a spherical
cutoff radius of 12 Å (corresponding to the nearest 230-240
water molecules) is applied in all the QM/MM calculations.
The geometry of the QM molecule(s) were all found using
B3LYP/aug-cc-pVTZ accounting for the bulk solvent effects
by using the familiar polarizable continuum model (PCM).
The partial charges and polarizabilities were also determined
at the B3LYP/aug-cc-pVTZ level of theory using the
CHELPG procedure28 and the LOPROP approach,29 respec-
tively. The Lennard-Jones parameters were taken from refs
30 and 31. The applied force fields were SPCpol for acrolein,
formamide, and NMA, while TIP3P was used for liquid
water. Further details on the MD simulations may be found

Figure 1. Overview of the proposed CCSDR(3)/MM model.
See the text for definitions.
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in ref 21. All vacuum calculations presented in the following
are based on B3LYP/aug-cc-pVTZ-optimized geometries, as
was also the case in the previous study of acrolein.21

The MD simulations have been performed using the
MOLSIM program package.32 The distributed polarizabilities
were determined using the MOLCAS program.33 The used
QM/MM scheme was described in refs 34 and 35 and
implemented in the DALTON quantum chemistry package.36

The MIDASCPP program37 has been used for preparing the
input and the final statistical analysis of the data. Finally,
the Gaussian 03 package38 has been used for both finding
the partial charges as well as optimizing the singlet excited
states in order to estimate zero-point vibrational corrections
to the energy.

4. Results

4.1. Acrolein in Aqueous Solution. As a first application
of the CCSDR(3)/MM model, we make a thorough inves-
tigation of the two lowest-lying excitation energies of the
acrolein molecule. In ref 21 it was found that the CAM-
B3LYP functional compared well with findings using CCSD,
with the obvious benefit of being much less computationally
demanding, thus allowing for full QM calculations with as
much as 12 water molecules in the QM part of the system.
It was shown that this was indeed necessary in order to
converge the πf π* excitation energy, suggesting that this
transition is dominated by nonelectrostatic contributions. In
that paper, there is still small discrepancies between the
converged CAM-B3LYP MD QM/MM(SPCpol) 12
(H2O)QM and the experimental findings; these are the
discrepancies we target by including triples. However,
carrying out calculations on such large QM regions is not
attractive, and the idea would thus be to estimate the

contribution from a large QM solvent shell from CAM-
B3LYP calculations. This will be clarified in the following.

Before this we note that it is not straightforward to
compare theoretical and experimental values. First of all, in
experiments a transition between electronic states is char-
acterized by a relatively broad peak, making it difficult to
directly deduce a vertical excitation energy; one has to
assume this corresponds to the point of maximum absorption.
As noted in ref 21, it is problematic to determine this
maximum for the π f π* transition in acrolein uniquely.
As is clear from the experimental spectrum in Figure 2, the
point of maximum absorbance is better described as an
interVal of maximum of absorbance with a length of
approximately 0.5 eV, hence representing a substantial
uncertainty considering the high level of theory used in this
work. Second, effects due to intramolecular vibrations and
the vibrational structure of the band are not included in the
theoretical predictions.

With these words of caution we proceed by reporting the
n f π* excitations in Table 1. We note that this excitation
is already fairly well described at the CCSD level. In Table
1 we also report the shifts referenced to acrolein in vacuum
as well as the experimental and calculated values from ref
21.

It is seen that triples effects serve to lower the absolute
values by about 0.1 eV, while the solvent shift is essentially
unaltered. The shift is in good agreement with experiment,
while the absolute value still is in disagreement by ap-
proximately 0.1 eV. Considering that this discrepancy is also
present in the case of the vacuum transition, it is most
probably not due to an insufficient solvent description but
is related to the vibrational structure of the band not included
in these calculations. This point is emphasized when
considering the previously mentioned CAM-B3LYP calcula-

Figure 2. Acrolein spectrum n f π* and π f π* calculated at the CCSD/MM, CCSDR(3)/MM, and CAM-B3LYP/MM level of
theory. For completion, an inset of the spectrum on a different scale is included. Also included is a scaled version of the
experimental spectrum. See the text for details.
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tions on acrolein,21 which are also included in Table 1.
Explicitly, it is noted that the n f π* has no significant
contribution from water molecules when these are explicitly
included in the QM part.

Finally, we note that a recent CASSCF//CASPT2 inves-
tigation39 gave vacuum and solvated n f π* transition
energies of 3.77 and 3.96 eV, respectively, thus providing a
shift in good agreement with those presented Table 1.

We now turn our attention to the π f π* excitation in
Table 1. Comparing the CCSDR(3) and CCSD calculated
values, we see a larger effect of triples excitations for this
state, resulting in a lowering of approximately 0.2 eV for
the absolute excitation energy. As for the nf π* transition
the impact of triples is close to being canceled when
considering solvent shifts rather than absolute values of the
excitation energies.

Focusing on the shifts we see that, compared to the
experimental values, the CCSDR(3) values are still somewhat
off, suggesting that the remaining error is not due to triples
effects but rather due to the nonelectrostatic nature of the
interaction between this excited state and the solvent.

We estimate the size of this effect by taking the difference
between two CAM-B3LYP calculated excitation energies.
We subtract the excitation energy found with a QM region
including only acrolein itself from a large-scale QM calcula-
tion (12 water molecules treated quantum mechanically; see
ref 21 for a justification for the size of the QM system). This
contribution will be added to the excitation energy found
using CCSDR(3) including also only acrolein in the QM
region. The results are included in Table 1 and this extra
contribution is labeled Enonel(CAM-B3LYP-SPCpol). For
completion, we have included the nf π* nonelectrostatically
corrected excitation energies. We see that the shifted values
with the nonelectrostatic correction are almost identical to
the experimental values. Though this final agreement between
theory and experiment is comforting, one should not
overemphasize this. Especially, we note that since the CCSD/
MM and CCSDR(3)/MM solvent shifts only differ by
approximately 0.02 eV we could have performed a similar
estimate for the CCSD/MM excitation energy shifts. Large-
scale CAM-B3LYP calculations turned out in this case to
be a very efficient and economical way to estimate the
nonelectrostatic effects not included in the (purely electro-
static) interaction between the QM and MM subsystems.

Now changing our focus to the absolute excitation energies
in the gas phase, we see that they are still alluding us by

almost 0.3 eV as compared with experiment. This deviation
might suggest that the remaining contribution is not con-
nected with the lack of electron correlation but rather has to
do with geometry effects (all QM calculations are performed
on B3LYP-optimized structures as in ref 21) and the lack of
vibrational structure of the band (including zero-point energy
contributions).

Consequently, we have estimated the zero point vibrational
contribution (ZPVC) to the lowest-lying singlet excited state
for acrolein in a vacuum. Using CIS/6-311++G(d,p) to
optimize the excited state structure followed by an evaluation
of the vibrational frequencies, we estimate this contribution
to be -0.11 eV, which combined with the CCSDR(3)
vacuum excitation energy (3.81 eV - 0.11 eV ) 3.70 eV)
is in excellent agreement with experiment (3.69 eV). The
vibrational structure of the second excited state is noteworthy
more complex, as also noted elsewhere.40 However, using
the vibrational frequencies available in ref 40 at the CASSCF/
cc-pVTZ level of theory as well as performing an analogous
calculation for the ground state (see ref 40 for details on the
active space) we are able to estimate a ZPVC of ap-
proximately -0.14 eV, which combined with the CCSDR(3)
calculated excitation energy (6.73 eV - 0.14 eV ) 6.59 eV)
is in satisfactory agreement with experiment (6.41 eV) when
recalling the very diffuse nature of the experimental band.
The fact that CAM-B3LYP is in such good agreement
without inclusion of these effects is perhaps a little worrisome
but nevertheless very remarkable.

On the basis of oscillator strengths from CCSD/MM
calculations, we have also constructed CCSDR(3)/MM
spectra for acrolein in aqueous solution. In Figure 2 the
CCSD/MM as well as CCSDR(3)/MM spectra are given. We
recall that the spectra are calculated by representing each

Table 1. Overview of the Reported Excitation Energies for the n f π* and π f π* Excitation Energies (in eV) of Acrolein in
Vacuum and Water Solution and Corresponding Solvent Shiftsa

ref method vacEex
n f π* liqEex

n f π* ∆Eex
n f π* vacEex

π f π* liqEex
π f π* ∆Eex

π f π*

Aidas et al.21 CAM-B3LYP MD QM/MM(SPCpol) 0 (H2O)QM 3.78 4.14 0.36 6.41 6.13 -0.28
CAM-B3LYP/MM(SPCpol) 2 (H2O)QM 4.04 0.26 6.07 -0.34
CAM-B3LYP/MM(SPCpol) 12 (H2O)QM 4.04 0.26 5.95 -0.46

present work CCSD MD QM/MM(SPCpol) 0 (H2O)QM 3.91 4.16 0.25 6.87 6.54 -0.33
CCSD/MM(SPCpol) 2 (H2O)QM 4.15 0.24 6.51 -0.36
CCSDR(3)/MM(SPCpol) 0 (H2O)QM 3.81 4.07 0.26 6.73 6.38 -0.35
CCSDR(3)/MM(SPCpol) 2 (H2O)QM 4.06 0.25 6.35 -0.38
CCSDR(3)/MM(SPCpol) 0 (H2O)QM + Enonel

(CAM-B3LYP-SPCpol)
4.08 0.27 6.22 -0.51

expt21 3.69 3.94 0.25 6.41 5.90 -0.52

a Also included are the values calculated in a related previous study as well as experimental results.

Table 2. Lowest-Lying Singlet Excitation Energies (in eV)
for Water in Vacuum and the Liquid Phase as Well as the
Corresponding Solvatochromic Shift Calculated in a
Hierarchy of CC Methods as Well as with DFT

ref method vacEex
Ã liqEex

Ã ∆Eex
Ã

present work B3LYP/MM 6.90 7.43 0.53
CAM-B3LYP/MM 7.13 7.72 0.59
CC2/MM 7.25 7.86 0.61
CCSD/MM 7.62 8.25 0.63
CCSDR(3)/MM 7.61 8.25 0.64

expt42 7.4 8.2 0.8
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state for each structure by a Gaussian whose integral is
proportional to the oscillator strength.

It is evident that the inclusion of triples red-shifts the band.
Due to symmetry reasons the nf π* transitions in carbonyl
compounds are typically weak and it is therefore of no
surprise that the oscillator strength (not given explicitly here)
of the n f π* excitation is approximately 3 orders of
magnitude smaller than for the π f π* transition demon-
strated by the inset in Figure 2. Finally, we have also included
the CAM-B3LYP/MM spectrum in Figure 2.

4.2. Liquid Water. We have also investigated the elec-
tronic spectrum of water with the CCSDR(3)/MM model.
We will focus only on the lowest-lying excitationsin the
literature often labeled Ãssince this, as discussed in ref 23,
is well-separated (by approximately 1 eV) from the remaining
ones. In Table 2 we show the lowest-lying excitation energy
calculated for liquid water modeled explicitly by one water
molecule being treated quantum mechanically while the
remaining ones are treated classically. We see that for this
system DFT gives far too low excitation energies stemming
from the partly Rydberg nature of the electronic transitions
in water. This is not surprising, since the approximate

exchange functionals used in DFT contain spurious electronic
self-interaction terms which previously have been noted to
give too low Rydberg excitation energies.41 On the contrary,
full inclusion of doubles in the CCSD model markedly
increases the excitation energies while the final inclusion of
triples has only fine-tuning effects of approximately 0.03 eV.
This conclusion is even more apparent in Figure 3, where
we have superimposed four theoretical spectra at the CC2/
MM, CCSD/MM, CCSDR(3)/MM, and CAM-B3LYP/MM
level of theory, respectively, as well as a recreation of the
experimental spectrum.42 Going from CC2 to CCSD clearly
results in a blue-shifting of the bands, while inclusion of
triples effects leaves an almost identical spectrum compared
to CCSD. This is as expected considering the electronic
structure of water. We also note that the CAM-B3LYP
spectrum is red-shifted as compared to the CC2 spectrum,
thus emphasizing the underestimation of the excitation
energies of water when described by DFT.

In experiment, the location of the two lowest-lying
excitations is approximately 8.2 eV in good agreement with
the calculated Ã excitation energy.

4.3. Formamide in Aqueous Solution. Drawing on the
conclusions from the acrolein investigation, we apply the
CCSDR(3)/MM model on formamide. We especially compare
CCSDR(3)/MM and CAM-B3LYP results and the resulting
spectra. In most amides the spectrum is characterized by, besides
a multitude of Rydberg transitions, a very intense π f π*
transition and a very weak nf π* transition. Upon introduction
of a polar solvent (e.g., water) these two valence transitions
are red- and blue-shifted, respectively. Consequently, the weak
nf π* transition is hidden below the much stronger πf π*
band, naturally complicating a thorough characterization of this
vertical transition. Therefore, we here perform an extensive

Figure 3. Water spectrum, with the lowest-lying excitations in water averaged over 120 configurations calculated at CC2/MM,
CCSD/MM, CCSDR(3)/MM, and CAM-B3LYP/MM levels of theory. Also included is a scaled version of the experimental spectrum.

Table 3. Overview of the Reported Excitation Energies for
the n f π* and π f π* Excitation Energies (in eV) of
Formamide in Vacuum and Water Solution and
Corresponding Solvent Shiftsa

method vacEex
n f π* liqEex

n f π* vacEex
π f π* liqEex

π f π*

CAM-B3LYP/MM(SPCpol) 5.59 5.97 7.69 7. 45b

CCSD/MM(SPCpol) 5.70 6.15 7.58 7.16
CCSDR(3)/MM(SPCpol) 5.69 6.13 7.69 7.09
Expt43,48 5.8 5.2-5.9 7.4 >6.5

a Also included are the experimental results. b Assignment
based on spectrum.
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analysis of the degree of mixing between the excited states
energies and take measures accordingly when estimating the
valence excitation energies. In doing so we also hope that the
technical challenges involved in simulating realistic spectra of
solvated samples are illuminated.

In Table 3 we have included the calculated excitation
energies of the lowest-lying valence excitations in forma-
mide. For the n f π* excitation there is a discrepancy
between the calculated vertical excitation energy and the
experimental energy of maximum absorption of approxi-
mately 0.1 eV. Given that inclusion of triples effects takes

us further away from the experimental value, we conclude
that the remaining effects are not due to dynamical correla-
tion. Similarly, for the π f π* transition the CC and DFT
models are in disagreement with experiment by approxi-
mately 0.3 eV, where we again see that inclusion of triples
does not improve the description of the excitation energy as
compared to experiment. On the basis of the acrolein study
it seems likely that the remaining disagreement between
theory and experiment is due primarily to ZPVC effects.
Actual calculations, implying yet another excited state
optimization, is beyond the scope of this paper.

Figure 4. Distribution of the 10 lowest-lying excitation energies in 120 different configurations of formamide solvated in water
described using CCSDR(3)/MM and CAM-B3LYP/MM, respectively.

Figure 5. CCSD/MM, CCSDR(3)/MM, and CAM-B3LYP/MM spectra of aqueous formamide with insets in different scale to
illustrate the weak n f π* transition.
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Instead we focus on the analysis of the CCSDR(3)/MM
results. In Figure 4 we show the distribution of the excitation
energies in the 120 different configurations. In this figure
we do not directly observe the weak nf π* transition since
(1) it is well-separated (lower) in energy from the rest and
(2) the oscillator strengths are several orders of magnitude
smaller than the other valence excitation. Therefore, it is
straightforward to find a point of maximum absorption by
averaging the lowest-lying excitation energy in all the
configurations, thus obtaining a value of 6.13 eV. However,
the second lowest excitation energy does not always cor-
respond to a π f π* transition (based on the size of the
oscillator strength). That being said, the mixing only occurs
for a relatively few number of configurations and it is still
possible to estimate a πf π* excitation energy by an explicit
averaging over the second-lowest excitation energy obtaining
a value of 7.09 eV. Also depicted in Figure 4 is a similar
analysis using CAM-B3LYP as opposed to CCSDR(3) for
the description of the QM region. We observe that for CAM-
B3LYP it is essentially impossible to deduce a pure π f
π* transition, as the excitation energies are heavily mixed,
preventing any meaningful averaging. Finally, we may
construct a full spectrum; indeed, one might argue that it is

the only viable option in cases where the Rydberg transitions
and valence transitions are so heavily mixed. The final
spectra for CCSD/MM, CCSDR(3)/MM, and CAM-B3LYP/
MM are shown in Figure 5. We note that a peak correspond-
ing to the n f π* is located at approximately 6.1 eV for
CCSDR(3)/MM and at 6.0 eV for CAM-B3LYP/MM. The
π f π* excitation energy is peaked at approximately 7.1
eV for CCSDR(3)/MM and 7.5 eV for CAM-B3LYP/MM.
Also, in the CAM-B3LYP/MM spectrum we observe a small
kink on the low-energy side of the strong π f π* band. In
the experimental spectrum43 a band in the tail of the π f
π* band is observed from 5.2 to 5.9 eV and assigned to the
nf π* transition. This is somewhat lower than our predicted
values. For the π f π* excitation energy no experimental
details are available, except that it is located above 6.5 eV,
as predicted by both models. Finally, we note the application
of other methods for calculating vertical excitation energies
and shifts. In particular, a macroscopic continuum CASSCF//
CASPT2 investigation44 gave n f π* and π f π* vertical
transition energies of 5.54 and 6.95 eV, respectively, while
a Monte Carlo INDO-CIS calculation45 provided extrapolated
solvent shifts of 0.2 eV and -0.1, respectively.

4.4. NMA in Aqueous Solution. As a further test of
CCSDR(3)/MM, we investigate the spectrum of a slightly
more complicated amide: N-methylacetamide (NMA). In
Table 4 we have included the calculated vacuum excitation
energies of the lowest-lying valence excitations. The n f
π* excitation energy is not available in experiment while
the π f π* excitation energy peaks at 6.81 eV.

In Figure 6 we demonstrate the distribution of the lowest-
lying excitations in NMA for all 120 configurations using
both CCSDR(3) and CAM-B3LYP. Contrary to the case of
formamide, we see that not even CCSDR(3) offers a way to
easily estimate a πf π* excitation energy. We also observe
that only the CC calculations reveal a degree of mixing

Table 4. Overview of the Reported Excitation Energies for
the n f π* and π f π* Excitation Energies (in eV) of NMA
in Vacuum and Water Solution and Corresponding Solvent
Shiftsa

method vacEex
n f π* liqEex

n f π* vacEex
π f π* liqEex

π f π*

CAM-B3LYP/MM(SPCpol) 5.75 6.15 6.41 7. 17c

CCSD/MM(SPCpol) 5.88 6.30 6.43 7. 05c

CCSDR(3)/MM(SPCpol) 5.84 6.27 6.29 6. 96c

expt46,49 N/A 5. 54b 6.81 6.67

a Also included are the experimental results. b Estimated using
solvent difference techniques. c Assignment based on spectrum in
Figure 7.

Figure 6. Distribution of the 10 lowest-lying excitation energies in 120 different configurations of NMA solvated in water described
using CCSDR(3)/MM and CAM-B3LYP/MM, respectively.
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between the weak n f π* and the higher-lying transitions.
At a first inspection, the picture provided by DFT (a well-
separated n f π* transition) may seem more comforting.
However, as hinted to in the previous section, in experiment
it is extremely difficult to estimate the n f π* excitation
energy of amides, as it is essentially hidden (oscillator
strength of the order 0.0025 was reported in fine agreement
with the values presented here) under the much stronger π
f π* band. The complicated photoabsorption of NMA is
not apparent from the DFT calculations but is conveyed
nicely in the CC calculations. Finally, we must be cautious
especially when analyzing the DFT spectrum since, as
mentioned in the water investigation, DFT has problems
describing excitations that are Rydberg in nature.

We have constructed the final spectrum of NMA in
aqueous solution shown in Figure 7 and from this we may
estimate approximate band maxima. In experiment a band
with a maximum at 6.7 eV is assigned to the π f π*
transition. This is in agreement with the CCSDR(3)/MM
spectrum in Figure 7, which has a strong bandwidth at
approximately 6.9 eV. When no triples effects are included
(e.g., the CCSD/MM model) we observe a slight overestima-
tion of this transition as compared to experiment while the
CAM-B3LYP/MM calculations seem to overestimate the
position of this band even further. In experiment, a value
for the n f π* excitation energy has been estimated (5.5
eV) using nonpolar f polar solvent difference techniques,
but it was also noted that these methods usually provide
values that are too low.46 From Figure 7 we see a very weak
shoulder at around 6.3 eV. For the spectrum calculated using
CAM-B3LYP/MM we see, as mentioned above, that the n
f π* is more separated from the strong π f π* transition
as compared to the CC calculation. For completeness we
have included a recreation of the experimental spectrum.46

In the literature other calculations of vertical excitation
energies and shifts have been reported. As for the formamide
molecule we note that a macroscopic continuum CASSCF//
CASPT2 calculation44 gave a n f π* excitation energy of
5.56 eV and a π f π* energy of 6.60 eV. Finally, Monte
Carlo INDO-CIS extrapolated solvent shifts have been
reported47 for the considered states of approximately 0.22
and -0.15 eV, respectively, both shifts being somewhat
lower than the values reported in Table 4.

5. Conclusions

We have introduced the CCSDR(3)/MM model, a nonitera-
tive method to incorporate triples effects in a QM/MM
calculation. We have tested it on four model systems: s-trans-
acrolein, formamide, and NMA in aqueous solution and
liquid water. For the former system we perform a thorough
investigation of the two lowest-lying valence singlet excita-
tion energies. For the n f π* we obtain perfect agreement
with experiment for the solvent shift. The vacuum energy
comes close to experiment only when including ZPVC. The
π f π* proves a little more troublesome as it contains a
large nonelectrostatic contribution requiring a large QM
region. This was estimated using CAM-B3LYP, ultimately
yielding good agreement between theory and experiment for
the solvent shift. Ultimately, the effects of triples in acrolein
on the lowest singlet excitation energies correspond to
approximately -0.1 and -0.15 eV. The investigation of two
amides (formamides and NMA) shows us that it is not
straightforward to include the effects of dynamics in a simple
averaging procedure, as the individual excitation energies
tend to mix in the different configurations. While CCSDR(3)/
MM proved a solution for formamide, difficulties arise in

Figure 7. CCSD/MM, CCSDR(3)/MM, and CAM-B3LYP spectra of aqueous NMA with insets in different scale to illustrate the
weak n f π* transition. Also included is a scaled version of the experimental spectrum.
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the NMA spectrum, allowing essentially only for a meaning-
ful comparison between band maxima and the experimental
values.

For liquid water we find good agreement between experi-
ment and theory for the lowest studied singlet excitation
energy. The spectrum calculated using CCSDR(3)/MM
energies is almost identical to the one calculated using
CCSD/MM, implying negligible triples effects for this
system.
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Abstract: In order to extend the time and distance scales of molecular dynamics simulations,
it is essential to create accurate coarse-grained force fields, in which each particle contains
several atoms. Coarse-grained force fields that utilize the Lennard-Jones potential form for
pairwise nonbonded interactions have been shown to suffer from serious inaccuracy, notably
with respect to describing the behavior of water. In this paper, we describe a coarse-grained
force field for water, in which each particle contains four water molecules, based on the Morse
potential form. By molecular dynamics simulations, we show that our force field closely replicates
important water properties. We also describe a Morse potential force field for alkanes and a
simulation method for alkanes in which individual particles may have variable size, providing
flexibility in constructing complex molecules comprised partly or solely of alkane groups. We
find that, in addition to being more accurate, the Morse potential also provides the ability to
take larger time steps than the Lennard-Jones, because the short distance repulsion potential
profile is less steep. We suggest that the Morse potential form should be considered as an
alternative for the Lennard-Jones form for coarse-grained molecular dynamics simulations.

1. Introduction
There has been a growing interest in applying coarse-grained
(CG) superatom models for molecular dynamics (MD)
simulations for a variety of polymers. These CG models
consist of superatoms (or beads) that represent groups of
atoms, or even several molecules. Coarse graining makes it
possible to study larger systems at remarkably longer time
scales with acceptable levels of detail. An overall protocol
for moving between atomically detailed models and coarse-
grained models for polymers by coarse graining and reverse
coarse graining was described by Müller-Plathe.1 The central

method is to use a potential of mean force derived from
atomistic simulations to parametrize the coarse-grained
model, although the parameters can also be tuned by
reference to thermodynamic properties. The coarse-grained
simulations serve as an “express highway” to an equilibrated
state, which is then reverse coarse-grained to atomic detail
to reveal a detailed structure of the equilibrated state. A
detailed example of the Müller-Plathe approach to coarse
graining is given in Reithe et al.2 An example of the full
cycle of coarse-graining followed by simulation (in this case,
Monte Carlo), in turn followed by reverse mapping, is given
in Spyriouni et al.3 Wilson et al.4 provided a review of
multiscale simulations as applied to liquid crystals, including
macromolecular liquid crystals. A particular feature of
simulations of liquid crystals is the ability to use hybrid
models in which one component of a molecule (the me-
sogenic component that induces the ordering characteristic
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of liquid crystals) is modeled as being completely rigid, while
the rest of the molecule that determines the liquid character
is modeled as flexible.4 Prampolini5 utilized a variant of this
approach in which the properties of the mesogenic compo-
nent are parametrized by ab initio calculations.

The MARTINI CG force field field6,7 is especially
designed for the simulation of lipids, surfactants, and
proteins. This force field is parametrized by extensive
calibration of the chemical building blocks of the CG force
field against thermodynamical data. Because the MARTINI
CG force field is especially designed for a variety of
biomolecular simulations (our group’s primary application
interest), and because it is currently under active develop-
ment, we take it as a primary reference point for our work
in this area. However, we note the existence of coarse-grained
simulations of amphiphilic molecules in aqueous environ-
ments using other force fields, such as Loison et at,8 Shelley
et al.,9 and Markvoort et al.10 A polarizable CG water model
has been proposed by Ha-Duong et al.11

Another coarse-grained force field of biomolecular interest
is the M3B force field,12 designed to simulate maltooligosac-
charides and their interaction with water. A theoretical point
of interest is that the nonbonded non-Coulombic interactions
in M3B are done with a Morse potential,13 rather than with
a potential of the Lennard-Jones form. In the M3B force field,
each water molecule is represented by a single particle
interacting with others by a Morse potential. The Morse
potential was originally developed as a mathematically
efficient way to describe chemical bond formation and
dissociation.13 In ref 12, the applicability of the Morse
potential is effectively extended to the making and breaking
of hydrogen bonds. Liew and Masuhiro14 suggest that the
application of a Morse-like potential may be an effective
general strategy to improve the ability of coarse-grained
simulations to properly represent phase changes and coexist-
ence. This point speaks directly to a major problem in the
MARTINI force field, which is based on using a Lennard-
Jones (LJ) 12-6 interaction potential.15 The major problem
is the fact that its water model freezes at physiological
temperatures.16

In this paper, we report on the application of a Morse
potential to particle-particle interactions in a water model
at the MARTINI level of coarse graining, which is four water
molecules per particle. We will compare the behavior of this
new coarse grained water model to the MARTINI model
and to a coarse grained water model due to Shelly et al.,9

where they have applied a softer 6-4 potential to their CG
water model which represents a group of three water
molecules. We also develop CG n-alkane models based on
using the Morse potential.13 We will refer to the CG water
model of Shelley et al.9 as SSRBK, the acronym of the last
names of the authors of the reference. Similarly, we will
refer to our models as CSJ.

2. Morse potential

The Morse potential VM(r), has the form

In eq 1, R0 is the distance of the minimum energy ε and
R is a parameter that measures the curvature of the potential
around R0. The smaller the value of R, the softer is the
potential. In the condensed phase, the density of the system
is mainly affected by the value of R0, the cohesive energy
by ε, and the compressibility by R.12

In the present work, we use eq 1 as the pair interaction
potential function for the CG n-alkanes and water (group of
four water molecules). The adjustable parameters ε and R0

are parametrized to fit the experimental densities and heats
of vaporization of liquid n-alkanes and water via CG
simulations. Computational detail is to be described in the
Computational Method section. The selection of the values
of R for the CG models for n-alkanes and water is based on
the agreement of the simulated vapor-liquid interfacial
tensions with the experimental data.

3. Computational Method

The recent 43A1-S3 atomistically detailed force field for
hydrocarbons and lipids17 was used to carry out MD
simulations of the bulk phase for each of the n-alkanes from
n-butane to n-heptadecane. The MD trajectories of these
hydrocarbon liquids were taken from our previous work.17

Intramolecular data from these atomistically detailed simula-
tions were mapped according to the CG models as described
below and were used in the course of CG parametrization.

GROMACS 4.0.4 modeling software18 was used for MD
simulations performed in this work. User-custom lookup
tables for the Morse potential (eq 1) were prepared according
to the format as described in the manual of the software,19

and the LJ parameters in the interaction parameter file for
CG atoms were all set to 1.0.

For CG-MD simulations, a time step (∆t) size of 40 fs
was generally used unless otherwise specified explicitly. We
note that the use of such too large an integration time step
in CG-MD may produce energy sinks and induce errors.16

Because of the softer nature of the repulsive component of
the Morse potential function (eq 1), we found that use of a
time step (∆t) of 40 fs for CG-MD simulations is permissible
in this work. Energy fluctuations, ∆E )〈[E - 〈E〉]2〉1/2, as a
function of ∆t were performed to evalulate how large ∆t
could be used in this work.16 Details of the test are presented
in the Supporting Information. A cutoff of 1.6 nm was used
for eq 1 without using switching or shifting the function and
for the pair list updating. It should be noted that, when the
energy lookup table is used, GROMACS 4.0.4 uses the
neighbor search cutoff as the real cutoff for the interaction
potential. Neighbor searching is usually done with a larger
radius than the cutoff specified for the potential to accom-
modate for the size of charge groups and diffusion between
neighbor list updates. Our CG models carry no partial
charges. Each CG interaction site was treated as one charge
group. Nonbonding interactions involving the first neighbors
in n-alkane chains were excluded in all CG-MD calculations,
and no bond length constraint such as SHAKE was applied.
The nonbonding pair list was updated every 5 time steps.
Temperature boundary conditions were set using the Nose-
Hoover algorithm.20 A temperature coupling constant of 0.5
ps was used for ∆t ) 40 fs. It was reduced to 0.2 ps when

VM(r) ) ε[eR(1-
r

R0
) - 2e1/2R(1-

r

R0
)] (1)

852 J. Chem. Theory Comput., Vol. 6, No. 3, 2010 Chiu et al.



a smaller time step of 10 fs was used. All simulations were
performed at 298 K unless otherwise explicitly specified.

Bulk calculations were performed out for both water and
liquid alkanes. For water, calculations were performed on
systems of two sizes, 400 water molecules and 3200 water
molecules. There was no significant size-dependent effect.
For liquid alkane calculations, there were 400 molecules in
the butane simulation and 200 molecules in the simulations
for the larger alkane molecules.

Calculations were also carried out for systems where the
liquid coexisted with a vapor. In those calculations, there
were 3200 water molecules, 3200 butane molecules, and
1600 alkane molecules, respectively.

3.1. Enthalpy of Vaporization. For MD simulations of
bulk phases of CG water and n-alkanes, NPT boundary
conditions with isotropic pressure coupling were applied.
Pressure boundary conditions were set using the
Parrinello-Rahman pressure coupling method.21 The pres-
sure coupling constant was set to 5 ps for ∆t ) 0.04 or 2 ps
for ∆t ) 0.01 ps. For runs to determine molecular volume
and heat of vaporization, each system was simulated for a
time length of 20 ns. The enthalpy of vaporization ∆Hvap of
a liquid was calculated from two simulations for its liquid
phase and its gas phase, as previously described:22

where VIntra is the intramolecular potential energy per mole
of molecules calculated for both the gas (g) and the liquid
(l) states and VInter is the intermolecular energy per mole of
molecules. The use of eq 2a is based on the assumption of
ideal gas behavior and the assumption that the sum of kinetic
and vibrational energies is equal for the gas and liquid states.
When eq 2a is applied to calculate ∆Hvap for CG water, the
term VInter(l), which represents the inter-CG-water energy per
mole of CG water, does not include the intermolecular
interaction VS,n among the n subunits (water molecules) of
each CG site. Theoretically, a correction including VS,n to
∆Hvap is required in order to compare directly with the
experimental ∆Hvap. Thus, for an n:1 mapped CG water,

One may approximate the binding energy of a water cluster
formed by n molecules of water in the gas phase, which can
be calculated quantum mechanically, as -VS,n. The ab initio
binding energies of the water trimer (61.9 kJ/mol)23 and
tetramer (128.5 kJ/mol)24 in their lowest energy configura-
tions have been calculated at a high theoretical level. We
use these values as the values for the internal energy in eq
2b in analyzing our computational results.

3.2. Free Energy of Solvation. For simulating a liquid
in equilibrium with its vapor, a slab (about 7 nm in thickness)
of the equilibrated bulk phase of a CG species under
consideration was placed in the center of a simulation box
with a vacuum slab thickness of about 3.5 nm on each side.
The application of periodic boundary conditions creates a
system of alternating liquid and vapor layers, with the liquid

layer being 7-nm-thick and the vapor layer being 7-nm-thick.
The CG-MD simulation was performed in the NVT ensemble
at 298 K. During the simulation, a small number of molecules
enter the vapor phase (there are no molecules in the vapor
phase at the beginning of the simulation), and ultimately a
dynamic steady state is reached in which molecules are
evaporating and condensing at approximately the same rate.
For water and for the shorter alkanes, the simulations were
done for 10 µs, with the last 5 µs trajectories being used for
data analysis. For long-chain n-alkanes (n-tetradecane, n-
pentadecane, etc.), a time length of 20 µs was used in order
to obtain meaningful statistics, because of the smaller number
of molecules evaporating. The Gibbs free energy of solvation
of a gaseous solute in its own liquid can be calculated from
the equilibrium densities of the particles in its vapor phase
(Fv) and its bulk phase (Fl) according to Ben-Naim and
Marcus,25,26

where cl is the molar concentration of the liquid and pv is
the vapor pressure. Since vapor-liquid systems were simu-
lated under the NVT condition, the calculated ∆GS values
are in fact Helmholtz free energies ∆FS from which ∆GS )
∆FS + ∆(PV) can be obtained. Note that the ∆(PV)
correction term applies to the condensed phase before and
after solvation of the solute molecules according to Ben-
Naim and Marcus’ definition of the solvation process25 and
is usually negligible.19

Thermodynamic integration (TI) procedure27 was also
carried out under NPT conditions to calculate ∆GS for
alkanes. The free energy of solvation was evaluated over a
path that mutated all CG sites in a single CG solute molecule
into noninteracting ones via a coupling parameter λ in such
a way that λ ) 0 describes the noninteracting phantom site
and λ ) 1 describes the fully interacting CG site via the
following λ-dependent Morse potential function:

Thus, eq 4 is equivalent to eq 1 when λ ) 1, andVM(r;λ) is
zero when λ ) 0. In the process of gradual mutation from λ
) 0 to λ ) 1, the internal bonded and nonbonded interactions
were kept at their full value so that the integrity of the solute
molecule was maintained. The process can be viewed as
gradual coupling of a single solute molecule in a vacuum
and a box of pure solvent. (Note that, in this terminology,
the molecule that is being created by “computational
alchemy” is the “solute”, and the rest of the molecules in
the system comprise the “solvent”.) In TI, the integral,

is used to evaluate ∆GS, where H is the classical Hamiltonian
which depends on configuration variables and momenta.
Since there is no λ dependence of the internal energy terms
of the solute molecule, it does not contribute directly to

∆Hvap ) VIntra(g) - [VInter(l) + VIntra(l)] + RT )
- VInter(l) + RT (2a)

∆Hvap ) -
VInter(l) + VS,n

n
+ RT (2b)

∆GS ) -RT ln(Fl

Fv
) ) -RTln(clRT

pv
) (3)

VM(r;λ) ) λε[eλR(1-
r

λR0
) - 2e1/2λR(1-

r

λR0
)] )

λε[eR(λ-
r

R0
) - 2e1/2R(λ-

r

R0
)] (4)

∆GS ) ∫0

1 〈∂H
∂λ 〉λ

dλ (5)
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∂H(p,q;λ)/∂λ. In addition, there is no mass changed in our
coupling scheme; there is also no kinetic-energy contribution
to ∂H(p,q;λ)/∂λ. Hence, eq 5 simply becomes

An analytical derivative of eq 4 was used to evaluate
〈∂VM(r;λ)/∂λ〉.

Simulations were started at λ ) 1 from a well equilibrated
box (ca. 4 × 4 × 4 nm3) of about 200 to 400 CG alkanes,
depending on the size of the alkane. An alkane (solute)
molecule fully interacting with the rest of its own kind of
molecules (solvent) was randomly chosen from the initial
configuration. The λ interval value was set at 0.05. However,
in the region of rapidly changing 〈∂VM(r;λ)/∂λ〉, it was
reduced to 0.025. Subsequent simulation at the next λ interval
value was performed using the last configuration from the
simulation at a previous λ value. Each simulation consisted
of a 5 ns equilibration period followed by a 15 ns production
run. An integration time step of 10 fs was used. The
〈∂VM(r;λ)/∂λ〉 value was evaluated for every ps. The integra-
tion of eq 6 was performed by the trapezoidal rule.

Since the current GROMACS (version 4.0.4) is not capable
of performing the TI procedure based on the Morse potential,
the above TI method was carried out manually by using the
energy-group-lookup-table option available in the MD
software. For each λ value, a potential energy lookup table
for the interaction between the target solute and the solvent
(eq 4) was set up according to the specification of GRO-
MACS 4.0.4. For solvent-solvent and solute-solute non-
bonded interactions, a separate interaction lookup table (eq
1) was made. A separate code was written to calculate
〈∂VM(r;λ)/∂λ〉 with the configurations extracted from the
simulations trajectories.

3.3. Interfacial Tension. The vapor-liquid interfacial
tension γ, a measure of the free energy cost associated with
the formation of the interface, was computed from the
ensemble average normal PZZ and lateral PXX/PYY pressure
components according to

The factor 1/2 accounts for the two interfaces present in the
chosen setup. In general, a µs of CG simulation was
necessary to achieve reliable statistics for the computation
of γ. The implementation of eq 7 is contained in a standard
Gromacs utility, which we used.

3.4. Coarse-Grained Modeling. Water Tetramer. The CG
water atom (Figure 1), namely W4, is a single bead which
represents a group of four water molecules similar to the
MARTINI water model.6 For comparison, Figure 1 shows
the corresponding interaction potentials for the MARTINI
model and the SSRBK9 model. (Note for the SSRBK model
that the SSRBK CG particle contains only three waters rather
than four, so its potential form is not strictly comparable
with the other two.) The CG particles interact through VM(r),
eq 1. The target data for determining the parameters of eq 1
for W4 are the experimental liquid water density and the

interfacial tension of air-water or water vapor-water. For
a series of MD runs with different R values, we optimized
ε and R0 to have calculated F and γ in agreement with the
experimental values. The final values of R, ε, and R0 for
W4 so obtained are listed in Table 1. We did not use the
experimental ∆Hvap of water as a target in the course of
parametrization for W4, but very good values for ∆Hvap were
obtained, as mentioned later in the Results and Discussion
section. There, we will examine more closely this and other
similar CG water models.

n-Alkanes. Alkanes with Multiples of 3 or 4 Carbon
Atoms. Two CG types of particles for modeling alkanes are
employed, 3-site (C3) and 4-site (C4) mapped CG particles.
The former is suitable for alkanes with a multiple of three
carbon atoms, and the latter is for those with a multiple of
four carbon atoms. For example, n-hexane is modeled as a
linear chain of two C3 CG atoms (Figure 2a), while octane
can be represented by a linear chain of two C4 CG atoms,
as shown in Figure 2a.

For the 3-site (4-site) CG model, the CG alkanes were
constructed from terminal C3T (C4T) and middle C3M
(C4M) chain units. These CG units interact through eq 1.
In terms of the nonbonding (Morse potential) parameters,
the C3T and C4T are not differentiated from C3M and
C4M, respectively. However, they are regarded as separate
atom types because their masses are slightly different.

∆GS ) ∫0

1 〈∂VM(r;λ)

∂λ 〉
λ
dλ (6)

γ ) 1
2

LZ(〈PZZ -
PXX + PYY

2 〉) (7)

Figure 1. Coarse grained water model and its interaction
potential. The CG W4 atom represents a cluster of four water
molecules. Solid line, CSJ water (Morse potential); dashed
line, SSRBK water9 (LJ6-4 potential); dot-dashed line,
MARTINI water6 (LJ12-6 potential). It should be noted that
the CSJ and MARTINI models are for four-water clusters,
while the SSRBK model is for a three-water cluster.

Table 1. Morse Parameters for the CG Water (W4) and
the Interaction Sites of 3-Site (C3T, C3M) and 4-Site (C4T,
C4M) Mapped Alkanes

interaction site R ε (kJ/mol) R0 (nm) atomic mass

W4 7 3.4 0.629 72.062
C3T 12 2.94 0.527 43.089
C3M 12 2.94 0.527 42.081
C4T 12 4.0 0.563 57.116
C4M 12 4.0 0.563 56.108
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Masses for the CG types C3T, C3M, C4T, and C4M are
listed in Table 1.

Intramolecularly, the CG alkanes interact through har-
monic bond and angular bend potentials,

All first neighbors were excluded from nonbonding
interaction. The target CG bond lengths (rb0) were
calculated from atomistic simulation of dodecane as
performed from our previous work.17 These trajectories
were first mapped according to the CG model used.
Starting from one end of the alkane chain, n (n ) 3 for
3-site mapping; n ) 4 for 4-site mapping) consecutive
carbon atoms were counted and their center of mass as
the location of the first CG site was calculated. The second
CG site was similarly determined by counting further n
carbon atoms. Actual masses were used for center of mass
calculations. The average distances of two consecutive CG
sites were respectively computed from these 3:1 and 4:1
mapped MD trajectories. These are the target bond lengths
(rb0) for the CG models and are listed in Table 2. The
force field parameters Ka ) 25 kJ/mol and θ0 ) 180° (eq
9) were taken from the CG MARTINI force field6 without
further refinement. They are listed in Table 3. It should
be noted that the MARTINI n-alkanes and our force field
as derived in the main body of this paper do not have
torsion potentials. The consequence of not taking torsion

potential into account is a uniform dihedral distribution
for the CG model, whereas a corresponding atomistic
model shows a bias toward lower torsion angles.29 In
further simulations done since the main body of simula-
tions reported in this paper, we find that including torsion
angle restraints improves dramatically the agreement of
the dihedral angle distributions but has little effect on the
thermodynamic properties. Details of the parametrization
method and results are presented in the Supporting
Information. This extended parameter set includes torsion
potential as well as distinction between terminal and
nonterminal CG sites in terms of nonbinding interactions.
All its nonbonding, bonding, bending, and torsion param-
eters are parametrized against experimental and atomistic
data. In the course of developing this parameter set, we
found that setting θ0 equal to 180° instead of the mean of
pseudo-bond angles mapped from atomistic data results
in much better correspondence between CG and atomistic
bending angle distributions.

CG simulations of liquids hexane and octane were initially
performed using the MARTINI bond force constant Kb for
alkanes (1250 kJ mol-1 nm-2). For different values of R,
the parameters ε and R0 were adjusted so that the simulated
F and ∆Hvap of hexane and octane were in agreement with
the experimental values.30 Their vapor-liquid interfacial
tensions were also computed with these initially parametrized
sets of {R,ε,R0}. We found that {R,ε,R0} with R ) 12 yielded
γ values close to the experimental data.31 In addition, Kb

was tuned by matching the radial distribution functions
(RDF) for CG hexane and octane to those obtained from
mapped atomically detailed MD data. The Kb value so
determined, 5000 kJ mol-1 nm-2, is good for both 3-site and
4-site CG alkanes. We now have R ) 12 and Kb ) 5000 kJ
mol-1 nm-2 set for all CG alkanes.

With the parametrized values of R ) 12 and Kb ) 5000
kJ mol-1 nm-2 and other bonding parameters as listed in
Tables 2 and 3, the ε and R0 were refined by carrying out
CG simulations of pentadecane and hexadecane. The target
data were their experimental F and ∆Hvap. The parameters
were finally modified slightly so that the CG simulated F
and ∆Hvap were in good agreement with the experiment for
both the short (hexane, octane) and long (pentadecane,
hexadecane) chain alkanes. Table 1 lists the final values of
Morse parameters (R,ε,R0) for both 3-site and 4-site mapped
CG alkanes. Figure 2b shows the nonbonded interaction
potentials for the 4-carbon alkane CG interactions in the CSJ

Figure 2. Coarse grained alkane models and their interaction
potentials. (a) Hexane is represented by two 3-site CG
hydrocarbon atoms. Octane is represented by two 4-site CG
hydrocarbon atoms. Heptane is represented by two scaled
CG hydrocarbon atoms. (b) Pair interaction potentials for 4:1
mapped CG site. Solid line: Morse potential (this work).
Dashed line: LJ 12-6 potential (MARTINI).6 (c) Pair interac-
tion potentials for 3:1 mapped CG site. Solid line: Morse
potential (this work). Dashed line: LJ 9-6 potential (of Nielsen
et al.32).

Vbond )
Kb

2
(rb - rb0)

2 (8)

Vangle )
Ka

2
(cos θ - cos θ0)

2 (9)

Table 2. CG Standard Bond Length rb0 and Force
Constant Kb Parameters

bond type rb0 (nm) Kb (kJ mol-1 nm-2)

C3T, C3M-C3T, C3M 0.36 5000
C4T, C4M-C4T, C4M 0.45 5000

Table 3. CG Standard Bond Angle θ0 and Force Constant
Ka Parameters for 3-Site and 4-Site CG Models

angle type θ0 (degree) Ka (kJ mol-1)

C3T, C3M-C3M-C3T, C3M 180 25
C4T, C4M-C4M-C4T, C4M 180 25
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and MARTINI force fields. Figure 2c shows the nonbonded
interaction potentials for the 3-carbon alkane CG interactions
in the CSJ (this paper) and the NLSK32 force fields.

Scaling for Alkanes. For chain length with non-multiple-
of-three or multiple-of-four carbon atoms, a combination of
3-site and 4-site CG atoms can be introduced. For example,
n-heptane can be represented by one C3T and one C4T atom.
However, this option leads to a nonuniform representation
of the chain. In what follows, we introduce a scaling method
for the Morse parameters to avoid such unwanted choice.

The number of carbon atoms in an alkane chain, NC, is
divided by three, and the quotient, an integer, gives the
number of CG sites, NCG. Each site is then scaled in mass
and in center of mass placement by WS ) NC/NCG. In other
words, the extra carbon atoms (NC modulo 3) are spread
uniformly over the CG chain; i.e., they are evenly shared
among the NCG sites. To map the atomistic alkane chain
onto a scaled CG representation, WS carbons are counted
starting from one end of the atomistic chain. The center
of mass of these atoms determines the location of the first
CG site. A reduced mass is given to fractional atoms in
the center of mass calculation. The second CG site is then
assigned by counting the next WS carbons and determining
their center of mass. If the last counting ends at a fractional
site of the atomistic chain, its remainder is used for the
current counting. The CG representation of n-undecane,
for example, has (quotient of 11/3) 3 CG sites. The number
of extra carbon atoms is (NC modulo 3) 2, which are
equally shared among the three CG sites. Each CG site
has scaling weight of WS ) NC/NCG ) 11/3. The first CG
site is the center of mass of the first three carbon atoms
and 2/3 of the fourth one. The center of mass of the
remainder (1/3) of the fourth carbon, its following three
carbon atoms, and 1/3 of the eighth carbon atom is then
the location of the second CG site. To assign the location
of the third CG site, the center of mass of the remainder
(2/3) of the eighth carbon atom and the last three carbon
atoms is computed.

To obtain the target CG bond lengths (rb0) for n-heptane,
n-decane, n-undecane, n-tridecane, and n-heptadecane, the
aforementioned scaling method was used to map the atomi-
cally detailed trajectories of these n-alkanes from our
previous work17 to their CG representations according to their
scaling weights. The time average of the distances between
two consecutive CG sites was computed from the atomically
detailed simulations for each scaled CG representation, and
the result was assigned as the rb0 of those CG alkanes whose
CG sites have the same scaling weight. Thus, CG n-heptane
and n-tetradecane have the same rb0 value. The same bond
and bond angle force constants as used in the 3-site/4-site
models were applied, and θ0 was set to 180°. All these
parametric values are listed in Table 4.

To calculate R0 for the scaled CG sites, we assumed that
the increase in R0 from 3-site CG (WS ) 3) to 4-site CG
(WS ) 4) is linear with the increased scaling weight. Hence,
the R0 for a CG site with scaling weight Ws can be simply
calculated from

where the first term is the R0 value for the 3-site CG model
(Table 1), ∆R0 (0.036 nm) is the difference of the R0 values
between the 4-site and 3-site CG atoms, and the numerical
value 3 in the last term is the scaling weight of the 3-site
CG atom.

To obtain the ε values of the scaled CG sites, we employed
the following combination rule: We compute the geometrical
mean value of the parameters ε of two CG sites with known
WS values of w1 and w2, respectively. The result is assigned
as the ε value for a CG site with a WS value which is the
arithmetic mean of w1 and w2:

For CG n-heptane and n-tetradecane with a scaling weight
of 31/2, their ε(31/2) value was calculated from the already
known ε(3) and ε(4) values of the 3-site and 4-site CG atoms,
respectively (Table 1), according to eq 11. The scaling weight
for CG n-tridecane is 31/4. Hence, its ε(31/4) value was
calculated from ε(3) and ε(3 1/2) using eq 11. The scaling
weight for n-decane is 31/3. Its ε(31/3) value cannot be
evaluated in the same way as previously mentioned. Instead,
it was approximated by successively computing the value
of {ε(wi)} according to eq 12

For w1 ) 3 1/2 and w2 ) 3 1/4, the fisrt two terms of the
{ε(wi)} sequence are the already known ε(w1) ) ε(3 1/2)
and ε(w2) ) ε(31/4) values as computed for n-heptane and
n-tridecane, respectively. The third term, ε(w3) ) ε(33/8), was
then calculated using eq 12. The fourth term ε(w4) ) ε(35/
16) was then in turn computed with the known values of ε(w2)
and ε(w3). This procedure was repeated until the term ε(wi)
with wi ≈ 31/3 was obtained. The scaled ε(32/3)value for CG
n-undecane was computed in the same way using eq 12 with
the known ε(w1) ) ε(4) and ε(w2) ) ε(31/2) values as the
first and second terms of {ε(wi)}, respectively. The iterative
computation was proceeded until the term ε(wi) with wi ≈
32/3 was obtained.

In scaling ε(32/5) for CG n-heptadecane, we first calculated
the series (eq 12) through the term ε(33/16) starting with the
known values of ε(w1) ) ε(3) and ε(w2) ) ε(31/4). The ε(313/
32) value was then evaluated from ε(33/16) and ε(35/8)
according to eq 11. The latter had already been obtained in
the course of calculating ε(32/3). Since 313/32 is approximately
equal to 32/5, we hence assigned the so calculated ε(313/32)
as the value of ε(32/5) for CG n-heptadecane.

R0(s) ) 0.527 + ∆R0(Ws - 3) (10)

Table 4. Scaled CG Standard Bond Length rb0, Bond
Angle θ0, and Their Force Constants Kb and Ka

alkane WS

rb0

(nm)
Kb

(kJ mol-1 nm-2)
θ0

(deg)
Ka

(kJ mol-1)

heptane, tetradecane 31/2 0.400 5000 180 25
decane 31/3 0.390 5000 180 25
undecane 32/3 0.413 5000 180 25
tridecane 31/4 0.371 5000 180 25
heptadecane 32/5 0.375 5000 180 25

ε(w1 + w2

2 ) ) (ε(w1) ε(w2))
1/2 (11)

ε(wi+2) ) (ε(wi) ε(wi+1))
1/2, wi+2 )

wi+1 + wi

2
(12)
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All the scaled Morse parameters obtained in this section
are listed in Table 5. They were applied for CG simulations
without further parametrization.

4. Results and Discussion

4.1. CG Water. Table 6 lists the calculated density F,
heat of vaporization ∆Hvap, free energy of solvation ∆GS,
and liquid-vapor interfacial tension γ of CSJ water.
There, the listed numerical data for MARTINI6 and
SSRBK9 CG water were also calculated for comparison.
The simulation conditions used for these comparisons
essentially replicated those used by the workers who
developed those force fields except that in order to do
the comparison we used a time step of 10 fs, a pairlist
update frequency of 5 time steps, the Nose-Hoover
temperature coupling method, the and Parrinello-Rahman
algorithm for pressure coupling. Both CSJ (this work) and
MARTINI6 CG water models employ 4:1 mapping while
the SSRBK9 model has a single bead to represent three
water molecules. The Martini water interacts via a LJ
12-6 potential. The pair potential for the SSRBK water
is a softer LJ 6-4. As can be seen from Figure 1, the LJ
12-6 potential for Martini water is much harder than the
other two in the short-range region. Using a large
integration time step such as 40 fs with a cutoff of 1.2
nm as is done in the MARTINI water model induces
errors16 and produces energy sinks which cause a freezing
effect. We found that using a smaller time step of 10 fs
with the MARTINI force field does not remove the
freezing artifact but delays its occurrence. We hypothesize

that the fundamental problem lies in the use of the LJ
12-6 potential, which produces a narrow deep well as
shown in Figure 1. The SSRBK water model (LJ 6-4)
may alleviate this problem but provides only two free
parameters, which reduces flexibility in tuning the poten-
tial to fit a variety of experimental data. There exists an
advantage of using the Morse potential for targeting
atomistic or experimental data, in that one can control
more freely the interactions for r e R0 and r > R0

independently by using different R values for r e R0 and
r > R0 whenever it is desired. Another 3-parameter
candidate for pair interaction is the Buckingham poten-
tial33 (BP) VBP(r) ) b exp(-r/F) - µ/r6 where b, F, and
µ are constants and r is the interatomic distance. There
are several studies in which a Buckingham form (near
repulsion is an exponential form) has been used in pairwise
interaction potentials.34-39 A concern in using such a form
is that at very short distances, the attractive sixth power
term overwhelms the repulsive exponential term and the
potential becomes very large and negative, which is
nonphysical. It would preclude the use of the Buckingham
potential in the early stages of building macromolecular
complexes, in which the systematic and automated relief
of steric clashes is needed. The Morse potential (eq 1)
does not diverge at very small distances and has a finite
positive value at rij ) 0. We do not find this a problem in
our simulations, because with the chosen values of R, the
repulsive potential is still large enough to prevent the
coalescence of the interacting pair.

Under normal physiological temperatures, both the CSJ
and the SSRBK water models are designed to have their
intensive properties F and γ be consistent with those of water.
Both CSJ and SSRBK water models have calculated γ values
(71 nN/m at 298K) in good agreement with the measured
value, 73 mN/m.30 Figure 3 shows the temperature depen-
dence of F and γ for CSJ water. Both F and γ of CSJ water

Table 5. Morse Parameters for Scaled CG Sitesa

alkane CG type WS ε (kJ/mol) R0 (nm) R

heptane, tetradecane CST, CSM 31/2 3.43 0.545 12
decane CST, CSM 31/3 3.26 0.539 12
undecane CST, CSM 32/3 3.61 0.551 12
tridecane CST, CSM 31/4 3.175 0.536 12
heptadecane CST, CSM 32/5 3.33 0.541 12

a Terminal sites are denoted as CST and non terminal sites are
designated as CSM. Actual masses for CG sites are used
according to their scaling weight WS.

Table 6. Calculated Density F (g/cm3), Self Diffusion
Coefficient D (10-9 m2/s), Heat of Vaporization ∆Hvap

(kJ/mol), Free Energy of Solvation ∆GS (kJ/mol), Surface
Tension (water-vapor) γ (mN/m), and Isothermal
Compressibility κ (10-5 bar-1) of CG Water W4 at 298 K
for CG Water Modelsa

Water model F D ∆Hvap ∆GS γ κ

CSJb W4 0.998 4.3 38.4 -28 71 17
CSJb W4 0.996f 4.7f 38.3 -28f 71f 26f

MARTINIc W 1.005 1.6 30.2 -18 32 9
SSRBKd W 0.993 6.6 32.6 -19 71 15
Experimente 0.998 2.3 44.0 -26.5 73 4.5

a CG-MD integration time step used was 10 fs. b This work.
Equation 1 is the pair interaction potential. c Ref 6, CG-MD
simulations were performed in this work. d SSRBK is the acronym
of the last names of the authors of ref 9. CG-MD simulations were
performed in this work. e Refs 30 and 31. The experimental ∆GS

was calculated from the vapor pressure pv (ref 31) using eq 3.
f Italic numbers were calculated from simulations performed using
an integration time step of 40 fs.

Figure 3. Density F and surface tension γ of CG water. (a)
Temperature dependent density of CG water: CSJ water
(black circle), experiment (solid line). (b) Temperature de-
pendent surface tension of water: CSJ water (black circle),
experiment (solid line).
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decrease linearly as T increases. The CG water model does
not however capture the nonlinear temperature dependence
of the experimental data in the temperature range 273-373
K. As can be seen in Figure 3, although the general trends
and overall ranges of the properties are similar to the
experiment, the forms of the calculated density and surface
tension are much more linear than the experimental curves.
This is likely a consequence of the loss of some atomistic
details that occurs in the coarse graining process. This shows
limits of the accuracy which can be expected for coarse-
grained calculations as soon as quantities involving deriva-
tives are needed.

The Gibbs excess free energy ∆Gex of water is equivalent
to the negative of the solvation free energy of water ∆GS in
its own liquid. The simulated ∆GS for CSJ water is -28
kJ/mol. All other water models studied in this work give
∆GS values from -18 to -19 kJ/mol (Table 6). The
calculated ∆GS should correspond to the ∆Gex of a water

tetramer (for CSJ and MARTINI W) or trimer (for SSRBK
W). Direct comparison of calculated ∆GS for a CG water
representing a cluster of n water molecules to the experi-
mental ∆GS value (-26.5 kJ/mol calculated from the vapor
pressure pv

31 using eq 3) for water is not strictly appropriate.
Baron et al.40 found that the calculated ∆Fex values for the
insertion of an SPC water tetramer into SPC water and into
liquid SPC tetramers are, respectively, 22 and 19 kJ/mol.
These ∆Fex values compare fairly with the ∆Gex values of
the CG water models (CSJ, MARTINI, and SSRBK)
suggesting solvation of a CG water bead into its own liquid
is reasonably well represented by CG water models.

When a CG water represents more than one water
molecule, direct comparison of calculated ∆Hvap to the
experiment requires a theoretical correction. Presented in
Table 6 are ∆Hvap values directly calculated from applying
eq 2a to MD simulations for the CG water models.
Enthalpy of vaporization for water can then be estimated
from the simulated ∆Hvap for CG water and the binding
energy correction term of eq 2b. This has been explained
in the Computational Method section. The so calculated
∆Hvap values for water are 43.6, 41.5, and 33.2 respec-
tively by using the CG ∆Hvap values (Table 6) for CSJ
W4, MARTINI W, and SSRBK W. The agreement of
these calculated ∆Hvap values for water by using eq 2b
with the experimental value, 44 kJ/mol,30 indicates that
the CG ∆Hvap values (Table 6) are reasonably respresented
by the CG water models.

The diffusion coefficients D, calculated from the slopes
of the mean square displacements (MSD) in the long time
limit using the Einstein relation 〈∆r(t)2〉 ) 6Dt, for the
various CG water models (Table 6), range from 1.6 ×
10-9 to 6.6 × 10-9 m2/s. These calculations are all newly
done by us for this paper on the various models, so that
the computational conditions would be the same (except
the cutoff as designed for each water model.) These CG

Figure 4. Physical and thermodynamics properties of alkanes at 298 K. (a) Enthalpies of vaporization ∆Hvap. (b) Molecular
volumes of alkanes. (c) Vapor-liquid interfacial tension γ of alkanes. Data for butane were obtained at 273 K. (d) Gibbs solvation
free energies ∆GS of alkanes.

Table 7. Solvation Free Energy ∆GS of n-Alkanes at
298 K

∆GS (kJ/mol)

n-alkane TI (eq 5) vapor-liquid (eq 3) experimenta

butane -12.8 -12.6 -11.5
hexane -17.1 -17.4 -16.9
heptane -20.8 -21.1 -19.7
octane -24.9 -25.4 -22.3
nonane -26.6 -27.3 -24.9
decane -29.5 -30.1 -27.5
undecane -33.5 -34.2 -30.5
dodecane -36.2(-37.3)b -37.2(-36.1)b -33.0
tridecane -40.3 -42.0 -35.0
tetradecane -42.3 -43.0 -38.8
pentadecane -45.5 -43.0 -41.1
hexadecane -49.4 -50.9 -43.7
heptadecane -54.9 -52.4 -48.1

a Ref 31. The experimental ∆GS was calculated from the vapor
pressure pv using eq 3. b Numbers in parentheses are for the
4-site CG model.
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results are all on the same order of magnitude as the
experimental D value (2.3 × 10-9 m2/s)41 for water at
298 K. Seeking precise correspondence with the experi-
ment in this case is perhaps not meaningful, since the
entity for which the experimental determination is made
(single water molecules) does not exist in the CG models.
The calculated diffusion coefficients, as listed in Table 6,
for CSJ, MARTINI, and SSRBK CG waters were not
renormalized by a factor of 4 (for CSJ and MARTINI
water models) or 3 (for SSRBK), in contrast to the
renormalizations done by Marrink et al.28 as well as Groot
and Rabone.42 For any single-site CG water model which

represents a group of more than one water molecule and
is modeled to have the same density as liquid water, the
fictitious n water molecules it represents are explicitly and
implicitly bound via hydrogen bonding within the volume
of the CG particle. In other words, the fictituous water
molecules within the CG water model go wherever it goes.
Jalabert and Das Sarma43 have shown the diffusion
coefficient of bound particles is the same as that of the
center of mass of the particles.

Isothermal compressibilities κ for the water models were
calculated from the equation44 κ ) σV

2/kT〈V〉, where σV is
the root-mean-square volume (V) fluctuation in an NPT
ensemble. The κ values for CSJ, SSRBK, and MARTINI
water (Table 6) are about 4, 3, and 2 times larger than the
experimental value30 (4.5 × 10-5 bar-1) of water, respec-
tively. We note that Marrink et al.28 reported a smaller value
of 6 × 10-5 bar-1 for the MARTINI water. Since this trend
in the calculated κ relates to the trend in the hardness of the
applied interaction potential in the short - range region, we
conclude that the softer the potential in the short-range
region, the larger the σV which in turn results in a larger κ

value.
In summary, from the standpoint of coarse graining, it is

appropriate to compare CG water properties to experiments
for intensive properties (density, surface tension) and ther-
modynamic properties for equilibrium processes such as free
energies of partitioning between two phases. Moreover, direct
comparison of CG water results to experiment is also possible
for a change-of-state thermodynamic property such as ∆Hvap

provided a correction is made corresponding to the internal
energy of the CG particle.

4.2. Alkanes. Thermodynamic Properties. For 3:1 and
4:1 mapped CG alkanes, experimental surface tension was
used as a guide to properly choose the value of the Morse
R parameter. The nonbonded CG parameters ε and R0

were fitted against experimental ∆Hvap and bulk density.
The scaled CG parameters were calculated as described
in the Computational Methods section. The simulated

Figure 5. Self-diffusion coefficients D and isothermal com-
pressibilities κ of alkanes at 298 K. (a) Diffusion coefficients
were calculated from the slope of the mean square displace-
ment in the long time limit. (b) Isothermal compressibilities
were calculated from the relation κ ) (σV

2)/(kT〈V〉), where σV

is the volume (V) fluctuations in an NPT ensemble. Symbols
for a and b: triangle, 3-site CG models; square, 4-site CG;
circle, scaled CG models; filled circle, experiment.47

Figure 6. Comparison of radial distribution functions (RDF) for 3-site CG alkanes and corresponding mapped atomistic data.
Solid line: CG RDF. Dotted line: mapped atomistic RDF.
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results are shown in Figure 4. Simulated ∆Hvap (Figure
4a) and specific volumes (Figure 4b) of CG alkanes are
in good agreement with experimental data.30 The absolute
mean deviation of calculated γ from experimental values
is 1.9 mN/m (Figure 4c). The ∆GS values, as listed in
Table 7, calculated by using the TI method (eq 5) agree
well with those obtained from simulations of alkane
vapor-liquid interfaces (eq 3). Shown in Figure 4d are
the calculated ∆GS for CG alkanes, which were not
directly targeted in the parametrization process. They are
systematically more negative as compared to the values
based on log p measurements31 (eq 3) for long-chain
alkanes. The absolute mean deviation of CG ∆GS from
experimental values is ca. 4 kJ/mol. Although the MAR-
TINI CG force field is less satisfactory in predicting ∆Hvap

and specific volumes of alkanes, it delivers results of ∆GS

and γ for alkanes in good agreement with experiments.
The results of the pulsed-gradient spin-echo NMR

method45 of measuring self-diffusion establish that the
diffusion coefficients D of liquid alkanes decrease nonlinearly
as chain length increases,46 as shown in Figure 5a. It can be
seen from the same figure that our CG parameters also
reproduce the same trend on this scale. We note that reported
D values for MARTINI hexadecane by Baron et al.40 and
Winger et al.16 are very different. Placing the actual mass
on each CG site instead of the uniform value of 72 which is
used in the MARTINI force field, we calculated the D values
for MARTINI alkanes. The results, in good agreement with
the experiment, are also shown in Figure 5a for comparison.
Simulated κ values over the whole range of alkanes studied

Figure 7. Comparison of radial distribution functions (RDF) for 4-site CG alkanes and corresponding mapped atomistic data.
Solid line: CG RDF. Dotted line: mapped atomistic RDF.

Figure 8. Comparison of radial distribution functions (RDF) for scaled CG alkanes and corresponding mapped atomistic data.
Solid line: CG RDF. Dotted line: mapped atomistic RDF.
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in this work agree well with the experimental results of Dı́az
Peña and Tardajos47 as can be seen from Figure 5b.

In order to investigate the effects of taking torsion
potentials into account on calculated energetics, CG-MD
simulations for bulk CG dodecane, pentadecane (3-site
models), and hexadecane (4-site model) were also performed
by using the same standard parameter set (from Tables 1-3)
with the torsion potential Vd(φ) ) Kd(1 + cos(δ) cos(mφ))
taken into account, where Kd is the dihedral force constant,
δ is π, and m ) 1.The Kd values for the 3-site and 4-site
models are 0.75 and 1.2 kJ/mol, respectively. They were
parametrized by matching the mean and standard deviation
of torsion angles from CG-MD results with those from
atomistic data mapped onto the corresponding CG models.
We report in the Supporting Information that the calculated
physical and thermodynamic properties for CG dodecane,
pentadecane, and hexadecane are hardly influenced by the
applied torsion potentials.

Structural Properties. The radial distributions (RDFs) for
the CG alkanes with comparisons to corresponding mapped

atomistic RDFs are shown in Figures 6-8. To compare the
CG and atomistic data, the latter were analyzed using the
mapping procedure as described in the Computational
Method section. In these figures, the locations of the first
peaks (except that for butane) correspond to the ideal bond
lengths of the corresponding CG alkanes, which were
obtained from the atomistic data, and the second peaks
correspond to the inter-CG site distances. As can be seen in
these figures, the structures of CG alkanes reproduce RDFs
in good agreement with the atomistic data, to the extent
permitted by the coarse graining.

The mean chain length (end-to-end distance) as a function
of alkane carbons is plotted in Figure 9. The atomistic data,
analyzed using the CG mapping procedure as described
previously, are in excellent agreement with the CG data. The
chain length distributions for the CG and atomistic data
(Figure 10), as exemplified by the 3-site mapped n-alkanes
(hexane, nonane, doedecane, and pentadecane), also agree
well with each other. For a closer look at the agreement, we
compared the CG bond angle distributions of the same series
of CG alkanes (Figure 11) with those mapped from their
corresponding atomistic data.

The consequence of not taking torsion potential into
account is a uniform dihedral distribution for the CG model,
while the corresponding atomistic model shows a bias toward
lower torsion angles.29 Including torsion potential in CG
alkane with four or more consecutive interaction sites does
improve dramatically the agreement of dihedral distributions
between the CG and the atomistic models. The detailed
results are shown in the online Supporting Information.
Shown also in the Supporting Information is the comparison
of distributions of bending angles with and without torsion
potentials applied. It is seen there that taking torsion potential
into account has no apparent effect in bending angle
distributions.

In summary, inclusion of torsion potentials to the current
CG alkane models shows no changed performance of the
parameter set except for the excellent correspondence that

Figure 9. Comparison of mean chain lengths of CG alkanes
to atomistic alkanes. Atomistic coordinates for CG mapping
were taken from ref 17.

Figure 10. Comparison of chain length distributions of CG alkanes to atomistic alkanes. Solid line: CG results. Dotted line:
mapped atomistic results.
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is found between CG and atomistic pseudo dihedral distribu-
tions. We note that the addition of a torsion angles makes it
necessary to run simulations using a shorter ∆t, so that there
is a trade-off between the improved accuracy provided by
this inclusion, and the capability of running longer and larger
simulations without them.

4.3. Integration Time Step Analysis. Details and results
for the test to evaluate how large ∆t could be used in this
work are presented in the Supporting Information. A criterion
for a fairly accurate integration of the equations of motion
is that ∆Etot should be less than one-fifth of ∆Ekin or ∆Epot

in the NVE ensemble.48-50 For both SSRBK and CSJ water
models, which have softer repulsive interactions in the short-
range region (Figure 1), and for CSJ hexadecane, using ∆t
of 40 fs is the limit to fulfill the criterion.

5. Conclusion

Coarse grained models for water and alkanes using the Morse
potential (eq 1) for pairwise interactions were parametrized
using the experimental ∆Hvap, bulk density, and surface
tension to set the three adjustable parameters in the Morse
form. In addition to the three experimental values mentioned
above, we find that the CG models also have reasonable
values for other properties. The structural properties of CG
alkanes are in good agreement with those mapped from
atomistic data. The application of an interaction potential
softer in the short-range region allows the use of a larger
integration time step for CG-MD simulations. We find that
a time step of 40 fs can be safely used for the version of the
force field in which torsion angle restraints are not included
on the alkane chains (as they are not included in the
MARTINI force field). However, if greater fidelity is desired
for chain structures, a 10 fs time step is required.

Since the Morse potential can be successfully adapted for
both highly polar (water) and very nonpolar (alkanes) species,
we suggest it as a candidate for the general form of the
nonbonded interaction in coarse-grained simulations. An

additional benefit is that, due to the softer repulsive force,
the Morse potential permits larger time steps than does the
L-J form. It should be said the Morse potential is slightly
more time-consuming (approximately 20% in our hands) per
time step in our implementation (which uses table look up
rather than evaluation of exponentials) than the Lennard-
Jones form. However, this is more than made up by the larger
time step permitted, so that on balance the Morse form is
both more efficient and also more faithful in replicating a
broad range of experimental data. It may also be that the
Morse form calculation can be made more computationally
efficient in the future.
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Abstract: An empirical dispersion correction is added to the range-separated hybrid density
functionals HSE and HISS via parametrization versus a standard test bed of weakly bound
complexes. The performance of the resulting HSE-D and HISS-D functionals is evaluated by
calculating the equilibrium bond length, harmonic frequency, and dissociation energy for a number
of rare gas dimers, and the lattice constants, band gaps, and sublimation energies of the rare
gas solids. Both HSE-D and HISS-D are shown to provide accurate results for both molecules
and extended systems, suggesting that the combination of a screened hybrid functional with an
empirical dispersion correction provides an accurate, widely applicable method for use in solid-
state and gas-phase electronic structure theory.

1. Introduction

Kohn-Sham density functional theory1 (KS-DFT) continues
to be a hugely popular and successful electronic structure
method for a number of reasons. With modern functionals,
DFT offers the tantalizing combination of accurate results
at a fraction of the computational cost required for a
correlated ab initio calculation. Many of today’s most useful
functionals belong to the class of so-called hybrid functionals,
mixing a fraction of (nonlocal) Hartree-Fock exchange with
conventional local exchange functionals. Hybrid functionals
offer significant improvements in accuracy over those not
containing exact exchange and must be used to obtain even
qualitatively correct results for a number of properties of
both molecules and solids. This presents a problem in the
case of the latter, however, because exact exchange exhibits
slow spatial decay, and, as such, traditional hybrid DFT
calculations on solids are generally unfeasible. In addition,
many functionals (especially older functionals) have difficulty
with molecular and periodic systems in which dispersion
interactions play an important role. Such interactions are
known to arise from long-range electron correlations, which
are inadequately modeled by the majority of functionals.

Attempts have been made, in recent years, to overcome
both of these issues. In range-separated hybrid functionals,
the Coulomb operator is partitioned into two or more distance
ranges, and with appropriate parametrization the fraction of
exact exchange included is allowed to vary as a function of
interelectronic separation r12. The functional of Heyd,
Scuseria, and Ernzernhof2,3 (HSE, also known as HSE06)
is an early example of such a functional and was designed
to include exact exchange only at small r12, thus ameliorating
the computational expense of modeling solids. HSE is among
the most accurate density functionals for band gap calcula-
tions in solids due to this short-range Hartree-Fock exchange
and has also been shown to yield good structural and
energetic data for extended systems.4-7 However, its per-
formance in molecular calculations is not as impressive
because the exchange potential now lacks the correct
asymptotic behavior. The LC-ωPBE functional8,9 is designed
in a similar way to HSE but, conversely, includes only long-
range exact exchange. This functional consequently outper-
forms HSE for many molecular properties, but is unsuitable
for calculations on extended systems. Henderson, Izmaylov,
Scuseria, and Savin (HISS) developed a functional10 in an
attempt to combine the best features of the HSE functional
in calculations on solids with those of the LC-ωPBE
functional in molecular calculations. In the HISS functional,* Corresponding author e-mail: ed.brothers@qatar.tamu.edu.
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the Coulomb operator is split not only into short-range and
long-range components, as in HSE and LC-ωPBE, but also
into a middle-range part. HISS is parametrized so that exact
exchange is only computed in this middle r12 range and has
been shown to give only slightly less accurate results on
solids than HSE, while yielding far superior accuracy for
finite systems.11

Regardless of the importance of exact exchange, however,
it cannot improve the description of a system in which
dispersion interactions are important. Many different solu-
tions to this problem have been proposed, but in this work
we focus on the popular empirical dispersion correction of
Grimme, commonly known as the DFT-D method.12,13 In
this conceptually simple approach, a pairwise empirical
correction, which depends on a single, optimized functional-
dependent scaling parameter, is added to the KS-DFT energy.
There are obvious limitations to this approach, as a semiem-
pirical correction can only improve an already a reasonable
semilocal interaction curve, and not all dispersion interactions
are pairwise.14 However, this correction is extremely quick
to calculate as compared to the self-consistent field step of
a KS-DFT calculation, even for large systems, and DFT-D
has yielded excellent geometries and interaction energies for
dispersion bound complexes.12,13 Recently, the DFT-D
method has been extended to the domain of solid-state
electronic structure calculations by a number of groups with
encouraging results.15-17

By combining a screened hybrid functional with an
empirical dispersion correction, it is hoped that an accurate
universal functional that could be applied to both molecules
and solids could be constructed. In the present study, optimal
s6 values are determined for the HSE and HISS functionals
against a standard set of weakly bound complexes, and the
performance of the resultant HSE-D and HISS-D functionals
is assessed by calculating the geometry, harmonic frequency,
and dissociation energy for a number of rare gas dimers.
With our implementation of DFT-D under periodic boundary
conditions, these functionals are then used to calculate the
lattice parameters, sublimation energies, and band gaps of
the dispersion bound rare gas solids. Note that these systems
are vastly different from those in our training set and were
selected to demonstrate the transferability of our parametri-
zation and general applicability of our corrected functionals.

2. Theory

2.1. Range-Separated Hybrid Density Functionals. A
recent overview of the theory and applications of range-
separated hybrids was given by Henderson et al.;18 the
interested reader is referred to this paper, but a brief summary
is given here for the sake of convenience. Following the ideas
of Savin,19,20 in this type of functional the Coulomb operator
r12
-1 is typically partitioned into a short-range and a long-

range component:

where the first and second terms on the right-hand side
contain the short- and long-range (SR and LR) parts of the

exchange, respectively, the complementary error function is
defined as erfc(ωr) ) 1 - erf(ωr), and ω is an adjustable
parameter that controls the definition of the two ranges. In
the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid func-
tional, the first of these range-separated hybrids considered
in this work, ω ) 0.11 a0

-1. The error function is not the
only suitable function for use in this partitioning, but has
the desirable property that the requisite integrals are easy to
calculate analytically. HSE is based on the PBE0 hybrid
functional,21,22 and the HSE exchange-correlation energy is
given by

with the mixing coeffecient 1/4 obtained from perturbation
theory.23 HSE is thus equivalent to PBE0 for ω ) 0 and
approaches PBE as ω f ∞. Although it has been shown to
yield accurate band gaps, lattice constants, and bulk moduli
in solids,4-7 for example, it performs less well for molecular
thermochemistry and reaction barriers due to the incorrect
behavior of the exchange potential, HSE only includes a
significant fraction of exact exchange for r12 e 1/ω ≈ 4.8
Å. On the basis of the long-range correction scheme of Iikura
and co-workers,24 the LC-ωPBE functional was introduced
by Vydrov and Scuseria8,9 to address this shortcoming and,
opposite to HSE, exclusively contains Hartree-Fock ex-
change at large r12. The LC-ωPBE energy is given by

with the parameter ω ) 0.4 a0
-1 (r12 ≈ 1.3 Å). Note that the

Coulomb-attenuated method (CAM) functionals of Yanai and
co-workers25 had previously been introduced to achieve a
similar goal. CAM-B3LYP, for example, yields hugely
improved charge transfer excitations as compared to B3LYP
but differs from the LC hybrid functionals in that it still
contains a small fraction of exact exchange at small r12.
While LC-ωPBE improves upon HSE for a number of
molecular properties, the inclusion of long-range exact
exchange makes the functional unsuitable for calculations
on solids. The motivation for the development of the HISS
(Henderson-Izmaylov-Scuseria-Savin) functional10 was to
introduce a functional that benefits from the increased
accuracy afforded by including exact exchange at long-range,
but that is still suitable for studies of extended systems. In
the HISS functional, the Coulomb operator is split into three
length ranges:

where MR denotes the additional middle-range length scale.
As for HSE, exact exchange contributions for large r12 must
be neglected to ensure the applicability of the functional to
solids, but as in LC-ωPBE, short-range exact exchange is
also omitted. That is, HISS contains exact exchange only in
the middle range. Thus, we can write the total HISS
exchange-correlation energy as

1
r12

)
erfc(ωr12)

r12
+

erf(ωr12)

r12
(1)

Exc
HSE ) Exc

PBE + 1
4

(Ex
HF,SR - Ex

PBE,SR) (2)

Exc
LC-ωPBE ) Ex

PBE,SR + Ex
HF,LR + Ec

PBE (3)
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where the mixing coefficient 3/5 has been shown to be
thermochemically optimal. The definition of a third range
requires two values of the parameter ω, which have been
determined as ωSR ) 0.84 a0

-1 (r12 ≈ 0.6 Å) and ωLR ) 0.20
a0
-1 (∼2.6 Å). Note that both HSE and LC-ωPBE are special

cases of HISS-type functionals and can be defined within
the framework of a three-range Coulomb operator with
appropriate parameters.

2.2. Empirical Dispersion Corrections. Following the
prescription of Grimme,12 the DFT-D energy can be written
as

For an N-atom system, Edisp is defined as the simple pairwise
sum:

where s6 is the global scaling parameter, which depends only
on the functional in use, C6

ij is the geometric mean of the
individual atomic dispersion coefficients, Rij is interatomic
distance for a given pair, and f is the damping function:

where Rr is the sum of van der Waals radii for a given pair.
Accurate dispersion coefficients and careful damping (d )
20 has been shown to be optimal)13 are vital to ensure the
correction applies only to medium-range Rij, where the
dispersion forces are greatest. The derivatives ∂Edisp/∂Rij and
∂2Edisp/∂Rij

2 are straightforward to determine and implement,
enabling DFT-D geometry optimizations and frequency
calculations to be performed for gas-phase molecules.

The DFT-D energy expression can be modified for
extended systems by adding a sum over lattice vectors; then
a correction to EDFT-D, taking periodic boundary conditions
(PBC) into account, can be computed as

The term Edisp
g)0 is the dispersion interaction between atoms

in the unit cell, while the final term is calculated between
atoms i in the unit cell with atoms j in the image cells, where
the image cells are generated by integer multiples g of each
lattice vector and the factor of 1/2 is to avoid double
counting. The gradient of the PBC dispersion energy has
also been derived and implemented and is rendered only
slightly more complicated than for the molecular case
because of the need to determine the derivatives with respect
to lattice vectors as well as atoms.26

There are previous reports of DFT-D for periodic systems
in the literature. In one of the earliest such implementations,

Ortmann et al.15 performed periodic DFT-D calculations
using plane-wave basis sets, with the PW91-D functional
yielding mixed results for a wide variety of weakly bound
systems. More recently, Kerber et al.16 obtained accurate
results for the interlayer spacing and binding energy in
graphite and vanadia, as well as good reaction energies for
the adsorption of organic molecules on silica and zeolites
using the PBE-D functional. In addition, the B3LYP- D*
functional of Civalleri et al.17 has been shown to give good
structural and energetic data for a representative set of
molecular crystals. This empirically corrected functional is
not quite the same as the B3LYP-D functional as defined
within the framework of Grimme, as the atomic van der
Waals radii are scaled instead of the entire dispersion
correction. That is, s6 in eqs 7 and 9 is equal to unity, but
the van der Waals radii Rr in eq 8 are multiplied by a
parameter sR (equal to 1.3 for hydrogen and 1.05 for heavy
atoms). This is similar to the approach of Jurečka et al.27

except that they use a single value of sR, optimized for each
functional and basis set combination, for the whole periodic
table.

Unlike the implementation of Civalleri et al., we do not
have a fixed distance-based cutoff, but rather add contribu-
tions to Edisp from ever larger shells of matter until some
convergence criterion κ is reached. This approach was chosen
due to the unexpectedly long-range of non-negligible disper-
sion contributions found during testing, and the strong system
dependence of such a cutoff. Typically, κ ) 10-10 Eh was
used for both the energy and the gradient. This is tighter
than is strictly necessary as this far exceeds the accuracy of
the DFT quadrature, for example, but guarantees the smooth-
ness of our DFT-D potential energy surfaces.

3. Computational Details

All calculations were performed using a development version
of the Gaussian electronic structure program.28 A number
of basis sets were considered for use in this work. After our
initial tests, we chose to use the def2-TZVPP basis sets29

for the PBC calculations, whereas for the dimer calculations
the aug-cc-pVQZ basis set was selected for Ne30 and Kr,31

while the aug-cc-pV(Q+d)Z32 and aug-cc-pVQZ-PP33 basis
sets were used for Ar and Xe, respectively. These basis sets
were used in conjunction with the small-core pseudopotential
of Peterson et al.33 for xenon in the solid and molecular
calculations. For the parametrizations, the 6-311++G(3df,3pd)
basis set34 was used. Because the DFT-D method is best
used with large, flexible basis sets,12 this basis set was chosen
to ensure the transferability of our parametrization while
enabling the requisite SCF calculations to be performed in
reasonable time. The counterpoise correction of Boys and
Bernardi35 was not computed for any of the systems studied,
as basis set superposition errors for these systems have
previously been shown to be very small with triple- or
quadruple-� basis sets.36 Tight and very tight convergence
criteria were used throughout, for the SCF procedure and
geometry optimizations, respectively. Furthermore, it was
found during the initial stages of this work that very dense
integration grids must be employed to achieve sufficiently
accurate results for both the solid and the molecular
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5
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calculations (especially the latter), and a grid with 199 radial
and 974 angular points per atom was selected (for compari-
son, the “ultrafine” grid in Gaussian is a pruned grid with
99 radial and 590 angular points). This point is discussed
further in section 5, as the choice of integration grid was
found to have a significant effect, especially on some of the
harmonic frequency calculations.

Although the main focus of this work was to evaluate the
performance of the screened hybrid functionals HSE and
HISS combined with an empirical dispersion correction, a
number of other functionals were selected for comparison.
In addition to BLYP,37-39 PBE,40 and TPSS41 (both with
and without the empirical correction), the M06-L functional42

of Zhao et al. and Grimme’s B97-D functional13 were also
selected. Of all of the recent Minnesota functionals, M06-L
was chosen as it does not contain any nonlocal exchange,
making it suitable for calculations on solids as well as
molecules.43

4. Parametrization

As noted above, eq 7 contains one adjustable parameter, s6,
which depends only on the functional being used. Optimal
values for this parameter have been determined for a number
of popular functionals, but not for the screened functionals
under consideration here. We determined the optimal s6

values for the HSE and HISS functionals by minimizing the
root-mean-square (rms) error of the interaction energies in
the S22 set of molecular complexes. The S22 test set was
proposed by Jurečka et al.44 and contains three types of
complex: hydrogen bonded (7 complexes), dispersion bound
(8), and mixed (7). During the validation of our parametriza-
tion on functionals for which the optimized s6 value has been
determined, it was observed that DFT-D can degrade the
performance of a given functional for hydrogen-bonded
systems. In other words, the most accurate DFT-D interaction
energies for these complexes are obtained when s6 ) 0 for
a number of functionals; we note that this issue influenced
the parametrization procedure of Jurečka and co-workers.27

The need for a balanced test set is illustrated in Figure 1 by
the rms interaction energy errors for each type of complex
in the S22 set, calculated with the HSE functional and

graphed against s6, which clearly shows that simply minimiz-
ing the error for the dispersion bound subset would result in
significantly larger errors for the other types of complexes.

For both HSE and HISS, the optimal value of s6 was
determined to be 0.55. Table 1 shows the rms errors of the
interaction energies for the S22 set complexes calculated with
both functionals, with and without the empirical dispersion
correction, and demonstrates the marked improvement of
DFT-D for dispersion bound and mixed complexes. It is
interesting to note that, while the increase in accuracy
observed with HSE-D is a trade-off (because the errors for
hydrogen-bonded systems increase), the addition of an
empirical correction to HISS results in a uniform improve-
ment for each type of complex. This suggests, prior to any
detailed testing, that HISS-D in particular should provide
good results across a range of weakly bound systems.

5. Applications

To assess the performance of DFT-D methods and especially
the new HSE-D and HISS-D functionals for dispersion bound
systems, we calculated the bond lengths (Table 2), harmonic
frequencies (Tables 3 and 4), and dissociation energies (Table
5) of the rare gas dimers Ne2, Ar2, Kr2, Xe2, NeAr, NeKr,
NeXe, ArKr, ArXe, and KrXe using the functionals stated
above. The same methods were then used to calculate the
lattice constants (Table 6), sublimation energies (Table 7),
and band gaps Table 8) for the face-centered cubic structures
of solid Ne, Ar, Kr, and Xe. These systems were chosen
because, in addition to being bound solely by dispersion
forces, they are quite different from those included in the
parametrization; the S22 set features complexes of molecules
containing only the atoms H, C, N, and O. Helium was
excluded from our study as it does not exist as a solid at
standard pressures, and our principal aim in this work is to
demonstrate the applicability of HSE-D and HISS-D for both
solid and molecular calculations.

For the dimers, we compare our calculated results to the
experimental values of both Ogilvie and Wang45,46 (OW)
and Tang and Toennies47 (TT) (note that these potentials
are experimental in the sense that they are fits to experimental
and not theoretical data). Although there is little difference
between the two for equilibrium properties, the more recent
TT potentials have been championed by Gerber and Án-
gyán,48 and Ruzsinszky et al.49 have recently shown that the
OW potentials are actually divergent at large interatomic
separation. Nonetheless, the OW potentials have been widely
used as reference values in a number of theoretical studies,
including the recent DFT investigations of Tao and Perdew36

Figure 1. Plot of the rms errors in the HSE/6-311++G(3df,3pd)
interaction energies for each type of complex in the S22 set
against s6, the global DFT-D scaling parameter.

Table 1. The rms Errors in the Interaction Energy (kcal/
mol) in the S22 Set Calculated Using the HSE and HISS
Functionals and the 6-311++G(3df,3pd) Basis Set, Both
With and Without an Empirical Dispersion Correction

HSE HISS

DFT DFT-D DFT DFT-D

hydrogen bonded 0.78 1.45 1.63 0.62
dispersion bound 4.56 0.67 4.38 0.48
mixed 1.46 0.63 1.52 0.65
overall 2.90 0.98 2.92 0.58
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and Zhao and Truhlar.50 Errors are thus reported relative to
the OW values, but generally the OW and TT potentials are
in very close agreement for the properties studied here. We
are also compelled to cite the highly accurate potentials of
Aziz,51,52 which were the preferred reference values of
Ruzsinszky et al.49 Finally, we note that the importance
of the higher-order coefficients C8 and C10 in the TT
potentials has influenced the recent damped dispersion
correction for GGA functionals of Steinmann et al.,53 which
appears to yield very promising results for a range of systems.
However, these higher-order terms do not appear in the
DFT-D framework of Grimme used in this work, although
they have recently been derived from the exchange-hole
dipole moment for the systems studied here by Becke and
Johnson.54

Deviations from experimental values are reported as both
mean signed errors (MSE) and mean unsigned errors (MUE)
in Table 9 for the dimers and Table 11 for the solids. For
the harmonic frequencies and dissociation energies of the
dimers, these quantities are also expressed as percentages
(see Table 10) because the experimental values are very small
by chemical standards (dissociation energies are as low as
0.084 kcal/mol for Ne2, rising to only 0.561 kcal/mol for
Xe2).

The uncorrected functional BLYP failed to bind any of
the solids or dimers under investigation, and so results for
this functional without an empirical dispersion correction are
not tabulated in this section.

5.1. Dimers. 5.1.1. Bond Lengths. Bond lengths for the
rare gas dimers are given in Table 2. All of the DFT-D
methods perform extremely well, and it is clear that the
empirical correction is a necessity to obtain accurate
geometries for these systems. Given the failure of its parent
functional to bind any of the dimers at all, the accuracy of
BLYP-D is especially pleasing. Without the dispersion
correction PBE is the best functional, while HISS and TPSS
give particularly large errors, but every uncorrected functional
significantly overestimates the bond lengths in these dimers
as shown by their positive mean signed errors in Table 9.

5.1.2. Harmonic Frequencies. The harmonic frequencies
are listed in Table 3. B97-D is clearly the best performing
functional here, with HISS-D, HSE-D, BLYP-D, and TPSS-D
following close together. The empirical correction improves
the results for HISS much more than for HSE, and this

Table 2. Equilibrium Bond Lengths of the Rare Gas Dimers (Å) Calculated Using the aug-cc-pVQZ Basis Sets

Ne2 Ar2 Kr2 Xe2 NeAr NeKr NeXe ArKr ArXe KrXe

HISS 3.4192 4.3244 4.6180 4.9450 3.8829 4.0590 4.3008 4.4798 4.6817 4.7957
HSE 3.1020 4.0254 4.3677 4.7805 3.5737 3.7604 3.9919 4.1980 4.4184 4.5836
M06-L 3.1496 3.9659 4.3836 4.9129 3.5618 3.8197 4.0143 4.2457 4.5086 4.7283
PBE 3.0880 3.9958 4.3459 4.7526 3.5420 3.7222 3.9409 4.1729 4.3885 4.5545
TPSS 3.3188 4.2698 4.6568 5.1624 3.7857 3.9770 4.2230 4.4713 4.7181 4.9057
B97D 3.2786 4.0428 4.1488 4.3772 3.6768 3.7832 3.9524 4.1003 4.2377 4.2729
BLYP-D 2.9327 3.8766 4.0664 4.3765 3.4222 3.5473 3.7413 3.9745 4.1472 4.2272
HISS-D 3.1196 3.9406 4.1216 4.3896 3.5495 3.6720 3.8600 4.0384 4.1984 4.2655
HSE-D 2.9312 3.8053 4.0545 4.3593 3.3818 3.5339 3.7353 3.9377 4.1179 4.2168
PBE-D 2.9004 3.7444 3.9891 4.3015 3.3300 3.4713 3.6585 3.8721 4.0459 4.1516
TPSS-D 3.0016 3.8607 4.0685 4.3429 3.4441 3.5759 3.7637 3.9735 4.1401 4.2152
OWa 3.0910 3.7565 4.0080 4.3627 3.4889 3.6210 3.8610 3.8810 4.0668 4.1740
TTb 3.0904 3.7572 4.0112 4.3657 3.4767 3.6460 3.8895 3.8895 4.0905 4.1964

a References 45 and 46. b Reference 47.

Table 3. Harmonic Frequencies of the Rare Gas Dimers (cm-1) Calculated Using the aug-cc-pVQZ Basis Sets

Ne2 Ar2 Kr2 Xe2 NeAr NeKr NeXe ArKr ArXe KrXe

HISS 15.2 12.3 7.3 6.8 12.4 11.4 9.6 9.6 8.6 7.2
HSE 31.3 21.1 13.3 10.7 25.4 22.6 20.2 18.0 15.6 11.9
M06-L 77.8 47.8 33.3 23.8 46.6 53.2 47.9 35.2 28.8 28.0
PBE 33.9 22.8 15.1 11.6 28.5 25.3 23.9 19.0 17.6 13.5
TPSS 23.7 15.0 11.9 7.5 21.3 18.3 17.0 14.0 12.5 9.0
B97-D 31.0 22.6 21.7 23.7 29.1 25.8 26.5 23.7 24.1 23.2
BLYP-D 42.0 23.7 24.2 23.5 29.9 30.8 30.2 24.7 24.9 23.8
HISS-D 30.9 23.1 20.9 20.1 25.8 25.3 24.6 22.1 22.3 20.4
HSE-D 47.6 30.5 24.0 21.3 37.3 33.9 33.1 28.0 26.8 22.5
PBE-D 54.3 36.6 29.0 26.2 44.5 41.4 39.4 33.3 32.1 27.6
TPSS-D 43.7 30.4 24.8 23.6 36.3 34.1 32.8 27.8 26.7 24.1
OWa 28.5 30.9 23.6 20.9 28.2 26.2 24.3 27.9 27.1 22.7
TTb 29.4 32.0 24.3 21.2 28.5 25.3 22.8 28.7 26.9 22.7

a References 45 and 46. b Reference 47.

Table 4. Effect of the Integration Grid on the Harmonic
Stretching Frequency of the Neon Dimer, Calculated at the
TPSS/aug-cc-pVQZ Level With and Without the
Boys-Bernardi Counterpoise Correctiona

ωe (cm-1)

grid points per atom without CP with CP

pruned (75,302) “fine” 8338 46.5 46.7
pruned (99,590) “ultrafine” 23 416 41.2 34.3
(199,974) 167 528 23.7 23.5
(96,32,64) 169 984 44.8 35.8
(200,100,200) 3 440 000 25.2 23.6
(400,200,400) 27 520 000 25.6 24.5

a For notation, see the text.
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appears to be due to the poor quality of the HSE-D
frequencies for neon-containing dimers. Indeed, if only the
Ar, Kr, and Xe dimers are considered, the accuracy of the
HSE-D frequencies is spectacular (with a MSE and MUE
equal to 0.0 and 0.3 cm-1, respectively). Conversely, for the
uncorrected HISS and HSE functionals, the errors in the
calculated homonuclear dimer frequencies are far larger for
the heavier elements. Of course, the effect of the empirical
correction is most pronounced for the BLYP functional, with
BLYP-D once again giving very good results here. The errors
observed with the M06-L functional are surprisingly large,
with the neon dimer proving especially troublesome.

We note that our frequencies differ significantly from those
reported by Tao and Perdew,36 who investigated the He, Ne,
Ar, and Kr dimers using the LSDA, PBE, and TPSS
functionals. Although we used the same basis set (except
for Ar), there is a substantial discrepancy between some of
our numbers, and this can be attributed solely to the choice
of integration grid. We note that the need to use dense
integration grids for GGA-type calculations on dispersion-
bound systems has recently been highlighted and explained
in great detail by Johnson et al.55 The effects of using a larger
grid, (199,974) in this work, are not uniform, but are
especially pronounced in a few cases. Our value of ωe for

Table 5. Dissociation Energies of the Rare Gas Dimers (kcal/mol) Calculated Using the aug-cc-pVQZ Basis Sets

Ne2 Ar2 Kr2 Xe2 NeAr NeKr NeXe ArKr ArXe KrXe

HISS 0.025 0.032 0.044 0.057 0.028 0.030 0.031 0.037 0.040 0.049
HSE 0.084 0.108 0.124 0.143 0.094 0.096 0.099 0.115 0.120 0.132
M06-L 0.162 0.142 0.103 0.136 0.171 0.167 0.193 0.129 0.144 0.122
PBE 0.122 0.145 0.163 0.181 0.135 0.140 0.145 0.153 0.158 0.171
TPSS 0.070 0.075 0.086 0.087 0.075 0.079 0.080 0.080 0.080 0.087
B97-D 0.146 0.255 0.493 0.825 0.186 0.239 0.276 0.349 0.427 0.626
BLYP-D 0.073 0.087 0.282 0.508 0.071 0.119 0.146 0.165 0.218 0.374
HISS-D 0.096 0.159 0.288 0.472 0.116 0.145 0.163 0.211 0.255 0.362
HSE-D 0.195 0.278 0.412 0.593 0.221 0.252 0.273 0.333 0.380 0.485
PBE-D 0.279 0.393 0.586 0.835 0.321 0.371 0.409 0.473 0.542 0.689
TPSS-D 0.226 0.329 0.532 0.793 0.263 0.314 0.348 0.412 0.477 0.638
OWa 0.084 0.285 0.400 0.561 0.134 0.142 0.147 0.361 0.375 0.464
TTb 0.084 0.285 0.400 0.562 0.132 0.141 0.141 0.333 0.373 0.464

a References 45 and 46. b Reference 47.

Table 6. Lattice Constants of the Rare Gas Solids (Å)
Calculated with the def2-TZVPP Basis Set

Ne Ar Kr Xe

HISS 4.4574 5.8372 6.3487 6.9689
HSE 4.3768 5.7486 6.2896 6.9561
M06-L 4.2347 5.2605 5.5465 6.0045
PBE 4.3507 5.7436 6.3108 6.9978
TPSS 4.5523 6.1456 6.8171 7.6287
B97-D 4.4574 5.6027 5.7183 6.0507
BLYP-D 4.0464 5.2665 5.5808 6.0296
HISS-D 4.2214 5.3789 5.6688 6.0481
HSE-D 4.1604 5.3732 5.7123 6.1142
PBE-D 4.1203 5.2967 5.6271 6.0468
TPSS-D 4.2315 5.4354 5.6604 5.9807
expt. 4.464a 5.311b 5.67c 6.132d

a Reference 58. b Reference 59. c Reference 60. d Reference
61.

Table 7. Sublimation Energies of the Rare Gas Solids
(J/mol) Calculated with the def2-TZVPP Basis Set

Ne Ar Kr Xe

HISS 2044 1332 1334 1319
HSE 2959 2459 2472 2497
M06-L 8471 11 119 12 640 20 192
PBE 4281 3120 2943 2842
TPSS 2834 1721 1509 1343
B97-D 6140 7928 14 687 25 462
BLYP-D 7533 7043 13 188 20 753
HISS-D 5054 6178 10 030 15 376
HSE-D 6270 7466 10 947 15 493
PBE-D 8988 10 298 15 112 21 536
TPSS-D 7918 8991 14 729 23 012
expt. 1933a 7732b 11 158b 15 839b

a Reference 62. b Reference 63.

Table 8. Band Gaps of the Rare Gas Solids (eV)
Calculated with the def2-TZVPP Basis Set

Ne Ar Kr Xe

HISS 26.89 20.30 16.58 13.35
HSE 22.82 16.98 13.76 10.77
M06-L 21.29 16.75 12.60 8.43
PBE 19.43 15.06 12.22 9.57
TPSS 21.72 16.27 12.63 10.35
B97-D 21.01 15.39 11.90 8.16
BLYP-D 16.79 14.78 11.20 7.96
HISS-D 24.85 20.15 15.99 11.71
HSE-D 20.98 16.94 13.22 9.32
PBE-D 17.52 14.97 11.46 8.01
TPSS-D 19.10 15.70 12.14 8.46
expt.a 21.56 15.76 14.00 12.13

a Reference 64.

Table 9. Errors in the Bond Lengths, Harmonic
Frequencies, and Dissociation Energies of the 10 Rare
Gas Dimers Studieda

re (Å) ωe (cm-1) De (kcal/mol)

MSE MUE MSE MUE MSE MUE

HISS 0.5196 0.5196 -16.0 16.0 -0.258 0.258
HSE 0.2491 0.2491 -7.0 7.6 -0.184 0.184
M06-L 0.2980 0.2980 16.2 16.2 -0.148 0.185
PBE 0.2192 0.2198 -4.9 6.1 -0.144 0.152
TPSS 0.5178 0.5178 -11.0 11.0 -0.215 0.215
B97-D 0.1560 0.1560 -0.9 2.7 0.087 0.095
BLYP-D 0.0001 0.0838 1.7 4.3 -0.091 0.091
HISS-D 0.0844 0.0846 -2.5 3.0 -0.069 0.075
HSE-D -0.0237 0.0729 4.5 4.6 0.047 0.054
PBE-D -0.0846 0.0846 10.4 10.4 0.195 0.195
TPSS-D 0.0075 0.0668 4.4 4.6 0.138 0.138

a Errors are given relative to the experimental results of Ogilvie
and Wang.
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Ne2, calculated with TPSS, differs by 18.2 cm-1 from Tao
and Perdew’s value (over 60% of the experimental value).
Focusing on this case, in particular, we chose to investigate
this effect further by calculating ωe with a variety of grids
both with and without the counterpoise correction.35 The
results are tabulated in Table 4 and show that the grids
usually used in benchmark calculations are inadequate in this
case. The harmonic frequency calculated with the (199,974)
grid used throughout this work agrees well with the value
obtained with the (400,200,400) spherical product grid, with
the latter containing 27.5 million points per atom. Note also
that the magnitude of the basis set superposition error
decreases with ever denser quadrature grids.

5.1.3. Dissociation Energies. Table 5 shows the dissocia-
tion energies for the 10 dimers considered here. All func-
tionals yield significant errors in at least one case, but the
best results are clearly obtained with the HISS-D functional.
As for the harmonic frequencies, the effect of the dispersion
correction here is varied and results in a far greater
improvement for HISS than HSE, for example, and once
more this seems to be due to the poor accuracy for the dimers
containing neon. If these four dimers are excluded from the
statistics, the HSE-D functional again yields astonishingly
high accuracy (MSE of 0.006 kcal/mol, MUE equal to 0.017
kcal/mol). The effect of the correction on TPSS is limited,
while it substantially degrades the PBE results.

5.1.4. Summary. Statistics for the bond lengths, harmonic
frequencies, and dissociation energies of the dimers studied
are given in Table 9.

The very nature of the interatomic force in these rare gas
dimers makes them a challenging case for DFT methods.
The recent study of Tao and Perdew,36 as well as that of
Zhao and Truhlar,50 have demonstrated that, although
geometries accurate to around 10% are within the reach of
many functionals, calculating accurate dissociation energies
is considerably more problematic. To assist with the analysis
of the small values involved, mean percentage errors for both
the dissociation energies and the harmonic frequencies are
given in Table 10.

The DFT-D methods employed in this study yield excellent
geometries and reasonable harmonic frequencies but struggle
to provide accurate dissociation energies. For the frequencies,

B97-D stands head and shoulders above every other func-
tional, and for dissociation energies HISS-D comfortably
outperforms all of the other methods. For both properties,
HSE-D does extremely well in 6 out of 10 cases, but its
performance is marred by its inaccurate results for the neon-
containing dimers. It is worth mentioning that PBE performs
reasonably well for each property, but it is clear that the
best performers overall are B97-D and HISS-D, with the
consistently accurate energetics of the latter especially
pleasing.

5.2. Solids. 5.2.1. Lattice Constants. Table 6 lists the
calculated lattice constants for the fcc structures of solid neon,
argon, krypton, and xenon. The lattice constants are very
well reproduced by all DFT-D methods, as well as the
uncorrected M06-L functional, and although there is little
to choose between them, B97-D and HISS-D are the most
accurate by a small margin.

5.2.2. Sublimation Energies. Shown in Table 7, the
sublimation energies of the rare gas solids appear to provide
a significant challenge for DFT methods. Of the functionals
to which an empirical correction has not been added, only
M06-L reproduces the trend of increasing ∆Hsub down the
group. However, it significantly overestimates the values for
neon, argon, and krypton. HISS is the only functional to yield
an accurate value for neon, but given its performance for
the other solids this may be purely fortuitous. All of the
DFT-D methods correctly reproduce the periodic trend, but
all hugely overestimate the sublimation energy of solid neon.
Rościszewski et al.56 and Acocella et al.57 have performed
detailed additivity studies of the sublimation energy of solid
neon, and both groups find that the zero-point energy
contributes approximately 30% of the experimental value
(around 600 J/mol), but this is not sufficiently large to explain
the discrepancies observed here. For argon, krypton, and
xenon, HSE-D performs very well, with a mean unsigned
error of only 274 J/mol (0.07 kcal/mol) for these three solids,
or 1290 J/mol (0.31 kcal/mol) if neon is included. Note that,
as for the thermochemistry of the dimers, the energies
involved here are extremely small. HISS-D yields a value
slightly closer to experiment for neon and performs well for
both krypton and xenon, but underestimates the sublimation
energy of argon.

5.2.3. Band Gaps. The band gaps of each solid, calculated
as minimum direct band energy differences at the optimized
geometry for each functional, are given in Table 8. HSE
performs very well, but by contrast the HISS functional is
the least accurate of those tested. This is surprising given
that HISS has been shown to be only slightly less accurate
that HSE for this property,10 but it is worth noting that these
solids have unusually large experimental band gaps and that
all of the functionals give qualitatively correct results. The
empirical dispersion correction results in a slight improve-
ment for HISS but degrades the results for all other
functionals. Although the DFT-D correction has no direct
bearing on electronic structure, it is disappointing that the
general improvement in geometry observed with the correc-
tion does not translate into more accurate band gaps. TPSS
performs surprisingly well, especially for the lighter elements;
likewise, the statistics for M06-L are skewed somewhat by

Table 10. Percentage Errors in the Harmonic Frequencies
and Dissociation Energies of the 10 Rare Gas Dimers
Studieda

ωe De

MSE MUE MSE MUE

HISS -62 62 -84 84
HSE -28 30 -51 51
M06-L 60 60 -23 57
PBE -20 24 -31 40
TPSS -43 43 -63 63
B97-D -2 10 37 40
BLYP-D 7 16 -30 30
HISS-D -9 11 -17 22
HSE-D 17 17 36 38
PBE-D 39 39 97 97
TPSS-D 17 17 69 69

a For the harmonic frequencies, errors are given relative to the
experimental results of Ogilvie and Wang as in Table 9.
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the larger errors for krypton and, especially, xenon. While
more extensive testing is warranted, this indicates that the
changes in geometry due to adding the correction are
insufficient to alter the band gap, and thus a functional that
is adequate for band gaps will be adequate after correction.

5.2.4. Summary. Statistics for the lattice constants, sub-
limation energies, and band gaps of the solids studied can
be found in Table 11.

Generally, traditional functionals perform poorly for these
systems. Lattice constants are generally overestimated, and
sublimation energies are wildly inaccurate. M06-L is the best
of the uncorrected functionals for both properties, yielding
reasonable lattice constants and qualitatively correct sublima-
tion energies and band gaps.

The empirical dispersion correction makes a substantial
difference to the computed lattice constants and sublimation
energies, although all DFT-D methods except B97-D un-
derestimate the lattice constant for neon. This may, in part,
explain the hugely overestimated DFT-D sublimation ener-
gies for neon, although the value of ∆Hsub obtained with
B97-D is also poor. Aside from neon, the accuracy of the
HSE-D and HISS-D sublimation energies is excellent. As
expected, HSE yields accurate band gaps for all of these
solids, with TPSS and M06-L also doing well. The empirical
correction is purely a function of nuclear geometry and not
electronic structure, however, so it can have only a limited
effect on the band gap.

As with the dimers, no functional is the best performer
for every property, but we would argue that, overall, HSE-D
is the most consistent. For geometries and energetics, HISS-D
gives good results but is somewhat less accurate for band
gaps.

6. Conclusions

The screened hybrid functionals HSE and HISS have been
extended with the addition of an empirical dispersion
correction. Within Grimme’s DFT-D framework, we find that
setting the global scaling parameter s6 to 0.55 for both
functionals gives the best results. The HSE-D and HISS-D
functionals have been evaluated through calculations on a
number of rare gas dimers and solids. Both were found to
perform very well overall, with HISS-D performing slightly
better for the dimers and HSE-D having the edge for the
solids, although if the four neon dimers are excluded from

the statistics, HSE-D is also the best functional for the
molecular calculations. Given the differences between the
complexes used in the parametrization and the molecules
and solids investigated in this work, we suggest that both
HISS-D and HSE-D should be applicable to both molecular
and extended systems in which exact exchange and disper-
sion play an important part.
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Abstract: The structure and organization in an aqueous solution of a gemini surfactant, the
dicationic ionic liquid 1,3-bis(3-decylimidazolium-1-yl) propane bromide, and its vapor-liquid
interface have been studied using molecular dynamics simulations at room temperature. Starting
from a uniform distribution of cations, the system is found to spontaneously evolve forming cross-
linked cationic micellar aggregates. Alkyl tails are typically found buried inside the aggregates
to minimize their unfavorable interactions with water, whereas the polar head groups are present
at the micellar surfaces, exposed to water. Anions are found throughout the solution and are
not strongly bound to the cations. Cationic micellar aggregates exhibit an interesting behavior:
interconnection mediated by head groups, a phenomenon which is not observed in monocationic
ionic liquid solutions. The structure of the vapor-liquid interface of the solution, the structure of
the micellar aggregates, and the distribution of counterions are also discussed.

1. Introduction

Room temperature ionic liquids (RTILs) have interesting
properties and potential applications.1-3 Experimental
efforts4-7 and computational studies8-12 have added to the
knowledge on this new class of materials. Binary mixtures
are known to possess properties not exhibited by either of
the components. The area of applicability of ILs can be
enormously increased by mixing them with other compounds
and tailoring the mixture for a specific application. Several
studies have been carried out in this direction, by mixing
ILs with carbon dioxide,13-15 hydrogen fluoride,4 water,16-18

and other compounds.
Aqueous solutions of ionic liquids have been studied

extensively using experiments19-22 and computational
techniques,23,24,16,25,26 the majority of them involving ILs
based on imidazolium headgroups. These studies have aided
in determining the structure of ILs in solutions. The chain
length on the headgroup plays a major role in determining

the structure of solutes in the solution. ILs with a small chain
on the cation headgroup (e 4) remain as monomeric ions in
solutions, whereas those with intermediate length chains
(n ) 6-8) form small clusters of cations. When the
substituent on the headgroup is long alkyl chain (n g 10),
the cations form micellar aggregates with the alkyl tails
buried inside and the head groups lying at the surface.18,26

Due to the inherent amphiphilic nature of these compounds,
they can be used as surfactants.

Geminal dicationic ILs consist of a doubly charged cation
that is composed of two singly charged cations linked by an
alkyl chain (also called a spacer). A singly charged anion is
associated with each of the charged parts of the cation in
the crystalline phase. Such ILs with more than one polar
and nonpolar region have been synthesized and character-
ized27-31 and applied in chemical reactions32,33 recently.
Dicationic and tricationic ILs expand the horizon of applica-
tions for ionic liquids.34-36 Crystal structures of some
compounds belonging to this class have also been determined
by Anderson et al.27 ILs are also known to aggregate at very
small concentrations and hence are useful as surfactants. A
systematic study on monocationic and dicationic imidazolium
bromide ILs with a tetradecyl chain has shown that the
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dicationic compound is thermally more stable and also
possesses a significantly lower CMC (about 200 times less).28

Dicationic ILs can be used as solvents and lubricants at
high temperatures.37 They also find applications in analytical
chemistry, particularly in electrospray ionization mass spec-
trometry and in detecting small quantities of anions via gas
phase ion association38 and as the stationary phase in gas
chromatography columns.39 These group of ILs have re-
ceived very little attention of researchers compared to the
monocationic ILs. There are very few experimental studies
on these compounds. Computational studies on dicationic
ILs are limited to the electronic structure calculations in the
gas phase40 and semiempirical molecular modeling of
interactions between ILs and a hydroxylated silicon surface.41

To date, there seems to have been no efforts to study the
microscopic structure of these materials in bulk using
computational methods, such as molecular dynamics (MD).
Accordingly, the present work looks into the structure and
organization of a dicationic IL 1,3-bis(3-decylimidazolium-
1-yl) propane bromide (two 1-n-decylimidazolium units linked
by a -(C3H6)- group) in bulk and the vapor/liquid interface
of its aqueous solution. Details of the MD simulations are
provided in the next section, which is followed by the results
obtained and a discussion of these results. We end with the
conclusions derived from the computational studies.

2. Methodology and Simulation Details

Classical MD simulations have been carried out on an
aqueous solution of 1,3-bis(3-decylimidazolium-1-yl) pro-
pane bromide using the LAMMPS code42 and the all-atom
force field model developed by Pádua and co-workers.43 [In
the dicationic IL studied, the two imidazolium rings are
connected to each other through a spacer, compared to the single
imidazolium ring for which the model has been developed.43

The residual charge (due to the replacement of the third
hydrogen atoms of 3-methyl groups by a methylene group) has
been distributed to the hydrogen atoms (+0.125e each) of the
central methylene group of the spacer.] The simple point charge
(SPC) model44 has been used for water molecules.

A dicationic IL monomer was replicated in three dimen-
sions and water molecules were added randomly to generate
the starting configuration. The system was initially simulated
in the isothermal-isobaric (constant NPT) ensemble at 1 atm
pressure to fix the density. Equilibration at 1 atm pressure
leads to a value of 76.86 Å for the edge length of the cubic
box. Subsequent MD runs were performed in the canonical
ensemble (constant NVT) with a box length derived from
constant NPT simulations. The simulated system consisted
of 125 cation entities, each with two units of positive charge,
250 bromide ions, and 11 317 water molecules. Three
dimensional periodic boundary conditions were used to
simulate the bulk behavior. A distance of 13 Å was chosen
as the cutoff distance for computing nonbonded interactions.
The potential was not shifted at the cutoff. Long range
electrostatic interactions45 were handled using the particle-
particle particle-mesh solver (PPPM) with an accuracy of 1
part in 105. The equations of motion were integrated with a
time step of 0.5 fs using the velocity Verlet algorithm, and
SHAKE46 was used to constrain the stretching and bending

interactions of water molecules. A Nosé-Hoover thermostat
and barostat with time constants of 1000.0 and 500.0 fs were
used to control the temperature and pressure of the system,
respectively. A trajectory of 40 ns was generated, out of
which the final 30 ns was saved for analysis. Positions of
the atoms were stored every 4 ps.

A well equilibrated system was placed at the center of a
tetragonal box with sides of 76.86, 76.86, and 120.0 Å, to
simulate a liquid/vacuum interface. Since the periodic
boundary conditions were used on this super cell, the system
represented an infinite number of thin films of aqueous IL
solution separated by a vacuum. All other conditions
remained the same as in the bulk simulations. The system
was equilibrated for 10 ns and data for 30 more nanoseconds
were saved for analysis.

The visualization software VMD47 was used to render
images of the simulations. A schematic of [C3(C10Im)2]2+

has been provided as Figure 1 to aid the discussion.

3. Results and Discussion

3.1. Radial Distribution Functions. The average distri-
bution of different types of atoms, without the details of the
orientation, can be obtained using pairwise radial distribution
functions (RDFs). Different intermolecular RDFs are pre-
sented in Figure 2. Data are averaged over the last 10 ns of
the trajectory. The center of the imidazolium ring refers to
headgroup, and the terminal carbon atom of the decyl chain
is referred to as a tail group in the figure. A binwidth of 0.1
Å is used in the calculation of RDFs. From Figure 2a, we

Figure 1. Schematic representation of the cation, 1,3-bis(3-
decylimidazolium-1-yl) propane.

Figure 2. Radial distribution functions (a) between the
headgroup and the anion (b) tail groups around themselves.
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can see that the anion is very well organized around the
cation. The anion-anion RDF shows a first maximum at
4.9 Å and has a coordination number of 0.43 up to the first
minimum at 6.1 Å. The RDF also shows several noticeable
maxima before the function attains its isotropic value of
unity. The first peak in this function arises from the near
neighbor bromide ions, whereas the subsequent peaks arises
from the anions which are separated by a single water
molecule, two water molecules, and so on. The anion-head
RDF shows a sharp peak at 5 Å with an amplitude of 2.8,
followed by a broad hump between 5.7 and 8.0 Å. The
coordination number up to 8.0 Å is 1.8, which is the average
number of head groups found within a distance of 8.0 Å from
a particular anion. The RDF does not show any further features
beyond 12 Å. The head-head radial distribution function shows
a broad peak around 10 Å with an amplitude of 1.2. A broader
second peak has been observed at around 24 Å (data not shown).
The reason for the appearance of this peak will be discussed
later in this section. Figure 2b shows the intermolecular radial
distribution between the terminal carbon atoms of the decyl
chain. The RDF peaks at 4.2 Å with an amplitude of 11.3, which
suggests the extent of organization of decyl chains in the
solution. The distribution is similar to that found in monoca-
tionic ILs with a long alkyl chain substituted on the ring.26 The
formation of aggregates is evident from the distribution of tail
groups around themselves.

The radial distribution of atoms CR (carbon atom between
the two nitrogen atoms in the ring), CS (third to ninth carbon
atoms of decyl chain counting from the ring), and CT

(terminal carbon of decyl chain) around anions are shown
in Figure 3. The RDF of CR around the anion exhibits two
sharp peaks at 3.95 and 5.95 Å. The first peak arises from
the interaction of anions with the hydrogen attached to CR.
This hydrogen atom has been found to be more acidic
compared to the other two hydrogen atoms on the imidazo-
lium ring and form hydrogen bonds with the anion in pure
ionic liquids and in IL solutions.48,26 The second peak arises
from the interaction with a second CR atom present on the
connected ring. It is interesting to note that the peaks for
the CS and CT RDFs around the anion are broad and are
present at around 18 Å, suggesting negligible interaction
between the alkyl tail and anions. The peak position of the

anion-CT RDF provides an estimate of the median distance
of anions from the terminal carbon atom of the decyl chain.

3.2. Hydrogen-Bonded Interactions. Hydrogen bonds
(H-bonds) formed in the solution have been determined on
the basis of geometric criteria. A hydrogen bond is said to
have formed between the atoms if the distance between them
is less than the sum of their van der Waals radii and they
satisfy the linearity condition. We have chosen the H-bonds
with a distance cutoff of 2.7 Å for bonds involving oxygen
and 3.0 Å for bonds involving the bromide ion and an angle
cutoff of 160° (spread < 20°) as strong H-bonds. We have
characterized weak hydrogen bonds by adding 0.3 Å to the
distance cutoff and choosing 140° as an angle cutoff. In the
aqueous dicationic IL solutions, it has been observed that
only 3% of the cations are bound to the anions with strong
H-bonds. Including the weak H-bonds, this number increases
to around 27%. Cations are also found to be H-bonded to
water molecules. One in three cations are strongly bound to
water via H-bonded interactions, and if we include the weak
interactions it amounts to an average of 2.75 H-bonds per
cation. Bromide ions are known to form strong H-bonds with
water.16 Each bromide ion is strongly bound to around 4
water molecules and weakly bound to two more water
molecules. Hydrogen atoms of the imidazolium ring show
varying degrees of association through H-bonds. While the
acidic hydrogen atom (attached to the carbon atom between
two nitrogen atoms of the ring) shows the highest affinity to
forming H-bonds, the one bonded to the carbon atom linked
with the nitrogen atom with a decyl chain shows the least
affinity for H-bonds. This can be attributed to the stearic
hindrance from the decyl chain.

3.3. Diffusion of Ions. Mean squared displacements
(MSD) of the anion and cation are shown in Figure 4. The
central carbon atom of the spacer propyl group present
between the two imidazolium rings is considered as the cation
position. The initial ballistic motion of the ions can be
observed. From the figure, we can see that the MSD at 2 ns
is around 1600 and 150 Å2, respectively, for the anion and
cation; i.e., the MSD of the anions is an order of magnitude
higher than that of the cations. On average, anions are
displaced by around 40 Å, whereas cations are displaced by
a little above 12 Å. The ions diffuse considerably, and hence
we can assume that the phase space is sampled adequately
to give proper averages for the properties discussed. Anions

Figure 3. Radial distribution functions of CR, CS, and CT around
anions, where CR’s are the carbon atoms present between the
two nitrogen atoms of the imidazolium ring, CS’s are the third to
ninth carbon atoms of the decyl chain counting from the ring,
and CT’s are the terminal carbon atoms of decyl chains.

Figure 4. Mean squared displacements of the anion and
cation. The data are averaged over the last 10 ns of the
trajectory.
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are not strongly bound to cations, which is evident from the
higher diffusion rate observed in the case of anions,
compared to the cations, even though anions are likely to
be found near the acidic hydrogen of the imidazolium ring.
The reason for the slow diffusion of cations disproportionate
to their mass is discussed later in this section.

3.4. Intramolecular Structure of Cations. The presence
of two polar and two nonpolar groups in the cation can lead
to a complex intramolecular structure. Both hydrophobic tails
of the cation can interact with each other, or they may interact
with the hydrophobic tails of another cation. The orientation
of the two rings with reference to each other is also
influenced by the conformation of the spacer. In Figure 5,
the orientation probabilities for the rings and tails are shown:
The x axis presents the cosine of the angle between two rings
(measured as the angle between the normals to the planar
rings) and two decyl tails (measured as the angle between
the vectors connecting the first and last carbon atom of the
decyl tails) belonging to the same cation, and the y axis
presents the probability. It is clear from the figure that the
tails belonging to a cation are likely to be oriented parallel
to each other. However, the probabilities for nonparallel
orientations are non-negligible. It can also be noticed that
there is a higher probability of finding imidazolium rings of
a cation oriented around 150° to each other. These are the
most likely orientations, and not all the cations have the same
intramolecular structure.

3.5. Formation of Aggregates. Cations are found to form
aggregates in the aqueous solution in accordance with
experimental findings.28,29 This kind of behavior is also
observed in monocationic IL solutions,17,49,50,26 where the
alkyl tails are found to be present at the core of the micellar
aggregates. In the case of dicationic ILs, we observe similar
behavior but with a difference. The decyl tails interact with
each other, thus minimizing their exposure to water, initiating
the aggregation process. It is also observed from a partition-
ing of the energy that the van der Waals interactions between
the decyl tails are the main reason for aggregation. The
imidazolium head groups surrounding these alkyl groups are
thus shielding them from direct interaction with water while
at the same time exposing them to favorable interactions.
Anions interact with the head groups but are not bound to
them strongly. Some of the cations act as linkers between
micellar aggregates; i.e., they can be part of two aggregates
with each of their decyl chains belonging to different
micelles. This kind of interlinking (which is not observed in
monocationic ILs16) between the aggregates makes the

solution very viscous. The peak in the head-head RDF
observed at around 24 Å arises from cations belonging to
an aggregate and present on the diametrically opposite sides.
Also, the observed slow diffusion of cations compared to
the anions can be rationalized as due to the formation of
interconnected aggregates.

Figure 6 shows the observed aggregation of cations in
aqueous solution. In the figure, atoms belonging to the
headgroup of the cations are shown in a yellow color, while
the atoms belonging to the hydrophobic tail region are shown
as magenta spheres. Hydrogen atoms, bromide ions, and
water molecules are not shown for clarity. The positions of
the atoms are averaged over several frames near the end of
the 40 ns simulation. We can notice the formation of near
spherical micellar aggregates with the tail region in the core
and head groups at the periphery. The links formed between
two aggregates through the headgroup are visible in the
figure. Anions show some preference to be present near
the headgroup but are also found in the regions away from
the imidazolium ring (data not shown).

3.6. Structure of an Aggregate. Formation of aggregates
in solutions of amphiphilic cations is expected. However,
the nature of the aggregates formed in this solution is rather
interesting. Unlike those isolated near spherical aggregates
formed in the monocationic IL solutions,16 aggregates with
a hydrophobic core and hydrophilic surface interconnected
(cross-linked) to each other by the mediating polar region
are found in dicationic IL solutions. From Figure 7, we can
visualize the hydrophobic region (represented as magenta
spheres) in the core of the near spherical aggregate interacting
with each other via favorable dispersion interactions. Head
groups (represented in yellow) surrounding the hydrophobic
part interact with water while shielding the decyl chains from

Figure 5. Orientation of polar and nonpolar groups of a
cation.

Figure 6. Aggregates of cations in an aqueous solution of
[C3(C10Im)2] ·2Br. The positions are averaged over several
frames. The yellow region represents the polar headgroup,
while magenta spheres represent atoms belonging to the
hydrophobic tail. Hydrogen atoms, anions, and water are not
shown for the ease of visualization.
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unfavorable exposure to water. Both decyl chains of some
cations are involved in the formation of a single micellar
aggregate, but others extend outside. In the figure, only one
of the aggregate is completely shown, and the decyl chains
extending out of the aggregate actually belong to a different
aggregate (not shown in the figure).

3.7. Liquid-Vapor Interface. 3.7.1. Number Density.
The number density profiles of anions, head groups, tails,
and water along the z axis, obtained from the vapor-liquid
interface simulations, are shown in Figure 8. In these
calculations, the headgroup is represented by the central
carbon atom of the spacer (-(CH2)3- group) located between
the two imidazolium rings. The terminal carbon atoms of
the decyl group represent tail groups. Since the ratio of
cations to anions is 1:2 in the solution, we have accordingly
multiplied the headgroup number density by two for com-
parison. Similarly the number density of water is normalized
and presented. Notice the peak positions in the number
densities of anion and headgroup are close to each other.

However, the peak corresponding to cation is sharp near the
interface due to the more organized orientation of cations
near the interface. Moreover, the peaks are equally broad
for both headgroup and anions in the bulk region of the
solution. The reduction in the number density of water in
the bulk region can be attributed to the formation of cation
aggregates. The number density profile of the tail shows some
important characteristics. The tail region is protruding out
from the solution interface, which is evident from the profiles
of the tail and water. At least some part of the decyl group is
completely protruding out from the surface. We can see that
the number density of tail groups is highest at the interface and
suddenly drops to almost zero. We find two additional peaks
in the tail number density in the bulk region of the solution.
These peaks, which arise due to the presence of aggregates in
the bulk, do not provide much insight, as the data are averaged
over the surface. Observing the density profiles of the tail and
water, it is obvious that the maxima for water are present near
the minima for the tail and vice versa. So the high concentration
of tails at a given distance from the interface indicates the
formation of aggregates in the solution and hence decreases
the available region for the water molecules.

Note the asymmetry present in the density profiles.
Asymmetry is generally induced during the initial stages and
persists for an extended period of time in the MD simulations.
Here, we are only looking at the qualitative behavior of the
ions in the aqueous solution. To obtain statistically significant
quantitative values, it is advisable to simulate independent
configurations and/or bigger systems for longer times.

3.7.2. Orientation of Cation. The orientation probabilities
of vectors defining different components of the cation along
the z axis are shown in Figure 9. The probabilities are
computed only for the cations present beyond a certain cutoff
distance from the origin along the z axis. The cutoff distance
of 24 Å was chosen on the basis of the number density profile
of cations. The probabilities are shown for the vectors
connecting the first and last carbon atoms of the decyl chain
(black curve), two nitrogen atoms belonging to the same
imidazolium ring (red), and nitrogen atoms of different rings
connected by the spacer (green). The probability of finding
the decyl chain oriented parallel to the surface is the least
and is very low (<0.15) compared to the isotropic value of
0.5. The most probable orientation is the chain tilted to the

Figure 7. Structure of an aggregate in an aqueous solution
of [C3(C10Im)2] ·2Br. Only the heavy atoms of cations belonging
to the aggregate are shown in the figure.

Figure 8. Number density profiles of anions, head groups,
tail groups, and water in an aqueous solution of 1,3-bis(3-
decylimidazolium-1-yl) propane bromide.

Figure 9. Orientation probability for vectors corresponding
to different components of the cation along the z axis. Cos θ
is the angle between the z axis and the vectors connecting
the (black) first and last carbon atoms of the decyl chain, (red)
two nitrogen atoms of an imidazolium ring, and (green)
nitrogen atoms connected by the spacer.
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interface normal. There is also a substantial probability of
finding the chain oriented parallel to the interface normal.
The vector connecting two nitrogen atoms of the ring is likely
to be parallel to the interface normal. The orientation
probability for the vector connecting nitrogen atoms sepa-
rated by the spacer shows interesting behavior. We can see
the peaks corresponding both to the parallel and perpen-
dicular orientation of this vector with reference to the
interface normal. The peak around zero corresponding to the
perpendicular orientation arises from the cations that have
both decyl chains at the interface parallel to each other, so
that the spacer is perpendicular to these chains and hence to
the z axis. The peak around 1 (or -1) corresponding to the
parallel orientation along the z axis, arises from those cations
with a decyl chain at the interface and the other inside the
bulk region, belonging to an aggregate.

3.7.3. Organization at the Vapor-Liquid Interface. Ob-
serving the density profiles and orientation probability, it is
evident that the decyl chains are present at the vapor-liquid
interface of the dicationic IL solution partially protruding
out of the water surface. These alkyl chains are likely to be
tilted to the interface normal. A volume map density of the
vapor-liquid interfacial system is presented in Figure 10.
No ions were found in the vapor region of the interface. It
can be observed from the figure that the segregation of polar
and nonpolar regions of the cation that occurs is similar to
that found in bulk MD simulations; namely, hydrophobic
regions are surrounded by hydrophilic regions. The aggregates
formed in the bulk region with decyl chains in the core are
connected to each other via mediating head groups of the
cations. Anions are found dispersed throughout the available
region of the solution excluding the core of the aggregates.

4. Conclusions
The structure and organization in an aqueous solution of a
dicationic ionic liquid and its liquid-vapor interface at a
concentration higher than critical aggregation concentration
(CAC) is studied using MD simulations at room temperature.
Starting from a uniform distribution of cations, evolution of
the system to form cationic aggregates has been observed.
Anions are found to form a well-defined solvation shell of
water via hydrogen-bonded interactions. Cationic head
groups are also found to form H-bonds with water, though
not as strongly as anions. Cations aggregate in such a way
as to minimize the unfavorable interactions between the
hydrophobic tail groups and water, while maximizing the
favorable polar headgroup-water interactions. Thus, the core
of the aggregate is devoid of water and anions, populated
with only the decyl chains held together by van der Waals
attraction. Partitioning of nonbonded interaction energies
indicates the tail-tail interactions to be the major reason for
the formation of aggregates.

Anions in the solution are present throughout the solution
even though they are found to interact with the ring hydrogen
atoms. The anions are not strongly bound to cations, which
is evident from the diffusion of the ions. Unlike in mono-
cationic aqueous IL solutions,16 the aggregates in a dicationic
IL solution are interconnected (cross-linked) to each other
via mediating cations. Some of the cations are shared
between two distinct aggregates with each of the head and
tail groups belonging to one of them. The interconnection
between the aggregates makes the solution highly viscous,
which is also reflected in the diffusion of cations. The
vapor-liquid interface of the aqueous solution is populated
by the decyl chains that partially protrude out of the water
surface. The alkyl tails are tilted to interface normal at a
small angle. While some of the cations are entirely present
in the interfacial region, others share their tails between the
interface and the micellar aggregate present in the bulk.
Interconnected aggregates are also found in the bulk region
of the interfacial system.

In the present studies, MD simulations are performed on
a very concentrated solution of 0.457 M, while the CAC
values are very small, on the order of millimolar.29 The
current study only addresses the behavior of the solution at
a higher concentration, and the structure of the aggregates
at CMC may be different than that observed in these
simulations. On the basis of the structure of the aggregates
in the solution, IL-water mixtures with even higher con-
centrations of IL are likely to form bilayers of ILs. It will
be interesting to see whether such a bilayer is made up of
the folded or the extended form of the cation or a mixture of
both, and also how they behave with changes in the IL
concentration and the length of the spacer. These studies require
simulations of large systems to be performed for a long duration
of time and are feasible only through coarse-grained methods,
with present day computational resources. Thus, it will be
advisable to use coarse-grained MD simulations, to build on
the present results and also to study the dicationic IL solutions
at or near the critical aggregation concentrations.
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Figure 10. Volume map density of cations, anions, and water
in the vapor-liquid interface of an aqueous solution of
[C3(C10Im)2] ·2Br. Yellow represents the polar headgroup
region, while magenta represents the hydrophobic tail group.
Anion density is shown in green, and the water density is
shown in transparent white.
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Abstract: The thermodynamics of protonation and deprotonation of the rutile TiO2(110) water
interface is studied using a combination of density functional theory based molecular dynamics
(DFTMD) and free energy perturbation methods. Acidity constants are computed from the free
energy for chaperone assisted insertion/removal of protons in fully atomistic periodic model
systems treating the solid and solvent at the same level of theory. The pKa values we find for
the two active surface hydroxyl groups on TiO2(110), the bridge OH (Ti2OH+), and terminal
H2O adsorbed on a 5-fold Ti site (TiOH2) are -1 and 9, leading to a point of zero proton charge
of 4, well within the computational error margin (2 pKa units) from the experimental value
(4.5-5.5). The computed intrinsic surface acidities have also been used to estimate the
dissociation free energy of adsorbed water giving 0.6 eV, suggesting that water dissociation is
unlikely on a perfect aqueous TiO2(110) surface. For further analysis, we compare to the
predictions of the MUltiSIte Complexation (MUSIC) and Solvation, Bond strength, and
Electrostatic (SBE) models. The conclusion regarding the MUSIC model is that, while there is
good agreement for the acidity of an adsorbed water molecule, the proton affinity of the bridging
oxygen obtained in the DFTMD calculation is significantly lower (more than 5 pKa units) than
the MUSIC model value. Structural analysis shows that there are significant differences in
hydrogen bonding, in particular to a bridging oxygen which is assumed to be stronger in the
MUSIC model compared to what we find using DFTMD. Using DFTMD coordination numbers
as input for the MUSIC model, however, led to a pKa prediction which is inconsistent with the
estimates obtained from the DFTMD free energy calculation.

1. Introduction
Metal oxides develop a sizable positive surface charge when
immersed in water of sufficiently low pH. The origin of the
excess charge is protonation of basic surface oxygens.
Similarly, at high pH, deprotonation of adsorbed water
molecules or hydroxyl groups builds up a negative surface
charge. This charging process controls the sorption of ions
and surface speciation and, hence, affects the chemical
reactivity of the metal oxide surface.1 The surface charge
density at given pH is however not only determined by the
proton affinity or acidity of surface groups. It also depends
on surface composition and the electrostatic potential dif-
ference across electrical double layers and therefore on the

structure of the electrical double layer. It is notoriously
difficult to disentangle these three factors using only
experimental data such as potentiometric titration curves and
electrokinetic measurements. Modeling and prediction of
“intrinsic” surface proton affinities has therefore played a
crucial role in the understanding of surface protonation.2-8

This complexity also leaves surface protonation models a
large degree of freedom. Indeed, two of the most developed
and successful models used in the literature, the MUltiSIte
Complexation (MUSIC) model2,3,5 and the Solvation, Bond
strength, and Electrostatic (SBE) model,4,6 are capable of
representing a large set of experimental data. Both models
use bond valence as the key parameter determining proton
affinity. Bond valence was introduced by Pauling to rational-
ize the structure of ionic crystals. To predict intrinsic pKa, a
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bond length dependent generalization due to Brown and
Altermatt is used.9 The precise form of the correlation
between pKa and bond valence is however different in the
MUSIC and SBE models3,6 (the more recent model of
Bickmore et al.7,8 employs yet another relation). Also, the
type of experimental data used for the parametrization is not
the same. Equilibrium constants for surface protonation in
the MUSIC model are based on a linear correlation of bond
valence with experimental acidities of (hydr)oxyacids in
homogeneous solution,3 while the SBE model fits directly
to experimental surface acidities.4 A further important
distinction is the treatment of solvation, hydrogen bonding,
and local structure of the surface. The SBE model maintains
the classical single site-two pKa concept considering only a
single generic surface hydroxyl group.1 Long range interac-
tions with the solvent (and the oxide) are described by the
coupling to a dielectric continuum.4 The MUSIC model
differentiates between surface sites, recognizing that the
number of metal ions coordinating with surface oxygens is
a key factor in the differences in their chemical behavior.2,3

Short range specific hydrogen bonding is also accounted for
by assigning a bond valence to hydrogen bonds to basic
oxygens.3 It is however this feature special to the MUSIC
model that has been called recently into question6-8 and will
also be investigated in the present contribution.

In view of the variety in assumptions made in these
models, a less empirical approach could be instructive even
if only applied to a subset of typical systems. A significant
step toward this goal was made by Rustad and co-workers
in their studies of iron (hydr)oxide10,11 and silica.12 While
their model is also parametrized using the pKa of solution
complexes, the molecular quantity correlated with these data
is the proton binding energy of the corresponding gas-phase
complex computed by molecular mechanics (MM) methods.
Surface acidity constants are obtained by applying the MM
Hamiltonian to an atomistic model of the gas-phase surface
and substituting the calculated proton affinity in expression
for pKa. The advantage over the MUSIC and SBE approach
is that the effect of the structural relaxation of surfaces and
coupling between protonated sites can be studied in micro-
scopic detail.11 The importance of a realistic description of
metal oxygen surface bonds is also stressed by Bickmore
and co-workers.7 The valence of surface bonds in their
approach is calculated from detailed information on bond
lengths as determined by full Density Functional Theory
(DFT) modeling of periodic oxide vacuum interfaces. This
method was applied in an investigation of the protonation
of aluminum hydroxide(gibbsite) and silica.7 A similar
strategy was used by Machesky and co-workers to obtain
the structural input for a MUSIC model estimation of surface
protonation constants of TiO2 (rutile).13 The Ti-O bond
lengths were estimated from a density functional theory based
molecular dynamics (DFTMD) simulation of multilayer
adsorption of water on TiO2 surfaces. pKa in a MUSIC
model, however, also depends on coordination numbers
(number of hydrogen bonds) which were computed using a
classical MD simulation of solid-water interfaces. The force
field model in the classical MD was optimized using
DFT,14,15 ensuring consistency between the two calculations.

A feature common to all methods mentioned above is
reliance on an empirical linear free energy relationship of
some kind for the description of the solvent effects on pKa.
Eliminating such a phenomenological relation requires either
monitoring the surface protonation as it evolves in a MD
simulation allowing for proton dissociation or the application
of free energy sampling methods. Examples of the first
approach are the classical MD studies of the charging of
magnetite16 and goethite17 by Rustad and co-workers using
dissociative water potentials. The present DFTMD investiga-
tion of the protonation of the rutile TiO2(110) surface uses
free energy perturbation methods. Proton affinities are
computed directly as finite temperature free energy changes
using our recently developed DFTMD method of reversible
proton insertion.18,19 The motivation for choosing the TiO2/
H2O interface is because this system is well characterized
by experiment20-23 and has become a benchmark for the
modeling of surface protonation and complexa-
tion.2-5,13,21,24

A related issue, which has caused considerable controversy
in the computational surface science community, is whether
water dissociates on the rutile TiO2(110) surface.25-35

Experiments of TiO2 surfaces exposed to a low density water
vapor seem to indicate that water cannot dissociate on the
perfect surface except at defect sites (i.e., O vacancies).36-38

The first DFT calculations came to the opposite conclusion
(see ref 35 for a recent review). An important step was made
by Lindan and co-workers,26 who showed the importance
of inter-adsorbate hydrogen bonding at higher coverages, thus
distinguishing mono- and multilayer coverage from sub-
monolayer systems for which the disagreement between
theory and experiment is most pronounced. However, a clear
agreement on the structure of a H2O monolayer adsorbed
on TiO2 rutile (110) is also still lacking. DFT calculations
on this system vacillate between molecular (asso-
ciative)25,29,30,33-35 or mixed associative and dissociative
adsorption.26-28,31,32 These conclusions are based on a
comparison of adsorption energies computed from total
energies of systems placed in vacuum. The differences per
H2O molecule are however often small and dependent on a
variety of conditions (see section 3.2). In contrast, in the
present approach, the free energy for water dissociation at
the TiO2/H2O interface is computed by combining the
acidities of surface groups taking into account the solvation
of surface (hydr)oxide groups.

2. Theory and Methods

2.1. Surface Protonation Model and Point of Zero
Charge. On rutile TiO2(110) there are two types of surface
sites capable of binding additional protons under normal pH
conditions (see Figure 1): the hydroxylated 5-fold coordi-
nated Ti (“titanol”) groups

and bridging oxygens

TiOH- + H+ f TiOH2, KH1 (1)

Ti2O + H+ f Ti2OH+, KH2 (2)
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where KH1 and KH2 are the corresponding protonation
equilibrium constants. Following the notation of ref 2, the
subscripts 1 and 2 to the equilibrium constants refer to the
metal coordination of the active oxygen.

Charges in schemes 1 and 2 have been assigned according
to the formal charge of an adsorbed OHn group (n ) 0, 1,
2) assuming that the OH2 species (a water molecule) is
neutral. The TiO2 solid, represented in the DFTMD model
by a finite slab, is therefore viewed as a large molecular unit
(cluster) which is neutral when associatively hydrated by
water molecules. This simple ionic picture, based on integer
proton charge only, ignores contributions from the coordi-
nated Ti ions to the surface charge. This effect is taken into
account in the MUSIC model by adding in the fractional
Pauling bond valence (+2/3) of the TiO bond. Reactions 1
and 2 are then written as3,24

While this may be a more realistic model of surface charge,
such a model is not needed in a DFTMD calculation of the
corresponding protonation free energy. The simple “pseudo”
molecular representation of eqs 1 and 2 therefore seems more
appropriate in this context. Note that the charges in scheme
1 also differ from the charges in the single-site two-pKa

model of ref 4 in which the TiOH group is formally neutral
with a positive conjugate acid TiOH2

+. The argument for

relating the point of zero net proton charge (PZC) to the
acidities of the surface groups used in ref 4 however still
applies in our two-site model. The PZC is derived by
combining two successive protonation reactions to a reaction
reversing the sign of the surface charge. In our case, these
are reactions 1 and 2, which leads to

At the PZC equilibrium, surface concentrations of TiOH-

and Ti2OH+ are equal. Moreover, the ratio of 5-fold
coordinated Ti4+ ions to bridging oxygens on a 110 face is
1:1. Substituting in the chemical equilibrium equation of
reaction 5, we find [H+]PZC ) (KPZC)-1/2 ) (KH1KH2)-1/2 or
in terms of pH and pKa units using pKan ) log KHn

Reaction 2 can also be coupled with the reverse of reaction
1, giving

This process can be interpreted as the dissociation of an
adsorbed water molecule (leaving the total surface charge
the same). Since Kd ) KH2/KH1, the corresponding free energy
change ∆Adiss ) -kBT ln Kd is the difference in acidities of
the two conjugate acids:

Figure 1. Molecular dynamics model system and schematic representation of the method for the computation of acidity constants
of surface (hydr)oxide groups at the rutile TiO2(110)/H2O interface. The pictures show the full MD supercell in the (a) TiOH2/
TiOH- and (b) Ti2OH+/Ti2O conformations. These systems have been set up as 5 O-Ti-O trilayers and 71 water molecules.
3D periodic boundary conditions are applied leading to an alternation of TiO2 slabs and water layers. Ti, O, and H atoms are
distinguished in yellow, red, and white, respectively. The molecules involving protonation/deprotonation reactions are highlighted
by a ball and stick representation. The gray balls denote the inserted/annihilated protons. Switching one proton on and the other
off in a and b simulates eqs 9 and 11, respectively.

TiOH-1/3 + H+ f TiOH+2/3 (3)

Ti2O
-2/3 + H+ f Ti2OH+1/3 (4)

TiOH- + Ti2O + 2H+ f TiOH2 + Ti2OH+, KPZC

(5)

PZC ) 1
2

(pKa1 + pKa2) (6)

TiOH2 + Ti2O f TiOH- + Ti2OH+, Kd (7)
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2.2. Calculation of Acidities. The proton affinities of the
surface (hydr)oxide groups were computed using a combina-
tion of DFTMD simulation and free energy perturbation
(FEP) methods.18 The role of the MD is to sample a mapp-
ing potential consisting of a linear mixing of the Born-
Oppenheimer energy surfaces of reactant and product states.
Free energy changes are obtained by integrating ensemble
averages of vertical energy gaps along the alchemical
transformation path from reactant to product. This method
effectively inserts acid protons or deletes them. A similar
FEP approach has been used by our group for the DFTMD
estimation of redox free energies of inorganic39-42 and
organic19,43,44 ions or molecules in solution. The method for
the computation of acidities is more involved as it is more
difficult to add or remove protons from a condensed phase
system than adding or removing electrons. Rather than
eliminating the proton entirely from the system, its charge
is switched off with a harmonic restraining potential holding
it in place. This method can be regarded as a DFTMD
implementation of the chaperone assisted methods for
reversible insertion of protons which have been applied, for
example, for computation of tautomerization free energies
of organic molecules.45 For a detailed description, we refer
to our previous publications.18,19 A brief summary is given
in the Supporting Information.

The insertion of a single proton can be regarded as a half
reaction.19 The DFTMD model systems to which the protons
are added are the usual periodically repeated supercells of
molecular dynamics simulation. The reference (zero) of the
electrostatic potential in such a setup is artificial and has no
physical meaning.19,46,47 Addition or removal of a single ion
changes the net charge of the cell and the corresponding free
energy can therefore not be identified with the absolute
solvation free energy (even in the limit of large cell size).
The discrepancies for a typical DFTMD model system are
significant (3 eV or more).19,42 This bias cancels when
deprotonation of a species or group is carried out in con-
junction with protonation of another species in the same cell,
thus avoiding a change of net charge. However, the drawback
of such a full reaction scheme compared to a half reaction
scheme is that model systems must be considerably larger
in order to minimize the interaction between charged acid
or base species (recall that in order to reproduce standard
conditions these interactions must be eliminated). Further-
more, because of the powerful screening properties of water,
the effective interactions of ions with their periodic images
and compensating background charge in MD models of
homogeneous solution are surprisingly small48 (see also ref
19). This is the reason why we preferred a half reaction
scheme based on the insertion of single protons in our
previous calculations of the acidity of aqueous species in
homogeneous solution.18,19 Provided the model systems have
an excess of solvent, the sum of the free energies of a
protonation and deprotonation half reaction is equally unaf-
fected by a shift in the reference of the electrostatic potential
because the reference of the electrostatic potential in a low
concentration solution is determined by the solvent and is
therefore the same in the two half reactions.

A solid liquid interface is a highly inhomogeneous system.
Periodic boundary effects are likely to be different from
homogeneous solutions, which is why we decided to use the
more direct full reaction scheme in our first study of the
TiO2-water interface. This scheme is illustrated in Figure
1a. Deprotonation of TiOH2 to TiOH- is coupled to a
simultaneous protonation of H2O in the liquid water part of
the same inhomogeneous model system. The reverse of this
reaction amounts to a proton transfer from a hydronium in
solution to a TiOH- surface group:

and is equivalent to the surface protonation reaction eq 1.
The free energy change of reaction 9, which will be indicated
by ∆A1, is obtained from a coupling parameter integral of
the corresponding vertical energy gap. Referring ∆A1 to the
pKa of H3O+ () -1.74) gives an estimate of the pKa of
TiOH2:

Similarly, the protonation of a Ti2O group (reaction eq 2)
must also be balanced by a reference deprotonation (Figure 1b):

The free energy change of reaction 11 will be indicated
by ∆A2. The argument for deprotonating a H2O molecule
rather than a H3O+ is that the computation of the PZC and
water dissociation constant requires that the reactant state
be the same as the product state in reaction 9 (note that this
also ensures that the molecular dynamics keep a zero net
charge at all times). The pKa of Ti2OH+ is found from the
pKb of Ti2O. Adding the pKa of H2O () 15.74) to (minus)
the free energy change ∆A2 of reaction 11 yields the
expression

The values used for pKa, H3O+ and pKa, H2O need some
clarification. pKa, H3O+ is a constant and by definition equal
to -log[FH2O/c°] ) -1.74 where FH2O ) 55.5 mol dm-3 is
the ambient density of liquid water and c° ) 1 mol dm-3 is
the standard concentration of solution chemistry. The reason
why the reaction free energy ∆A1 must be corrected by this
term when converted to an acidity on the pKa scale is that
our method is based on the Brønsted picture of acidity in
which acid dissociation is treated as a proton transfer to the
solvent.19 Accordingly, in the present application, reaction
1 is replaced by reaction 9. Similarly, the reference term in
eq 12 is not pKw, the dissociation constant of water, but
pKa, H2O ) pKw - pKa, H3O+ ) 14.0 + 1.74. To be strictly
consistent, a DFTMD computed value for pKw should be
used. This calculation is under way in our group. In default
of this result, the experimental value is used instead.

A further comment concerns the bias introduced by the
restraining potentials. Let us first reiterate that these restrain-
ing potentials play an absolutely crucial role. There is first

∆Adiss ) 2.30kBT(pKa1 - pKa2) (8)

TiOH- + H3O
+ f TiOH2 + H2O (9)

pKa1 ) pKa,H3O+ - 1
2.30kBT

∆A1 (10)

Ti2O + H2O f Ti2OH+ + OH- (11)

pKa2 ) pKa,H2O - 1
2.30kBT

∆A2 (12)
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of all the rather practical consideration that the dummy proton
is invisible to its environment and, when not restrained, can
wander off anywhere in the system. The restraining potentials
keep the dummy close to where it was, avoiding the highly
unstable configurations that might otherwise arise when the
charge is switched back on.18 However, there is also a more
fundamental side to the application of restraints. We are
interested in the acidity of a specific functional group. The
proton is therefore removed from a group of this kind and
must also be reattached to this group. This species specific
insertion is directed by the restraining potentials. These
potentials will however inevitably introduce a bias in the
free energy for which we must correct. In ref 19, this question
is approached by resolving the transfer of a proton from an
acid AH to a H2O molecule into a Born-Haber cycle
involving the acid proton. The acid proton is transferred to
the gas phase and then reinserted in solution attached to a
water molecule. This fictitious process makes it easier to keep
track of the various entropy and zero point motion contribu-
tions. The result is a thermochemical correction which is
specified for the present system in the Supporting Informa-
tion. This thermochemical correction for a half reaction can
be substantial (amounting for a H2O molecule to about 0.5
eV).19 For full reactions (proton transfers), these corrections
cancel to a large extent but not completely (see below).

2.3. Computational Implementation. The rutile TiO2-
(110) surface was modeled by periodic slabs of five
O-Ti-O trilayers with lateral dimensions of a 4 × 2 surface
cell. The slabs are separated by a space of 15 Å leading to
an orthorhombic supercell cell of 11.9 × 13.2 × 30.8 Å3.
Full 3D periodic boundary conditions are applied. To model
the TiO2/H2O interface, the space between the TiO2 slabs is
fully filled with 71 water molecules so that there are two
symmetric interfacial planes in each unit cell. The number
of water molecules has been chosen to adjust the effective
density of the water layer to the ambient density of water.
A further consideration was to make the volume of water in
a supercell approximately cubic in order to minimize
confinement effects.

The gradient-corrected Perdew-Burke-Ernzerhof (GGA-
PBE) functional49 was used for all calculations. The DFTMD
simulations use the Born-Oppenheimer method and have
been carried out using the freely available program package
CP2K/Quickstep.50,51 The density functional implementation
in Quickstep is based on a hybrid Gaussian plane wave
(GPW) scheme. Orbitals are described by an atom-centered
Gaussian-type basis set, while an auxiliary plane wave basis
is used to re-expand the electron density.52 The wave function
optimization is performed using an orbital transformation
minimizer, which avoids the traditional matrix diagonaliza-
tion method and gives optimal convergence control.53 Ana-
lytic Goedecker-Teter-Hutter (GTH) pseudopotentials54,55

have been employed to represent the core electrons. The basis
sets for the valence electrons (2s22p4 for O and 3s23p63d24s2

for Ti) consist of short-ranged (less diffuse) double-� basis
functions with one set of polarization functions (DZVP).56

The plane wave basis for the electron density is cut off at
280 Ry. All our simulations only use the Γ point of the
supercell for expansion of the orbitals. The convergence

criterion for wave function optimization is set by a maximum
electronic gradient of 3 × 10-7 and an energy difference
tolerance between self-consistent field (SCF) cycles of 10-13.
We should admit that because of the very large system
required to model a TiO2/H2O interface the present study
uses smaller basis sets than our previous work (TZV2P).18,19

This may be justified by two facts: (i) the currently used
basis sets reproduce other DFT calculations of water adsorp-
tion energies with various configurations and coverages on
TiO2(110) with good accuracy26,29 (see section 3.2), and (ii)
dynamical effects in water are not very sensitive to the basis
sets used.57

The time step for the MD simulation was 0.5 fs. NVT
conditions were imposed by a Nose-Hoover thermostat with
a target temperature of 330 K. All settings have been tested
in previous work of our and other groups and have been
proven to be sufficient to give a reasonable representation
of structural and dynamical properties of liquid water at room
temperature.57 It should be noted that the elevated temper-
ature of 330 K is chosen to avoid the glassy behavior of
PBE liquid water on the 20 ps time scale observed for
trajectories at lower temperatures.57 In MD runs, 1-2 ps of
equilibration period is followed by ∼5 ps of production
period. This duration is adequate to obtain sufficiently
accurate estimates of the vertical energy gap ∆E of reactions
9 and 11. The corresponding free energies ∆A1 and ∆A2 were
determined using a three point quadrature of the thermody-
namic integral (Simpson’s rule). Further details on method
and error estimation can be found in the Supporting Informa-
tion.

In order to investigate the dependence of water adsorption
energies on the number of TiO2 layers, some static calcula-
tions were also performed. The same settings stated above
were adopted, and ion configurations were optimized by
using the BFGS minimizer. Water adsorption was applied
to both surfaces of the slab symmetrically, resulting in the
cancellation of surface dipoles.

3. Results and Discussion

3.1. Acidity of Surface Groups. The method of simul-
taneous deletion and insertion of protons was applied to the
DFTMD model system depicted in Figure 1. We find an
intrinsic pKa of 7.8 for TiOH2 and -1.9 for Ti2OH+. The
statistical uncertainty in these estimates is approximately 2
pKa units (see the Supporting Information) The pKa’s as
entered in Table 1 have therefore been rounded off to pKa

) 8 for TiOH2 and pKa ) -2 for Ti2OH+. Substitution in
eq 6 yields a PZC of 3. If the thermochemical corrections
for restraining potentials are applied (see the Supporting
Information), these numbers increase by 1 pKa unit to 9, -1,
and 4, respectively.

Experimental data on the PZC of TiO2 available from the
literature are mostly based on measurements performed with
rutile powder or polycrystalline samples. The results vary
between 3 and 7 depending on sample preparation (synthesis)
and electrolytes used. The consensus according to the
compilation of ref 20 is a value of about 6. More recently,
Bullard and Cima investigated the surface orientation
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dependence of the PZC of rutile TiO2 using atomic force
microscopy (AFM) and X-ray photoelectron spectroscopy
(XPS) techniques.23 For the rutile TiO2(110) surface, they
give a PZC of 5.5-4.8. This is consistent with the 4.8 (
0.3 obtained by another study using second-harmonic
generation spectroscopy (SHG).21 We conclude therefore that
our DFTMD result of 4 is in fair agreement with experiment,
taking the computational error margin of 2 pKa units (100
meV) into consideration.

As discussed in the Introduction, it is not possible to
compare individual pKa values directly to experiment.
However a comparison with the predictions of models is of
interest in its own right because of the uncertainties involved
in setting up these models. The revised 1996 version of
the MUSIC model3 introduces two important refinements.
The first is the use of actual bond valence computed from
the length of the metal oxygen bonds. A second improvement
over the older 1989 version2 is the modeling of solvent
effects which are taken into account by extending the
expression for the actual bond valence with a term depending
on hydrogen bonding. The relevant structural variables in
this term are the number of hydrogen bonds donated (m)
and accepted (n) by the base forms of the surface (hydr)oxide
groups. m is fixed by the chemical species; m ) 0 for Ti2O
and m ) 1 for TiOH-. To determine n the MUSIC model
makes the assumption that m + n ) 2, arguing that the total
H coordination of a surface O ion is decreased by two
compared to the coordination in liquid water.3 One bond is
replaced by the bond to the metal. Steric hindering eliminates
a second bond. This means that n ) 2 for Ti2O and n ) 1
for TiOH-. With this hypothetical H-bond coordination and
the actual bond valence determined by the experimental
Ti-O distances of the bulk solid, the revised MUSIC model
gives a pKa of 7.5 for TiOH2 and 4.4 for Ti2OH+ (these
numbers are also listed in Table 1).3 Compared to the
DFTMD calculation, we see that the estimates for the pKa

of TiOH2 are in good agreement. The fraction of dissociated
terminal water molecules is predicted to be small under pH
neutral conditions (pH ) 7). A Ti2O group is however
significantly more basic (5 pKa units) in the MUSIC model
compared to the DFTMD calculation with a corresponding

shift of the PZC from 4 in the DFTMD calculation to 6 in
the MUSIC model.

The critical structural parameters in the MUSIC model,
the Ti-O bond lengths and number of hydrogen bonds, are
directly accessible observables in molecular dynamics simu-
lation. This suggests that the discrepancies between the pKa

values predicted by the MUSIC model and computed from
the DFTMD simulation can be analyzed in more detail by
comparing MD averages of Ti-O bond lengths and the
number of hydrogen bonds to the values assumed in the
MUSIC model. We can also substitute the MD estimates in
the MUSIC model to see how the predicted values change.
This was also the strategy followed by Machesky and co-
workers in ref 13. Here, we will repeat some of this analysis
using the results of our DFTMD simulation.

Coordination numbers are normally defined by the integral
of the first peak of a radial distribution function (RDF). For
an assessment of the variable n of the MUSIC model, the
relevant RDFs are between the oxygen atoms in a Ti2O and
TiOH- surface group and hydrogen atoms in water. These
RDFs are shown in Figure 2. The corresponding coordination
numbers are n ) 1.1 for Ti2O and n ) 1.9 for TiOH-. MD
results and values used in the revised MUSIC model are
compared in Table 2. Consistent with the force field model
of ref 13, DFTMD finds a higher coordination number for a
terminal hydroxyl than assumed in the MUSIC model and a
lower coordination for a bridging oxygen. The difference is
0.9 for both surface groups, corresponding to a change in
pKa of ∼3.6 units when substituted into the MUSIC model.
More serious is that these changes go in the opposite
direction, increasing the pKa of Ti2OH+ from 4.4 to 7.9 and
decreasing the pKa of TiOH2 from 7.5 to 4. The interchange
in the order of the acidity, while having a minor effect on
the PZC (eq 6), leads to a negative ∆pKa of -4, implying
that molecular absorption on TiO2 is unstable (see eq 8).

The Ti-O bond lengths of surface groups are found to be
on average somewhat shorter than the bulk values used in
the MUSIC model. The precise values are 1.89 Å versus
1.95 Å for Ti2O and 1.91 Å versus 1.98 for TiOH2. The
actual bond valence s is computed in the MUSIC model as
s ) exp(R - R0)/b0, where R is the metal oxygen bond
length, R0 is a parameter specific to the solid oxide and b )
0.37 Å. The value for R0 used in ref 3 for rutile is R ) 1.808

Table 1. Results for the Free Energies ∆A of Reactions 9
and 11 (referred to in the text as ∆A1 respectively ∆A2),
the pKa of TiOH2 and Ti2OH+ Computed According to eqs
10 and 12, the Corresponding PZC (eq 6), ∆pKa, and
∆Adiss [the dissociation free energy of adsorbed water]
(numbers in parentheses are corrected for restraining
potentials, see Supporting Information) for This Work
(DFTMD), Using the MUSIC Model Taken from refs 3 and
13, and the SBE Model Taken from ref 4a

DFTMD (this work) MUSIC (refs 3, 13) SBE (ref 4)

TiOH2 Ti2OH+ TiOH2 Ti2OH+ TiOH2 Ti2OH+

∆A (eV) - 0.6 1.0
pKa 8 (9) -2 (- 1) 7.5; 5.9 4.4; 4.9 8.2-9.3 2-3.7
PZC 3 (4) 6; 5.4 5.9-6.4
∆pKa 10 (10) 3.1; 1 4.5-6.7
∆Adiss (eV) 0.6 (0.6) 0.18; 0.06 0.27-0.40

a Only the PZC can be directly compared to the experiment.
The relevant data here are the recent experimental estimates for
the 110 surface of 5.5-4.823 and 4.8 ( 0.321 (see text).

Figure 2. Radial distribution functions (RDF) between oxygen
atoms of surface groups and hydrogen atoms in water. (a)
The Ti2OH+/Ti2O pair and (b) the TiOH2/TiOH- pair. The
deprotonated and protonated states are distinguished by red
and blue. Coordination numbers obtained by integrating the
first peaks are 1.1 for Ti2O, 1.0 for Ti2OH+, 1.9 for TiOH-,
and 0.6 for TiOH2, respectively.
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Å. With these parameters, the reduction in bond length
increases the s of a TiO bond by about 0.1 for both groups,
corresponding to a decrease in pKa of 2. Applying this
adjustment to the acidities in Table 2, a terminal water
becomes even more acidic (pKa1 ) 2), widening the gap with
a DFTMD value of 9 (Table 1). The adjusted pKa2 shows a
similar discrepancy with the DFTMD estimate (see Table
2).

The conclusion must be that substitution of the observed
DFTMD parameters leads to unrealistic intrinsic pKa values
which are not matching our estimates obtained from free
energy calculation based on the same DFTMD simulation.
While some major inaccuracy in the DFTMD approach
cannot be completely excluded (such as finite size effects,
see section also section 3.2), the observation that the use of
the DFTMD hydrogen bond coordination numbers can lead
to a qualitative change in the picture of the surface acidity
of TiO2 seems to support the criticism by Bickmore et al.7,8

on the way solvation is treated in the MUSIC model (see
also ref 6). In particular, these authors have questioned the
direct coupling of the hydrogen bonding to the bond valence
determining the undersaturation of basic oxygens as is
characteristic of the MUSIC model.

Finally, we comment on the comparison to the SBE model
also included in Tables 1 and 2. This comparison is of interest
because the SBE approach to surface structure is more
elementary, adopting the single site-two pKa scheme.4

Acidities correspond to the free energies of the protonation
states of a generic site, namely, TiOH and TiOH2

+ (see also
section 2.1). pKa in the SBE model is calculated from
correlations with the electrostatic energy variable s/rM-OH,
where s is the formal Pauling bond valence charge of the
metal ion and rM-OH is the distance between metal ion and
H atom in the OH group. The ionizable group resides at the

interface between two dielectric continua, one representing
the solvent and the other the solid. The model is directly
fitted to experimental surface charge curves assuming certain
double layer models.4 Even though the identities of surface
hydroxyl groups are ignored, pKa’s from the SBE model are
fairly close to the numbers from our calculation and the
MUSIC model. All three pKa’s of the basic component are
very similar, while the SBE pKa of the acidic component
lies between the numbers from our DFTMD simulations and
the MUSIC model (see Table 2).

Similar to the MUSIC model, we can also examine the
response of the SBE model to exchange of the structural
model parameters by the corresponding DFTMD averages.
There is only one such parameter, namely, rM-OH. In the
model, this distance is evaluated from the equation rM-OH

) rM-O + 1.01 where rM-O is the length of the bond between
the metal ion and O atom in the OH group. Similar to the
MUSIC model, the SBE model takes the rM-O value of the
crystal. As mentioned, the time averaged value of rM-O from
our MD simulations is about 0.05 Å shorter (see also Table
2). Substituting this into the SBE model while keeping all
other parameters constant yields almost the same pKa’s as
the original SBE model. The success of the SBE model is
remarkable considering its lack of structural and chemical
detail. The microscopically inhomogeneous surface structure
plays no role, and also the linear free energy relation is solely
based on electrostatic interactions, ignoring other components
of chemical bonding and replacing complicated relaxation
effects at interfaces by a continuum medium model. Evi-
dently, the combination of Pauling bond valence charge,
electrostatics, and a double layer model in the SBE approach
is capable of capturing all this complication in a simple linear
relation, at least for the titania water interface studied here.

3.2. Dissociation Constant of Adsorbed Water. As
discussed in section 2.1, the free energy change for dissocia-
tion of adsorbed water is related to the acidities of the two
surface groups by eq 8. Substituting our calculated pKa values
of Table 1 into eq 8, we find ∆Adiss ) 0.6 eV. We estimate
the statistical error in this result to be less than 0.2 eV (see
the Supporting Information). Unlike the PZC, the thermo-
chemical corrections applied to the two acidities end up
canceling each other. The DFTMD result for ∆Adiss is
compared in Table 1 to the corresponding free energies
obtained from the MUSIC and SBE model acidities. All three
dissociation free energies are positive, with the DFTMD
estimate the largest. This is mainly because Ti2OH+ is more
acidic according to DFTMD than predicted by the MUSIC
and SBE models. A free energy cost for water dissociation
of 0.6 eV strongly suggests that the reaction is unlikely to
occur on perfect TiO2(110). This appears to be in line with
the recent work of Yamamoto et al.,38 in which water
adsorption was monitored by in situ XPS at ambient
pressures and no noticeable water dissociation was observed
except at O vacancies.

In assessing the DFTMD result for the dissociative
adsorption of water, it is important to realize that ∆Adiss is
known to be dependent on the number of TiO2 layers in the
model system. As has been verified repeatedly in the course
of the numerous calculations under vacuum conditions,

Table 2. Estimation of Surface Acidity of TiO2 Rutile (110)
Using MUSIC and SBE Models from Structural Parameters
Determined by the Present DFTMD Simulationsa

TiOH2/TiOH- Ti2OH+/Ti2O

m n pKa1 m n pKa2

this work 1 1.9 4(2) 0 1.1 8(6)
MUSIC model3 1 1 7.5 0 2 4.4

rM-O s/rM-OH pKa1 pKa2 PZC ∆pKa

this work 1.91 0.2283 1.8 8.3 5.1 6.4
SBE model4 1.96 0.2248 2.0 8.4 5.2 6.4

a m and n as defined in the revised MUSIC model3 are the
number of donated and accepted hydrogen bonds by the
conjugate base of surface (hydr)oxide groups. pKa1 and pKa2 are
the recomputed acidities according to ref 3. The numbers in
parentheses are the adjustments after the change to DFTMD bond
length is taken into account (see text). For convenience, the
original MUSIC predictions are carried over from Table 1. The
structural input as determined by DFTMD for the SBE model4 is
given in the lower half of the table. rM-O is the bond length in Å
between the metal ion and O at the surface. rM-O was determined
in our simulation as the average Ti-O distance of a TiOH- group.
s is the Pauling bond valence of the metal ion (2/3 for Ti4+ in
TiO2). The SBE model sets rM-OH ) rM-O + 1.01. Parameterization
of the SBE model depends on the choice of the double layer
model. Here, we use the pKa consistent with the triple layer
model.4
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adsorption energies on TiO2 show a characteristic oscillation
with the number of trilayers.27,30,33,35 Also, the application
of geometric constraints has a significant effect, which, when
used appropriately, can accelerate the convergence.33,35 Our
results were calculated using five unconstrained trilayers of
TiO2 with double sided adsorption similar to the scheme
employed in the gas-phase studies of Zhang and Lindan in
refs 27 and 31. According to these authors, the accuracy of
the adsorption energies computed with this approach is
adequate for the estimation of relative stability of molecular
and dissociative adsorption. In order to obtain a rough
estimate of the bias introduced in our calculation by the
limited thickness of the TiO2 slab, we have carried out static
test calculations of the adsorption energy of 0.5 and 1.0
monolayer (ML) of H2O. The results are listed in Table 3
and compared to the corresponding PBE estimates of
Kowalski and co-workers.35 Their 4 trilayer adsorption
energies are very close to the energies for a bulk surface as
a result of the use of special termination and constraint
methods. With the exception of one system (the 0.5 ML
molecular adsorption), our five TiO2 trilayer slab energies
are higher by approximately 50 meV, consistent with the
analysis in ref 35. We are therefore inclined to consider this
50 meV (corresponding to 1 pKa unit) as a measure of our
error due to the symmetric relaxed five layer geometry
applied here with a better accuracy for relative absorption
energies.

The results of Table 3 also confirm that 3 layers are not
enough. This is best illustrated by the 0.5 ML system. This
surface density is low enough to exclude hydrogen bonding
between adsorbed water molecules complicating the adsorp-
tion energies. Dissociated water is considerably more stable
than molecular water on three layers of TiO2. For five layers
of TiO2, the stability is reversed. For the 1 ML surface
coverage, 100% dissociation is not the energetically most
favorable adsorption mode. Instead, a mixed state with
associative and dissociative adsorption is preferred as a result
of stabilization by intermolecular hydrogen bonding.26 Note,

however, that the data in Table 3 indicate that the tendency
of a monolayer of water to dissociate on three layers of TiO2

is still rather high.
These observations on the critical dependence of the

stability of adsorbed water on the number of TiO2 trilayers
are in broad agreement with the extensive and detailed
calculations on vacuum systems available from the liter-
ature.27,30,33,35 The question is whether they can be carried
over to models of TiO2/H2O interfaces as studied here. A
quantitative investigation of the variation of surface pKa with
the slab thickness is forbiddingly expensive. However, a
single MD run of a system of three layers of TiO2 confirmed
that this system retains its reactivity in bulk solution. We
found that during the 10 ps trajectory up to about 20% of
H2O adsorbed on 5-fold Ti sites lost a proton to a nearby
bridging oxygen. Water adsorbed on five layers of TiO2

appears to be stable on this time scale. In this context, it is
worth recalling that because of the finite temperature in a
MD simulation (330 K, see section 2.3), a finite fraction of
dissociated surface water molecules on three layers of TiO2

does not necessarily mean that water dissociation is energeti-
cally more stable. This is true only if more than half of the
surface waters dissociate in equilibrium.

A further issue requiring some comment is the comparison
between the dissociation free energy determined from the
estimate of surface pKa in section 3.1 and the relative
adsorption energies in Table 3. The ∆Eads ) 0.1-0.2 eV
difference in adsorption energy per molecule between
molecular and dissociated monolayers is significantly smaller
than the ∆Adiss ) 0.6 eV of Table 1. These two measures of
the stability of water adsorbed on TiO2 have however a rather
different status. First of all, ∆Eads is an enthalpy difference,
while ∆Adiss is a free energy difference including entropy
contributions. Furthermore, solvent effects in ∆Eads can only
arise due to hydrogen bonding in the first ad-layer. ∆Adiss

also includes interactions with the second layer in the bulk
solvent. However, the ≈0.5 eV difference between ∆Adiss

and ∆Eads is probably too large to be explained by these
effects. More important is probably the difference in
thermodynamic reference state. All of the water molecules
in the calculation of ∆Adiss are molecular except those
involved in the proton transfer. In contrast, in the calculation
of ∆Eads, half or all of the H2O molecules are dissociated.
∆Adiss is therefore calculated under conditions approaching
infinite dilution, while the solvent in the calculation of ∆Eads

is effectively a two-dimensional ionic solution at high ionic
strength.

4. Conclusion

In summary, we have applied a recently developed DFTMD
method for reversible proton insertion for a calculation of
acidity constants of (hydr)oxide groups on the rutile
Ti2O(110) surface, i.e., bridge OH (Ti2OH+) and terminal
H2O adsorbed on 5-fold Ti sites (TiOH2). Surface pKa is
estimated from the free energy of concerted protonation and
deprotonation, equivalent to proton transfer between the
surface and a H3O+ or H2O in solution. The computed pKa’s
of the two groups are -1 and 9, respectively, leading to a
PZC of 4, which is within 2 pKa units of the experimental

Table 3. Variation of the Adsorption Energy (eV per
molecule) of Water on Rutile TiO2(110) in a Vacuum with
the Number of TiO2 Layersa

0.5 ML 1 ML

no. of TiO2 layers assoc. diss. assoc. diss. mix.

3 0.87 1.10 0.98 0.85 1.00
5 0.76 0.70 0.87 0.66 0.83
4 (from ref 35)b 0.86 0.64 0.82 0.63 0.77

a The water molecules complete the six fold coordination of the
five fold coordinated surface Ti ions (terminal water molecules).
Adsorption is symmetric on both surfaces of the slab under full
geometry relaxation. (i) assoc. denotes associative adsorption, (ii)
diss. means fully dissociative adsorption, and (iii) mix. is a mixed
state with half water associatively adsorbed and half water
dissociatively adsorbed (see refs 26 and 27 for a detailed
description of water adsorption configurations). For comparison,
the last row gives the adsorption energies of the corresponding 1
× 1 or 2 × 1 structures (whichever is the more stable) as obtained
in ref 35 using the same density functional (PBE) applied to a
somewhat different adsorption geometry (see further discussion in
section 3.2). b H2O adsorption on top layer only. To improve
convergence with the number of layers, the bottom layer is
terminated by fractional charges and has a constrained geometry.
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value for TiO2 rutile (110). Using these two acidity constants,
the free energy change of water dissociation at the TiO2/
H2O interface has been determined as 0.6 eV. The positive
free energy change indicates that water dissociation is not
likely on a perfect Ti2O(110) surface. While the discrepancy
with the experiment for the PZC, the only observable directly
accessible to experiment, is still (just) within the uncertainties
in the calculation, an acidity of -1 for Ti2OH+ as obtained
by DFTMD is likely an overestimation. This issue of the
proton affinity of bridge oxygens clearly needs further
investigation. In this context, a comparison to the 110 surface
of SnO2 which has the same structure as the TiO2 surface
studied here could be instructive.34 This calculation is
currently under way.

Analysis of the interfacial structure shows that some
assumptions in the MUSIC model, in particular the number
of hydrogen bonds to a bridging oxygen, are not justified.
Using the DFTMD coordination numbers instead gave no
improvement and in fact led to the prediction of a negative
dissociation free energy of adsorbed water in contrast to the
unambiguously positive dissociation free energy obtained in
the DFTMD free energy calculation. These conflicting results
can be seen as support for recent criticism of the way the
MUSIC model couples explicit hydrogen bonding to the
undersaturation determining the proton affinity.7,8 This
information may be useful for further development of models
for intrinsic surface acidity constants.

Acknowledgment. We thank L.-M. Liu and A.
Michaelides for useful discussions and showing their calcula-
tion data before publication. J.C. thanks M. Sulpizi for
helpful discussions and M.-P. Gaigeot for help in computa-
tion of the vibrational spectrum from velocity autocorrelation
functions. J. Vandevondele is acknowledged for technical
support on CP2K. J.C. is grateful for EPSRC for financial
support. The calculations for this work have been performed
using an allocation of computer time on HECToR, the U.K.’s
high-end computing resource funded by the Research
Councils, as part of a grant to the UKCP consortium.

Supporting Information Available: A brief summary
of our methodology for computation of free energies and
some technical aspects are given, together with a description
of thermochemical corrections. This information is available
free of charge via the Internet at http://pubs.acs.org/.

References

(1) Stumm, W. Chemistry of the Soil-Water Interface; Wiley:
New York, 1992.

(2) Hiemstra, T.; Van Riemsdijk, W. H.; Bolt, G. H. J. Colloid
Interface Sci. 1989, 133, 91.

(3) Hiemstra, T.; Venema, P.; Van Riemsdijk, W. H. J. Colloid
Interface Sci. 1996, 184, 680.

(4) Sverjensky, D. A.; Sahai, N. Geochim. Cosmochim. Acta
1996, 60, 3773.

(5) Machesky, M. L.; Wesolowski, D. J.; Palmer, D. A.; Ridley,
M. K. J. Colloid Interface Sci. 2001, 239, 314.

(6) Sahai, N. EViron. Sci. Technol. 2002, 36, 445.

(7) Bickmore, B. R.; Tadanier, C. J.; Rosso, K. M.; Monn, W. D.;
Egget, D. L. Geochim. Cosmochim. Acta 2004, 68, 2025.

(8) Bickmore, B. R.; Rosso, K. M.; Tadanier, C. J.; Bylaska, E. J.;
Doud, D. Geochim. Cosmochim. Acta 2006, 70, 4057.

(9) Brown, I. D.; Altermatt, D. Acta Crystallogr. 1985, B41, 244.

(10) Rustad, J. R.; Felmy, A. R.; Hay, B. J. Geochim. Cosmochim.
Acta 1996, 60, 1563.

(11) Rustad, J. R.; Wasserman, E.; Felmy, A. R. Surf. Sci. 1999,
424, 28.

(12) Rustad, J. R.; Wasserman, E.; Felmy, A. R.; Wilke, C. J.
Colloid Interface Sci. 1998, 198, 119.

(13) Machesky, M. L.; Predota, M.; Wesolowski, D. J.; Vlcek, L.;
Cummings, P. T.; Rosenqvist, J.; Ridley, M. K.; Kubicki, J. D.;
Bandura, A. V.; Kumar, N.; Sofo, J. O. Langmuir 2008, 24,
12331.

(14) Bandura, A. V.; Kubicki, J. D. J. Phys. Chem. B 2003, 107,
11072.

(15) Predota, M.; Bandura, A. V.; Cummings, P. T.; Kubicki, J. D.;
Wesolowski, D. J.; Chialvo, A. A.; Machesky, M. L. J. Phys.
Chem. B 2004, 108, 12049.

(16) Rustad, J. R.; Felmy, A. R.; Bylaska, E. J. Geochim.
Cosmochim. Acta 2003, 67, 1001.

(17) Rustad, J. R.; Felmy, A. R. Geochim. Cosmochim. Acta 2005,
69, 1405.

(18) Sulpizi, M.; Sprik, M. Phys. Chem. Chem. Phys. 2008, 10,
5238.

(19) Cheng, J.; Sulpizi, M.; Sprik, M. J. Chem. Phys. 2009, 131,
154504.

(20) Kosmulski, M. J. Colloid Interface Sci. 2002, 253, 77.

(21) Fitts, J. P.; Machesky, M. L.; Wesolowski, D. J.; Shang, X.;
Kubicki, J. D.; Flynn, G. W.; Heinz, T. F.; Eisenthal, K. B.
Chem. Phys. Lett. 2005, 411, 399.

(22) Zhang, Z.; Fenter, P.; Sturchio, N. C.; Bedzyk, M. J.;
Machesky, M. L.; Wesolowski, D. J. Surf. Sci. 2007, 601,
1129.

(23) Bullard, J. W.; Cima, M. J. Langmuir 2006, 22, 10264.

(24) Bourikas, K.; Hiemstra, T.; Van Riemsdijk, W. H. Langmuir
2001, 17, 749.

(25) Bates, S. P.; Kresse, G.; Gillan, M. J. Surf. Sci. 1998, 409,
336.

(26) Lindan, P. J. D.; Harrison, N. H.; Gillan, M. J. Phys. ReV.
Lett. 1998, 80, 762.

(27) Zhang, C.-J.; Lindan, P. J. D. J. Chem. Phys. 2003, 118, 4620.

(28) Zhang, C.-J.; Lindan, P. J. D. J. Chem. Phys. 2003, 119, 9183.

(29) Bandura, A. V.; Sykes, D. G.; Shapovalov, V.; Troung, T. N.;
Kubicki, J. D.; Evarestov, R. A. J. Phys. Chem. B 2004, 108,
7844.

(30) Harris, L. A.; Quong, A. A. Phys. ReV. Lett. 2004, 93, 086105.

(31) Lindan, P. J. D.; Zhang, C.-J. Phys. ReV. B 2005, 72, 075439.

(32) Di Valentin, C.; Tilocca, A.; Selloni, A.; Beck, T. J.; Klust,
A.; Batzill, M.; Losovyj, Y.; Diebold, U. J. Am. Chem. Soc.
2005, 127, 9895.

(33) Perron, H.; Vandenborre, J.; Domain, C.; Drot, R.; Roques,
J.; Simoni, E.; Ehrhardt, J. J.; Catalette, H. Surf. Sci. 2007,
601, 518.

(34) Bandura, A. V.; Kubicki, J. D.; Sofo, J. O. J. Phys. Chem. B
2008, 112, 11616.

888 J. Chem. Theory Comput., Vol. 6, No. 3, 2010 Cheng and Sprik



(35) Kowalski, P. M.; Meyer, B.; Marx, D. Phys. ReV. B 2009,
79, 115410.

(36) Henderson, M. A. Surf. Sci. 1996, 355, 151.

(37) Diebold, U. Surf. Sci. Rep 2003, 48, 53.

(38) Yamamoto, S.; Bluhm, H.; Andersson, K.; Ketteler, G.;
Ogasawara, H.; Salmeron, M.; Nilsson, A. J. Phys.: Condens.
Matter 2008, 20, 184025.

(39) Blumberger, J.; Tavernelli, I.; Klein, M. L.; Sprik, M. J. Chem.
Phys. 2006, 124, 064507.

(40) Tateyama, Y.; Blumberger, J.; Sprik, M.; Tavernelli, I.
J. Chem. Phys. 2005, 122, 234505.

(41) Blumberger, J. J. Am. Chem. Soc. 2008, 130, 16065.

(42) Adriaanse, C.; Sulpizi, M.; VandeVondele, J.; Sprik, M. J. Am.
Chem. Soc. 2009, 131, 6046.

(43) VandeVondele, J.; Sulpizi, M.; Sprik, M. Angew. Chem., Int.
Ed. Engl. 2006, 45, 1936.

(44) Costanzo, F.; Sulpizi, M.; Della Valle, R. G.; Sprik, M.
J. Chem. Theory Comput. 2008, 4, 1049.

(45) Yang, W.; Bitetti-Putzer, R.; Karplus, M. J. Chem. Phys.
2004, 120, 9450.

(46) Kleinman, L. Phys. ReV. B 1981, 24, 7412.

(47) Hunt, P.; Sprik, M. Comput. Phys. Commun. 2005, 6, 1805.

(48) Ayala, R.; Sprik, M. J. Phys. Chem. B 2008, 112, 257.

(49) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1996,
77, 3865.

(50) The CP2K developers group. http://cp2k.berlios.de (accessed
Feb 2010).

(51) VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.;
Chassaing, T.; Hutter, J. Comput. Phys. Commun. 2005, 167,
103.

(52) Lippert, G.; Hutter, J.; Parrinello, M. Mol. Phys. 1997, 92,
477.

(53) VandeVondele, J.; Hutter, J. J. Chem. Phys. 2003, 118, 4365.

(54) Goedecker, S.; Teter, M.; Hutter, J. Phys. ReV. B 1996, 54,
1703.

(55) Hartwigsen, C.; Goedecker, S.; Hutter, J. Phys. ReV. B 1998,
58, 3641.

(56) VandeVondele, J.; Hutter, J. J. Chem. Phys. 2007, 127,
114105.

(57) VandeVondele, J.; Mohamed, F.; Krack, M.; Hutter, J.; Sprik,
M.; Parrinello, M. J. Chem. Phys. 2005, 122, 014515.

CT100013Q

Acidity of the Aqueous Rutile TiO2(110) Surface J. Chem. Theory Comput., Vol. 6, No. 3, 2010 889



Implementation of Molecular Dynamics and Its
Extensions with the Coarse-Grained UNRES Force Field

on Massively Parallel Systems: Toward Millisecond-Scale
Simulations of Protein Structure, Dynamics, and

Thermodynamics

Adam Liwo,*,†,‡ Stanisław Ołdziej,‡,§ Cezary Czaplewski,†,‡ Dana S. Kleinerman,‡

Philip Blood,| and Harold A. Scheraga‡
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Abstract: We report the implementation of our united-residue UNRES force field for simulations
of protein structure and dynamics with massively parallel architectures. In addition to coarse-
grained parallelism already implemented in our previous work, in which each conformation was
treated by a different task, we introduce a fine-grained level in which energy and gradient
evaluation are split between several tasks. The Message Passing Interface (MPI) libraries have
been utilized to construct the parallel code. The parallel performance of the code has been
tested on a professional Beowulf cluster (Xeon Quad Core), a Cray XT3 supercomputer, and
two IBM BlueGene/P supercomputers with canonical and replica-exchange molecular dynamics.
With IBM BlueGene/P, about 50% efficiency and a 120-fold speed-up of the fine-grained part
was achieved for a single trajectory of a 767-residue protein with use of 256 processors/trajectory.
Because of averaging over the fast degrees of freedom, UNRES provides an effective 1000-
fold speed-up compared to the experimental time scale and, therefore, enables us to effectively
carry out millisecond-scale simulations of proteins with 500 and more amino acid residues in
days of wall-clock time.

1. Introduction
Simulations of conformational changes in proteins and
dynamics of protein conformations are nowadays of great
importance in biochemistry, biophysics, and medical
sciences.1-13 All-atom molecular dynamics (MD) ab initio

folding simulations (which require at least a microsecond
time scale) are still restricted to the nanosecond time scale
for large proteins and are possible only for proteins with
lengths up to 60 residues with implicit-solvent approaches
(however, simulations of the dynamics of big proteins starting
from the experimental structure have been carried out since the
early 1990s6), although great progress has been made with
distributed computing (the FOLDING@HOME project);14 the
creation of very efficient load-balanced parallel codes such
as GROMACS,15 NAMD,16 or DESMOND;17 and, very
recently, with the implementation of all-atom MD programs
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on graphical processor units (GPUs)18 and the construction
of dedicated machines.19 For recent developments of the
software for all-atom MD simulations, see the latest review
by Klepeis et al.20 Coarse-grained models have, therefore,
become of great importance in the field.21-26 In the past
decade, we have been developing a physics-based model of
polypeptide chains, hereafter referred to as UNRES (for
UNited RESidue).27-39

UNRES has been applied with considerable success in
energy-based protein-structure prediction40 and was later
extended41-43 to simulations of protein-folding pathways
by implementing a coarse-grained dynamics approach,
providing a 4000-fold speed-up compared to all-atom MD
with an explicit solvent.42,43 This speed-up factor was
obtained by comparing the mean first passage time
(MFPT) of the simulated folding of deca-alanine obtained
with UNRES to that obtained with AMBER with explicit
water. However, this speedup is not as big for larger
proteins for which the water layer constitutes a smaller
fraction of the system; also, introducing a cutoff on
nonbonded interactions in all-atom simulations (which has
not yet been performed for UNRES) causes a major
reduction of the computation time. With the UNRES/MD
approach, ab initio folding simulations of 75-residue
proteins are possible within hours of single-processor
time43 (compared to weeks for all-atom MD with implicit
solvent). Effectively, proteins fold in nanoseconds42,43

with UNRES, while the shortest experimental protein-
folding times are on the order of microseconds.44 Con-
sequently, UNRES provides a ∼1000-fold speed-up with
respect to the experimental time scale. It should be noted
that the coarse graining of protein representation, in
particular using implicit solvent, reduces the accuracy of
simulations; however, they still enable us to draw
meaningful conclusions regarding protein folding. Trivial
parallelization of molecular dynamics simulations, in
which a single trajectory is calculated independently by
a given processor, has enabled us45 to study the folding
kinetics of protein A, without biasing the potential toward
the native structure, as in similar other studies.46,47 With
the aid of replica-exchange (REMD)48 and multiplexed
replica exchange molecular dynamics (MREMD),49 we are
now able to simulate protein-folding thermodynamics and
perform ensemble-based prediction of protein structure.36,37

We parallelized these algorithms,50,51 and they scale well
even for thousands of trajectories. Because of infrequent
communication characteristic of the REMD and MREMD
algorithms, they perform equally well on Beowulf clusters
and on supercomputers with a fast interconnect. However,
even with this reduction of computational time, ab initio
folding simulations of proteins with a size of about 150
amino acid residues take weeks, and those of larger
proteins are still out of reach in reasonable time, if a single
processor handles the energy and gradient evaluation of
a given conformation.

In this paper, we report the extension of UNRES to large
protein systems, by introducing fine-grained parallelization
of energy and gradient evaluation and other elements of
an elementary step of molecular dynamics, in addition to

coarse-grained parallelization, which controls it; this
means that a group of fine-grained tasks is included in a
coarse-grained task, which is dedicated to a given
conformation. We demonstrate that, by setting 50%
efficiency as a reasonable cutoff for the performance of a
fine-grained-parallelized algorithm, it is reasonable to run
calculations involving fine-grained parallelization with
8-16 processors dedicated to a single conformation for
proteins with a size of more than 60 amino acid residues
on professional Beowulf clusters and on the Cray XT3,
which have faster processors (and thus less computation
time per processor), and, for proteins with 30 amino acid
residues or more, calculations on the IBM BlueGene/P,
which has slower processors (and thus more computation
time per processor) together with a fast interconnect, are
reasonably efficient. For proteins with a size of about 800
amino acid residues, the achievable speedup is about 20-
fold with professional Beowulf clusters, 30-fold with the
Cray XT3, and over 100-fold with IBM BlueGene/P. This
enables us to run ab initio simulations of folding dynamics
and thermodynamics of such proteins in days of wall-
clock time provided that massively parallel resources are
available.

This paper is organized as follows. In sections 2.1, 2.2,
and 2.3, we give a brief summary of the UNRES force
field and MD and its extensions with UNRES. In section
2.4, we characterize the programming environment and
machines used in this study. In section 2.5, we describe
the parallelization scheme and its implementation. In
section 3, we report the performance of the fine-grained
code, and finally, in section 4, we discuss the implications
of our work in biomolecular simulations and possible
extensions of the approach, including implementation of
the code on the GPUs.

2. Methods

2.1. The UNRES Force Field. In the UNRES model,27-39

a polypeptide chain is represented by a sequence of
R-carbon (CR) atoms linked by virtual bonds with attached
united side chains (SC) and united peptide groups (p).
Each united peptide group is located in the middle between
two consecutive R-carbons. Only these united peptide
groups and the united side chains serve as interaction sites,
the R-carbons serving only to define the chain geometry,
as shown in Figure 1. The UNRES force field has been
derived as a restricted free energy (RFE) function29,30 of
an all-atom polypeptide chain plus the surrounding solvent,
where the all-atom energy function is averaged over the
degrees of freedom that are lost when passing from the
all-atom to the simplified system (viz., the degrees of
freedom of the solvent, the dihedral angles � for rotation
about the bonds in the side chains, and the torsional angles
λ for rotation of the peptide groups about the CR · · ·CR

virtual bonds).52 The RFE is further decomposed into
factors coming from interactions within and between a
given number of united interaction sites.30 Expansion of
the factors into generalized Kubo cumulants53 enabled us
to derive approximate analytical expressions for the
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respective terms,29,30 including the multibody or correla-
tion terms, which are derived in other force fields from
structural databases or on a heuristic basis.54 The theoreti-
cal basis of the force field is described in detail in our
earlier paper.30

The energy of the virtual-bond chain is expressed by
eq 1.

where θi is the backbone virtual-bond angle, γi is the
backbone virtual-bond-dihedral angle, Ri and �i are the
angles defining the location of the united side-chain center
of residue i (Figure 1b), and di is the length of the ith
virtual bond, which is either a CR · · ·CR virtual bond or a
CR · · · SC virtual bond. Each term is multiplied by an
appropriate weight, wx, and the terms corresponding to
factors of an order higher than 1 are additionally multiplied
by the respective temperature factors, which were intro-
duced in our recent work36 and which reflect the depen-
dence of the first generalized-cumulant term in those
factors on temperature, as discussed in refs 36 and 55.
The factors fn are defined by eq 2.

where To ) 300 K.
The term USCiSCj

represents the mean free energy of the
hydrophobic (hydrophilic) interactions between the side
chains, which implicitly contain the contributions from the
interactions of the side chain with the solvent. The term USCipj

denotes the excluded-volume potential of the side-chain-
peptide-group interactions. The peptide-group interaction
potential is split into two parts: the Lennard-Jones interaction
energy between peptide-group centers (Upipj

VDW) and the
average electrostatic energy between peptide-group dipoles
(Upipj

el ); the second of these terms accounts for the tendency
to form backbone hydrogen bonds between peptide groups
pi and pj. The terms Utor, Utord, Ub, Urot, and Ubond are the
virtual-bond-dihedral angle torsional terms, virtual-bond
dihedral angle double-torsional terms, virtual-bond angle
bending terms, side-chain rotamer, and virtual-bond-defor-
mation terms; these terms account for the local propensities
of the polypeptide chain. The terms Ucorr

(m) represent correlation
or multibody contributions from the coupling between
backbone-local and backbone-electrostatic interactions, and
the terms Uturn

(m) are correlation contributions involving m
consecutive peptide groups; they are, therefore, termed turn
contributions. In the present version of UNRES, the terms
of an order higher than 4 are not present because, in our
earlier work,34 we found that the correlation terms of an order
up to 4 are sufficient to reproduce regular secondary
structures, while including higher-order terms results in a
substantial increase of the cost of energy and force evalua-

Figure 1. The UNRES model of the polypeptide chains.
(a) Illustration of the variables used in MD. The terminal
residues and a residue inside the chain are shown. The
CR atoms, the centers of the peptide groups (p), and side-
chain centers (SC) are indicated by small open circles, while
open ellipses centered at the p and SC centers indicate
that these sites interact through noncentral forces. The CR

atoms serve only as geometric points and are not interac-
tion sites. The peptide groups are positioned halfway
between two consecutive CR’s. The geometry of the chain
is defined by the vector dCb0, defining the position of the
first CR atom (pointing from the origin O of the reference
system to this atom), by backbone virtual bonds (dCb1, dCb2,
..., dCbn-1), and side-chain (dXb2, dXb3, ..., dXbn-1) vectors. For
Gly residues, the respective SC atoms are methylene groups
and are located exactly at the corresponding CR atoms;
therefore, there are no dXb vectors for these residues. The C1

R

or Cn
R atoms are either the terminal methyl groups (in these

cases, they are treated as Gly “side chains”) if a chain is
terminally blocked or dummy atoms if no blocking groups are
present. (b) Illustration of internal coordinates pertaining to
the ith residue used in eq 1: backbone virtual-bond-valence
angles (θi), backbone virtual-bond-dihedral angle (γi), side-
chain virtual-bond length (bSCi), and the angles RSCi and �SCi

defining the position of the ith side chain with respect to the
local coordinate frame defined by Ci-1

R , Ci
R, and Ci+1

R . All peptide
groups are assumed to be in a trans configuration with an
equilibrium virtual-bond length of 3.8 Å.

U ) wSC ∑
i<j

USCiSCj
+ wSCp ∑

i*j

USCipj
+

wpp
VDW ∑

i<j-1

Upipj

VDW + wpp
el f2(T) ∑

i<j-1

Upipj

el +

wtor f2(T) ∑
i

Utor(γi) + wtord f3(T) ∑
i

Utord(γi, γi+1) +

wb ∑
i

Ub(θi) + wrot ∑
i

Urot(RSCi
, �SCi

) +

wbond ∑
i

Ubond(di) + wcorr
(3) f3(T)Ucorr

(3) + wcorr
(4) f4(T)Ucorr

(4) +

wcorr
(5) f5(T)Ucorr

(5) + wcorr
(6) f6(T)Ucorr

(6) + wturn
(3) f3(T)Uturn

(3) +

wturn
(4) f4(T)Uturn

(4) + wturn
(6) f6(T)Uturn

(6) (1)

fn(T) ) ln[exp(1) + exp(-1)]

ln{exp[(T/To)
n-1] + exp[-(T/To)

n-1]}
(2)
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tion. The multibody terms are indispensable for reproduction
of regular R-helical and �-sheet structures.29,30,54

The internal parameters of Upipj
VDW, Upipj

el , Utor, Utord, Ub, Ucorr
(m) ,

and Uturn
(m) were derived by fitting the analytical expressions

to the RFE surfaces of model systems computed at the MP2/
6-31G** ab initio level;32,33,35 the parameters of Ubond and
Urot were derived similarly from the energy surfaces of
terminally blocked amino acid residues calculated with the
AM1 semiempirical method,38,39 while the parameters of
USCiSCj

and USCipj
were derived by fitting the calculated

distribution functions to those determined from the PDB.28

The w’s are the weights of the energy terms, and they can
be determined only by optimization of the potential-energy
function, as described in our earlier work.31,34,36 In the
present study, we use a recent version of UNRES developed
by extensive random search of the energy-term weights.56

2.2. Molecular Dynamics with UNRES. In this section,
we summarize briefly the theory behind the UNRES/MD
approach and recall the equations necessary to understand
its algorithmic aspects. The reader is referred to our earlier
work41,42 for details. The equations of motion for the UNRES
chain are Langevin-dynamics equations because the solvent
is implicit in UNRES. Consequently, it contributes to
conservative forces (through the RFE) and gives rise to
nonconservative forces which originate in energy exchange
of the polypeptide chain with the solvent (the stochastic and
friction forces). Because the geometry of an UNRES chain
is not uniquely defined by the Cartesian coordinates of the
interacting sites, we chose the virtual-bond vectors Ci

R · · ·Ci+1
R

(denoted as dCi) and Ci
R · · ·SCi (denoted as dXi) as general-

ized coordinates, as expressed by eq 3.

where s and e are the indices of the first and of the last side-
chain vectors, respectively (i.e., of the first and of the last
nonglycine residues; the glycine residues carry no dX
vectors). The vector dC0 specifies the position of the first
CR atom of the chain. The vectors q̇ and q̈ denote generalized
velocities and generalized accelerations, respectively We
assume that the virtual bonds are elastic rods with mass
distribution that scales with the length of a rod.41 The
Cartesian coordinates of the interacting sites, pi and SCi,
defined by eq 4

are related to the generalized coordinates by a linear
transformation expressed by eq 5

where A is a constant matrix such that ai(k), j ) 0 [i(k) being
a Cartesian coordinate of site k] if the coordinates up to j
correspond to virtual-bond vectors of the part of the chain
to the right of site k, ai(k), j ) 1 if the coordinate corresponds
to virtual-bond vector to the left of site k or to a CR · · ·SC
virtual bond containing the side chain with index k, and ai(k), j

) 1/2 if the coordinate corresponds to the virtual-bond vector
containing the peptide group with index i, as expressed by

eq 6.41 The same relationship holds between the time
derivatives of x and q.

where hSCi
is 0 if SCi ) Gly and is 1 otherwise, 1 is a 3 × 3

identity matrix, and 0 is a 3 × 3 matrix composed of zeros. It
should be noted that the columns of matrix A run through all
variables [the elements of the vector q of eq 3], and the rows
run through the Cartesian coordinates of the interacting sites.

The peptide groups and side chains are represented as
stretchable rods with uniformly distributed masses.41 The
Langevin equation for UNRES42 is given by eq 7

where M is the diagonal matrix of the masses of the sites
(united peptide groups and united side chains) defined by
eq 9, H [a diagonal matrix defined by eq 10] is the part of
the inertia matrix corresponding to the internal stretching
motion of the virtual bonds,41 G [defined by eq 8] is the
inertia matrix, Γ is the diagonal friction tensor (represented
by the friction matrix with elements γii determined by Stokes
law) acting on the interacting sites such that γii is the
coefficient of the site corresponding to the ith coordinate,
frand is the vector of random forces acting on interacting sites,
U is the UNRES potential energy defined by eq 1, ∇q denotes
the gradient with respect to q, and F is the vector of forces.
In this work, we did not use the stochastic and friction terms;
therefore constant temperature was maintained by using the
Berendsen thermostat57 implemented in UNRES/MD in our
earlier work.42

where mp is the mass of a peptide group and mSCi
is the mass

of the ith side chain.

q ) (dC0, dC1, ..., dCn-1, dXs, dXs+1, ..., dXe)
T (3)

x ) (rp1
, rp1

, ..., rpn-1
, rSC1

, rSC2
, ..., rSCn

)T (4)

x ) Aq (5)

A )

(1
1
2

1

1 1
1
2

1

l l l ···

1 1 1 . . .
1
2

1

1 0 0 0 . . . 0 hSCs
1

1 1 0 0 . . . 0 0 hSCs+1
1

l l l l ··· l l l ···
1 1 1 1 . . . 1 0 0 . . . hSCe

1

)
(6)

F ) Gq̈ ) -∇qU(q) - ATΓAq̇ + ATfrand (7)

G ) ATMA + H (8)

M ) (mp1 0 . . . 0 0 . . . 0
0 mp1 . . . 0 0 . . . 0
l l ··· l l ··· l
0 0 . . . mSCs

1 0 . . . 0

0 0 . . . 0 mSCs+1
1 . . . 0

l l ··· l l ··· l
0 0 . . . 0 0 . . . mSCe

1
)

(9)
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The matrix H is defined by eq 10.

with42

To compute the accelerations from forces by using eq 7
requires matrix multiplication of the right-hand side of this
equation by G-1 [eq 12].

where F is the vector of forces defined by the right-hand
side of eq 7. Because G is a constant matrix, its inverse
[which involves O(n3) computational effort] can be computed
only once at the beginning of a simulation and used later.
Moreover, it can be seen from eqs 6, 9, and 10 that, if the
coordinates in vectors x and q are rearranged to group all x,
then all y, and finally, all z coordinates and the rows and
columns of the matrix G are rearranged accordingly, matrix
G is separated into three blocks corresponding to x, y, and
z parts, thereby reducing the number of operations in matrix
multiplication by a factor of 3.

2.3. Replica-Exchange and Multiplexing-Replica-Ex-
change Molecular Dynamics. To sample the conformational
space more efficiently than by canonical MD, we extended50,51

the UNRES/MD approach with the replica-exchange48 and
multiplexing replica-exchange49 molecular dynamics method.
In this method, M canonical MD simulations are carried out
simultaneously, each one at a different temperature. Initially
the temperatures increase with the sequential number of
simulations (trajectories). After every m < M step, an
exchange of temperatures between neighboring trajectories
(in the order from 1 to M) is attempted, the decision about
the exchange being made based on the Metropolis criterion
which, taking into account the temperature dependence of
the force field, is expressed by eq 13.

where �i ) 1/RTi, Ti being the absolute temperature corre-
sponding to the ith trajectory, and Xi denotes the variables
of the UNRES conformation of the ith trajectory at the
attempted exchange point. If ∆ e 0, Ti and Ti+1 are
exchanged; otherwise the exchange is performed with
probability exp(-∆).

The multiplexing variant of the REMD method
(MREMD)49 differs from the REMD method in that several
trajectories are run at a given temperature. Each set of

trajectories run at a different temperature constitutes a layer.
Exchanges are attempted not only within a single layer but
also between layers. In our very recent study,51 we demon-
strated that such a procedure increases the power of REMD
very considerably, and convergence of the thermodynamic
quantities is achieved much faster.

2.4. Programming Languages, Libraries, Other Software
Used, and Machines. As in our previous work on the
implementations of the conformational space annealing58,59

and the REMD50 and MREMD51 versions of UNRES, the
Message Passing Interface (MPI) library was implemented
to construct the parallel code. Therefore, the description of
parallelization in section 2.5 is message-passing oriented. The
code was written in our laboratory, using the FORTRAN
77 programming language, and was parallelized using the
MPI library. Standard blocking MPI_SCATTER and MPI_
GATHER MPI library routines were implemented to send
the data from a master task to the slave task and to collect
data from the slave tasks, respectively, and MPI_REDUCE
with the MPI_SUM operator was used to sum the contribu-
tions to energy, energy gradients, and results of matrix-vector
multiplications from slave tasks at a fine-grain master task.
The coarse-grained tasks and each of the fine-grained tasks
formed separate MPI communicators to avoid possible
message interception.60

For storage of trajectory files, we use the freely available
Europort Data Compression XDRF library (http://hpcv100.
rc.rug.nl/xdrfman.html). The BLAS routines61 are used for
matrix diagonalization.

The UNRES code with MD and MREMD has been
implemented and tested on the Xeon Quad Core professional
Beowulf cluster at the Academic Computer Center in
Gdańsk, TASK (galera.task.gda.pl; 1344 Intel Xeon Quad-
Core processors, 5376 cores, Mellanox InfiniBand intercon-
nect with 20 Gb/s bandwidth; Web page at http://www.
task.gda.pl/english/kdm.html), on the Cray XT3 supercomputer
at the Pittsburgh Supercomputer Center [bigben.psc.edu;
4096 processors (dual-core), the 3D torus network; Web page
at http://www.psc.edu/general/hardware.php], and on the
following two IBM BlueGene/P massively parallel machines:
at Argonne National Laboratory (intrepid.alcf.anl.gov; 40 960
quad-core compute nodes; Web page at http://www.
alcf.anl.gov/resources/storage.php) and at the Jülich Super-
computer Center (jugene.fz-juelich.de; 73 728 compute
nodes, each with a four-way 32-bit PowerPC 450 core 850
MHz processor, three-dimensional torus network; Web page
at http://www.fz-juelich.de/jsc/jugene). Of these four ma-
chines, galera.task.gda.pl has the largest single-processor
speed, while both IBM BlueGene/P machines have the fastest
and the most efficient communication but the slowest
processors.

2.5. Parallelization and Parallel Programming System
Used. 2.5.1. General Parallelization Scheme. As mentioned
in the Introduction, the code is parallelized at a two-grain
level:

(1) Coarse-grained level, in which a given coarse-grained
task (CG) is assigned to a given trajectory. In a multitrajec-
tory canonical molecular dynamics run, there is no com-
munication between tasks except synchronization at the end

H ) (Ip1 0 . . . 0 0 . . . 0
0 Ip1 . . . 0 0 . . . 0
l l ··· l l ··· l

0 0 . . . ISCi1
1 0 . . . 0

0 0 . . . 0 ISCi2
1 . . . 0

l l ··· l l ··· l

0 0 . . . 0 0 . . . ISCim
1

)
(10)

Ip ) (1/12)mp and ISCi
) (1/3)mSCi

(11)

q̈ ) G-1F (12)

∆ ) [�i+1U(Xi+1, �i+1) - �iU(Xi+1, �i)] -
[�i+1U(Xi, �i+1) - �iU(Xi, �i)], i ) 1, 2, ..., M (13)
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of the job. For REMD, communication occurs at the time of
exchanging replicas (see section 2.3).

(2) Fine-grained level, in which (i) computation of energy
and forces, and (ii) computation of accelerations from forces
[eq 7] are distributed to fine-grained tasks (FGs).

A scheme of tasks and processor assignment to tasks by
rank is shown in Figure 2. Figure 3a and b shows the basic
operations and communication between the master task and
CG tasks in a replica-exchange run, and between a CG task
and the pertinent FG tasks in energy and gradient evaluation.

The coarse-grained parallelism is the same as discussed
in our earlier work;50,51 therefore, we provide only a brief
summary here.

As discussed in our earlier work,51 one problem with the
efficiency of parallel (M)REMD runs involving over 500
trajectories run simultaneously is the rapid loss of scalability
because of synchronization implied in classical (M)REMD
algorithms at each exchange. Even if the parallel system is
homogeneous, 100% of processor time is never available for
a compute task, which results in a slightly different processor
speed, depending on the task. Moreover, a distance cutoff is
applied in the computation of four-body correlation interac-
tions,29 and in our A-MTS algorithm62 for integrating the
equations of motion, the split number of a given time step
depends on current conformation. Therefore, the computa-
tional effort depends on the trajectory. The discrepancy
between the slowest and the fastest trajectories increases with
increasing number of trajectories. Therefore, we modified51

the (M)REMD algorithm to reduce synchronization overhead.
As soon as a processor has executed the preset number of

steps since the last exchange, it sends a message to the other
processors to perform replica exchange. With this modifica-
tion, we reached over 70% scalability for 4096 trajectories.51

The fine-grained parallelism introduced in this work is
discussed in detail in the next subsections.

2.5.2. Complexity of Operations InVolVed in a Single
MD Step. In order to decide about the parallelization strategy,
the complexity of the operations involved in a single MD
step must be analyzed. In all-atom MD simulations, almost
all of the computational effort is connected with energy and
force evaluation; however, in UNRES, the calculation of
acceleration from forces involves a matrix-vector multipli-
cation [eq 12], gradient transformation (discussed in section
2.5.4), and other operations specific for coarse-grained
approaches.

The complexity and relative contributions to single-
processor wall-clock time [calculated for the 1TF5 protein
(767 residues, R + �)] of the energy terms and other
operations performed during the production phase of an
UNRES/MD run are summarized in Table 1. Because of the
significant reduction of the number of interaction sites
compared to an all-atom representation of polypeptide chains,
we did not yet introduce a cutoff on nonbonded interactions,
as opposed to all-atom MD software15-17 (although we are
planning to introduce the cutoff in the future). Therefore,
the complexity of all long-range interactions is O(n2), n being
the number of residues (Table 1) and not O(n). It can be
seen from Table 1 that the greatest effort is required to
compute the average-electrostatic (Upipj

el ) and van der Waals
(Upipj

VDW) as well as third-order multibody (Ucorr
(3) ) interactions

between the peptide groups; individual timings cannot be
provided because these terms are computed in a single
subroutine and use common intermediate quantities (such
as, e.g., the distance between peptide-group centers). The
next are the USCiSCj

and USCipj
terms, and the least expensive

Figure 2. Scheme for the distribution of n coarse-grained
(CG1, CG2, ..., CGn) and m fine-grained tasks for each
coarse-grained task (FG11, FG12, ...FG1m, FG 21..., FGnm)
among nm processes (with ranks 0, ..., nm - 1) and of
communicators (shown as boxes bordered by dashed lines)
pertaining to the respective tasks. MPI_COMM_WORLD is
the communicator containing all processes. CG_COMM
contains the processes assigned to coarse-grained tasks, and
FG_COMM is the communicator containing processes as-
signed to a given fine-grained task.

Figure 3. Basic operations and communication between the
master task and the CG tasks (a), and between a CG task
and the pertinent FG tasks (b).
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are the correlation terms; however, this is because we
introduced a 7 Å distance cutoff on the computation of these
interactions.29 The single-body terms [of O(n) complexity]
are by far less expensive. It can also be seen that, although
energy and gradient computations constitute the dominant
fraction of computation time with one processor, gradient
transformation and computing accelerations from forces are
operations of O(n2) complexity and cannot be ignored in
parallelizing the code. Moreover, the complexity of these
operations cannot be reduced by introducing the cutoff.

2.5.3. Fine-Grained Parallelization of Energy- and
Gradient-Component Calculations. The following three
approaches are commonly implemented in the parallelization
of energy and force calculations:15,63,64 the particle- (atom)-
decomposition approach also called the replicated-data
approach, the domain- (spatial)-decomposition approach, and
the force-decomposition approach.

In the particle-decomposition approach, N atoms are split
between P processors, and each of the processors calculates
the forces acting at the atoms assigned to it. The coordinates
of all atoms must be known to all processors. The particle
decomposition approach is naturally load-balanced if no
cutoff is introduced on nonbonded interactions; when a cutoff
is introduced, load-balancing can be achieved by randomizing
the order of the atoms before dividing them between
processors.63,64 However, the memory requirements and cost
of communication are on the order of O(N) (i.e., does not
decrease with increasing number of processors). The all-to-
all communication is required because a given processor must
obtain the updated coordinates from all other processors.
Moreover, because Newton’s third law is usually imple-
mented to reduce the amount of computations, the forces
are exchanged between the processors, which requires
additional communication.

In the domain-decomposition approach, the space occupied
by the system is partitioned between processors, and each
processor handles the particles which are contained in the

region of space assigned to it. The load balance is easy to
maintain only when the space is nearly uniformly filled with
particles, as in all-atom simulations with explicit solvent
carried out in a periodic solvent box; then each processor
always handles approximately the same number of parti-
cles.15,63,64 It is difficult to maintain the load balance for
irregularly shaped systems, typical of simulations of proteins
with implicit solvent, for which particle density varies
significantly. The domain-decomposition algorithm implies
the least memory requirement and communication cost; both
are on the order of O(N/P). The all-to-all communication is
avoided here because a given processor needs only the
information from the processors that are assigned to the
neighboring regions of space.

In the force-decomposition algorithm, the interatomic
interactions are partitioned between processors in such a way
that a given processor owns a block of force matrix pertaining
to forces due to atoms from, say, i to j acting on atoms from,
say, k to l.63,64 Thus, this processor needs the coordinates of
the atoms of only these two groups and the all-to-all
communication is avoided. Consequently, the memory
requirement and communication cost are on the order of O(N/
�Pj), i.e., between that of the particle- and domain-
decomposition algorithms. As in the particle-decomposition
algorithm, the load balance is natural with no cutoff on
nonbonded interactions; with a cutoff, it can be maintained
by randomizing the distribution of forces between the
processors.

The UNRES energy terms of eq 1 and the corresponding
forces can be divided into the following classes:

(1) The terms computed independently from the coordi-
nates of UNRES objects within

(a) a single residue (Ubond; one-body terms)
(b) a number (up to 4) of neighboring residues (Ub, Urot,

Utor, Utord, Uturn
(3) , Uturn

(4) ; local terms)
(c) pairs of residues (USCiSCj

, USCipj
, Upipj

el , Upipj
VDW; pairwise

terms)

Table 1. Complexity and Timing of Different Operations of UNRES for the 1TF5 Protein Obtained with 1, 32, and 128
Processors at bigben.psc.edua

% contribution

operation complexity parallelized 1 CPU 32 CPUs 128 CPUs

Ubond O(n) yes 0.0 0.0 0.0
Ub O(n) yes 0.4 0.2 0.1
Urot O(n) yes 0.2 0.1 0.1
Utor O(n) yes 0.1 0.0 0.0
Utord O(n) yes 0.5 0.0 0.1
Uturn

(3) O(n) yes 0.0 0.0 0.0
Uturn

(4) O(n) yes 0.1 0.1 0.1
USCiSCj O(n2) yes 21.2 9.5 5.4
USCipj O(n2) yes 8.0 3.6 2.1
Upipj

el+VDW + Ucorr
(3) O(n2) yes 62.6 29.3 18.6

Ucorr
(4)b O(n2) yes 3.5 6.3 8.5

auxiliary to compute Ucorr
(3) and Uturn

(3, 4) O(n) attemptedd 0.1 3.0 5.0
summing energy componentsb O(n) yes 0.0 18.0 11.5
gradient transformb O(n2) yes 0.2 12.8 20.1
accelerations O(n2) yes 2.8 10.0 14.2
other O(n) attemptedd 0.3 7.1 14.2
total activec communication N/A 16.7 28.2

a The operations were timed using TAU (http://www.cs.uoregon.edu/research/tau/home.php). b Includes the active communication and
synchronization time due to load imbalance. c Does not include synchronization time due to load imbalance. d The corresponding code was
parallelized, but communication overhead turned out to be greater in the present implementation than the gain from splitting the workload.
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(d) pairs of residues plus those of neighboring residue
(Ucorr

(3) ; pairwise correlation terms)
(2) The terms which comprise two neighboring pairs of

interacting peptide groups pipj and pi+1pj(1 (Ucorr
(4) , Ucorr

(5) , Ucorr
(6) ,

Uturn
(6) ).
As follows from Table 1, the bulk effort involves the

computation of the pairwise terms included in 1c and 1d.
Therefore, we designed energy and force parallelization to
distribute these terms in the first place. In the present
UNRES, no cutoff is applied on nonbonded interactions.
Consequently, the workload corresponding to the computa-
tion of terms 1a-1d remains fixed, and each of these terms
can be distributed to processors at the beginning of the
calculations. It appears natural to use the particle- or force-
decomposition approach. Given the fact that the solvent is
implicit in UNRES and, therefore, particle density is not
uniform, using the domain-decomposition approach would
require a sophisticated algorithm to partition the space
between processors (such as those designed for, e.g., solving
the boundary-value problems with irregular shapes).65 More-
over, the equations of motion are expressed in virtual-bond
vectors in UNRES/MD, and therefore, communication with
non-neighboring boxes could not be avoided because the
forces expressed in UNRES interaction-site coordinates must
be transformed to those expressed in virtual-bond vectors.
Furthermore, the number of interaction sites is greatly
reduced in UNRES compared to all-atom MD, and neither
does storing all coordinates at each processor pose memory
problems nor does sending the updated coordinates to all
processors pose a significant communication problem.

Given the above considerations, we designed a parallel-
ization scheme which is similar to force-decomposition
algorithms in that the interactions and non-interaction sites
are split between the processors, although we partition the
upper triangular of the force matrix and not the whole force
matrix. Thus, we make explicit use of Newton’s third law.
The decomposition of pairwise interactions is illustrated in
Figure 4. Communication is not required to update the
interaction list assigned to each processor. On the other hand,
our scheme is similar to the particle-decomposition scheme
in that the coordinates (virtual-bond vectors) are sent to all
processors (Figure 2b). However, because only the FG master
processor updates the virtual-bond vectors, this involves
broadcast and not all-to-all operations.

The computation of the interactions included in group 1
was parallelized in the same manner; it should be noted,
however, that the list of interactions consigned to a processor
remains constant independent of the use of a cutoff. Although
the complexity of the local interactions is only O(n),
parallelizing this part of the code does not introduce any
extra communication and, consequently, was implemented
in UNRES.

Group 2 contains neighboring pairs of peptide groups, and
quantities calculated in computing Upipj

el and Upi+1pi(1
el are

subsequently utilized in computing the correlation terms
involving the respective pairs of peptide groups.29,30 A pair
of interactions necessary to compute a contribution to one
of the UNRES energy terms listed in point 1d can happen
to be split between two processors, and communication is,

therefore, required to avoid multiple computation of the same
quantities by different processors.

Because the quantities required to compute Upipi+2
el and

Ucorr; pipi+2
(3) are also required for Uturn; i

(3) , and those required to
compute Upipi+3

el and Ucorr; pipi+3
(3) are required to compute Uturn; i

(4) ,
computations of Upipi+2

el and Ucorr; pipi+2
(3) interactions, respec-

tively, as well as those of Upipi+3
el and Ucorr; pipi+3

(3) , respectively,
are handled by separate loops over the pi, pi+2 and pi, pi+3

pairs, respectively, to provide better load balance. The long-
range electrostatic and correlation interactions are computed
from the pi, pi+4 pairs, onward. The loops to compute
interactions are then distributed to the processors assigned
to a CG task, subject to optimum load balancing. As
mentioned earlier in this section, no cutoff is applied to the
interactions listed in points 1c or 1d, and consequently, the
lists of these interactions consigned to each fine-grained
processor are fixed. For each energy term listed in points 1a
and 1b, each fine-grained processor is assigned the range of
the residues (in terms of the number of the residue to start
and to end at) to compute this term. For the terms listed in
points 1c and 1d, each processor is assigned a list of the
start and end residue numbers to process for each first pair
index (i). If the first element of entry i of the list of
interactions that belongs to processor i is zero, this processor
does not have any interaction such that residue i is the first
in the pair to process. The number of components of each

Figure 4. Illustration of domain decomposition of peptide-
group interactions of a 13-residue chain (with 12 peptide
groups) and exchange of interaction information to compute
correlation interactions. A box in the upper-triangular array
shown in the upper part of the graph corresponds to the
interaction between peptide groups numbered by the row and
the column of the array. Different colors mark assignment of
the respective interactions to different processors, whose
ranks are shown in the lower small panel. The white diagonal
and next to diagonal boxes correspond to the same or
neighboring peptide groups, for which long-range interactions
are not considered. The dot-dashed and dashed lines lines
border the 1,3 and 1,4 interactions, respectively. The arrows
in the upper panel indicate the directions in which the
interaction information is transmitted, and the half-circular
arrows in the left lower panel show the flow of interaction
information.
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of the energy terms that belongs to the 1a, 1b, or 1c category
is optimally load-balanced for each processor and differs by
1 at most for different processors. For the interactions
between the peptide groups, interaction distribution between
processors (along with the assignment of the pertinent
correlation interactions) is illustrated in Figure 4.

For the interactions listed in point 2, a 7 Å cutoff is applied
to the distances between peptide groups (rpipj

and rpipj(1
)

involved in a correlation, with a contact function given by
eq 42 of ref 29, which varies smoothly with the distance
from 1 to 0 from r ) 6.9 to r ) 7 Å. Therefore, a list of
interactions to be sent by a given processor to other
processors and received by it from other processors is
dynamic.

Before calculations are actually started, each processor (let
its rank be R) creates the list of processors to which quantities
pertaining to each pair of peptide groups might need to be
sent and a list of processors from which it can receive terms
pertaining to pairwise interactions. The algorithm to construct
these lists is as follows:

Send List
(1) Loop through the pipi+2 pairs consigned to the

processor. For each pair, loop through the other processors
with ranks less than R, and add processor S to the send list
of pipi+2 interaction at processor R if processor S has (i) the
pi-1pi+1 interaction or (ii) the pi-1pi+3 interaction.

(2) Loop through the pipi+3 pairs consigned to the
processor. For each pair, loop through the other processors
with ranks less than R and add processor S to the send list
of pipi+3 interaction at processor R if processor S has (i) the
pi-1pi+2 interaction or (ii) the pi-1pi+4 interaction.

(3) Loop through all pipj pairs consigned to the processor
such that j > i + 3. For each pair, loop through the other
processors with ranks less than R and add processor S to the
send list of pipj interaction at processor R if processor S has
(i) the pi-1pj-1 interaction or (ii) the pi-1pj+1 interaction or
(iii) the pi+1pj-1 interaction. Situation iii occurs only if pi+1pj-1

is a pair of 1,3- or 1,4-adjacent peptide groups (i.e., j - i )
4 or j - i ) 5), because these interactions are distributed to
processors independent of the longer-range interactions, and
consequently, a processor with a rank lower than R might
have a 1,3 or a 1,4 interaction with greater i than the long-
range interactions consigned to processor R.

Receive List
The construction of the receive list of a receiving processor

R is the reverse of the construction of the send list. Therefore,
processors with ranks greater than R are searched in steps 1
and 3 by the receiving processor R, and if a processor is
found to contain interactions that might be needed by R, its
rank is added to the receive list of processor R. The ranks
of the processors which R can potentially receive interactions
from is the only information stored in the receive list, because
the actual interaction list to be received from a given
processor depends on conformation. The interaction list is,
therefore, provided to R every time the correlation interac-
tions consigned to this processor are calculated.

For processor R, each pair of peptide groups from the
preset send lists is checked, and if the contact function value
is greater than 0, all information pertaining to this peptide

group pair, needed to compute correlation interactions and
their gradients, is transferred to buffers intended for proces-
sors of the send list of this interaction. After the entire preset
send list has been scanned, nonblocking send operations to
each of the processors from the send list are initiated. If there
are no interactions to be sent to processor S, the number 0
is sent to indicate this fact. After the send operations have
been initiated, nonblocking receive operations are executed.
A waitall operation completes the send-receive process to
synchronize all fine-grained tasks. Nonblocking send and
receive operations are used to exchange interaction informa-
tion with a wait operation to synchronize the calculation of
correlation energy. A scheme of information exchange is
presented in Figure 4.

Each processor adds the received interactions to the list
of its own computed interactions; however, it marks them
as “received” to prevent double-counting of the respective
correlation interactions. The latter could happen if, e.g., the
processor has the interaction pkpl and needs to receive pk+1pl+1

and, at the same time, has pk+1pl-1 and needs to receive pk+2pl

to compute the respective correlation interactions. The
received interactions pk+1pl+1 and pk+2pl themselves form a
correlation interaction (since a correlation interaction is
formed both by pipj and pi+1pj+1 and by pipj and pi+1pj-1).

29

Consequently, if they were not marked “received”, this
additional interaction would be computed by the processor
that received both of them, and since this interaction is
computed by the processor which owns pk+1pl+1, the interac-
tion would be doubly counted. It should be noted that
marking the received interactions does not imply any
additional communication. A correlation term pertaining to
pkpl and pkpl(1 is not computed if both pairs of interactions
are marked “received”. This is because a given processor
always has one interaction of its own of a pair of interactions
that constitute a correlation term (see Figure 4).

As described above, the distribution of correlation interac-
tions between processors provides a nearly optimal load
balance, given the fact that the interactions between peptide
groups are optimally distributed between the fine-grained
processors. If the 7 Å cutoff, which is imposed on each of
the pairs of interacting residues to compute the respective
correlation interaction,29 is not in effect (for small proteins),
the number of correlation terms is twice the number of
interactions consigned to the processor except when it has
the first or the last residue. For medium-sized and large
proteins, the cutoff which decreases the number of correla-
tions is in effect; however, even in this case, the number of
correlation interactions is nearly the same for each fine-
grained processor, because the number of peptide groups
within the cutoff distance from a given peptide group remains
proportional to the total number of peptide groups with which
it interacts.

2.5.4. Fine-Grained Parallelization of Other Operations.
Computing accelerations from forces in UNRES involves
multiplication of the vector of forces expressed in virtual-
bond vectors by the inverse of the matrix G [eq 12]. Since
the part of the forces is expressed in internal coordinates
or in Cartesian coordinates of the UNRES interaction sites,
these forces first need to be transformed to the space of
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virtual-bond vectors. Ub, Utor, and Utord, as well as the
correlation terms except Ucorr

(4) are expressed in backbone
virtual-bond (θ) and virtual-bond-dihedral (γ) angles. The
transformation takes the following form:

where UX is Ub, Utor or Utord, Ucorr
(3) , Ucorr

(5) , Ucorr
(6) , Uturn

3 , Uturn
(4) ,

and Uturn
(6) and ∇′dC indicates that we consider only the part

of the derivatives corresponding to dependence on the θ
and γ angles (it should be noted that only Ub depends on
θ angles). Therefore, the transformation of this part of
the gradient involves an O(n) effort, where n is the number
of residues and can be predicted not to benefit from
parallelization. Nevertheless, we included an option to
fine-grain the operations given by eq 14, but communica-
tion overhead was greater than the profit from fine-
graining, except for a small number of processors. The
rotamer potentials (Urot) and the virtual-bond-deformation
potentials (Ubond) are expressed directly as functions of
virtual-bond vectors,38 and consequently, no force trans-
formation is needed for these terms.

The derivatives of both the pairwise and correlation terms
in q are expressed by eq 15.

where ∇y ) (∂/∂y1, ∂/∂y2, ..., ∂/∂yn) is the gradient operator.
Recalling eq 6, it can be realized that the transformation of
the energy gradient in site positions (x) to that in the virtual-
bond vectors forming the vector of generalized coordinates
q [eq 3] involves only summations [the effort being roughly
O(n2)] and divisions by 2 [the effort being O(n)]. This
observation was implemented in writing the code. Neverthe-
less, the O(n2) effort requires parallelizing this part of the
computations.

The matrix A and the vector ∇xUX, as well as the matrix
G and vector F, are divided between processors, as shown
in Figure 5. Each processor executes its part of the computa-
tions, and reduction to the master fine-grain task with the
sum operator (in the MPI terms) is executed at the end.

3. Results and Discussion

3.1. Fine-Graining a Single MD Trajectory. To assess
the performance of the fine-grained part of the code, we
carried out short canonical MD simulations with the
Berendsen thermostat57 implemented in UNRES42 for the
following nine proteins with size from 37 to 767 residues:
1E0L (37 residues), 1BDD (46 residues), 1KOY (62
residues), 2K4N (111 residues), 2K5I (154 residues), 1P1D
(196 residues), 3G5A (304 residues), 2KHO (600 resi-
dues), and 1TF5 (767 residues). We used the recent force
field calibrated by extensive random exploration of energy-
parameter space.56 The tests were run on the machines
listed in section 2.4. From 100 to 10 000 UNRES MD
steps, depending on protein size and processor speed, with

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024 processors,
respectively, were taken; the largest number of processors
was tested only on the machines with the fastest com-
munication (jugene.fz-juelich.de and intrepid.alcf.anl.gov).
The number of MD steps was the same for a given protein
and machine (the strong-scaling runs).

The nonsetup time (defined as the wall-clock time used
to perform MD steps) was taken to assess parallel
performance. The setup time, not taken into consideration,
includes data reading, computing and inverting the inertia
tensor, and generating initial velocities. For production
runs, the setup time is negligible. The nonsetup times per
MD step for the above-mentioned proteins, each run with
a single processor of the machines listed above, are plotted
in Figure 6a; additionally, the per-day simulation lengths
(in nanoseconds/day), together with the per-day lengths
corresponding to the all-atom GROMACS 4.0.5 program
run on jugene.fz-juelich.de for 1BDD, 1P1D, and 1TF5,
are plotted in Figure 6b. As can be seen from this figure,
in all cases the single-processor nonsetup time grows with
the square of the number of residues (a slope of about 2
in all four plots of Figure 6), as expected because most
of the computational effort is O(n2), where n is the number
of residues in a polypeptide chain. For a given protein,
the non-setup times increase in the order galera.task.gda.pl
< bigben.psc.edu < jugene.fz-juelich.de < intrepid.alcf.
anl.gov, which conforms to the processor speed of these
machines. With cutoff introduction on nonbonded interac-
tions, the GROMACS computation time scales almost
linearly with protein size.

In Figure 7a-d and Figure 8a-d the speedups and
efficiencies, respectively, for the nine proteins obtained with
galera.task.gda.pl, bigben.psc.edu, intrepid.alcf.anl.gov, and
jugene.fz-juelich.de, respectively, are plotted as functions of
the numbers of processors. The speedup (s) and efficiency
(η) are calculated from eqs 16 and 17, respectively.

∇′
dCi

UX )
∂UX

∂θi-1
∇dCi

θi-1 +
∂UX

∂θi
∇dCi

θi +

∂UX

∂γi-2
∇dCi

γi-2 +
∂UX

∂γi-1
∇dCi

γi-1 +
∂UX

∂γi
∇dCi

γi (14)

∇qUX ) AT∇xUX (15)

Figure 5. Partitioning of the matrix A and vector ∇xU(a) and
of the matrix G and the vector ∇q between the fine-grain tasks
for distributed computing of ∇q and accelerations, respectively.
Different colors mark different processors (rank shown in the
small lower panel). The matrix-vector multiplication is dis-
tributed between processors (each handling only its part of
the matrix and of the vector) to give the vectors containing
incomplete sums in each component. The vectors are sub-
sequently summed up to give the resulting vector.

s(P) ) t(1)
t(P)

(16)
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where P is the number of processors, t(1) is the time of a
single-processor run, and t(P) is the time of a run with P
processors.

It can be seen that the best scalability is achieved with
both IBM BlueGene/P supercomputers (a speedup over 4 is
achieved even for the smallest protein 1E0L), while galer-
a.task.gda.pl represents the poorest parallel performance
except for runs for the smallest proteins with up to 4
processors (in which case the quad-core architecture of this
computer is an advantage) for which it has better performance
than bigben.psc.edu. These observations conform to the
difference in the computation and communication speed of
the four supercomputers mentioned. As an example, the

communication times pertaining to collective operations
(MPI_REDUCE, MPI_GATHER, and MPI_SCATTER)
expressed relative to single-processor time and relative to
the wall-clock time of a given multiprocessor run are plotted
in Figure 9a and b, respectively, for the largest protein (1TF5;
767 residues) as function of the number of processors. As
can be seen from Figure 9, the ratio of the communication
time is the smallest for both IBM BlueGene/P machines;
moreover, it varies little between 8 and 128 processors. With
machines with not so fast communication, the communication
time constitutes even 70% of wall-clock time. Because of a
nearly constant communication-time overhead, the speed-
up and efficiency obtained from the runs on BlueGene/P
computers for larger proteins quite strictly obey the classical
Amdahl law [eq 18].66

where s is the speedup, P is the number of the processors,
and f is the fraction of time spent when running the
nonparallelized part of the code with one processor. The
dependence of the communication time on the number of
processors exhibits the largest slope for galera.task.gda.pl.

A more detailed analysis of the timing is provided in Table
1 with the example of 1TF5 (the largest protein considered
in our study) run on bigben.psc.edu. It can be seen that,
although the nonparallelized operations (such as calculations
of virtual-bond angles and virtual-bond dihedral angles and
calculation of auxiliary quantities to compute Ucorr

(3) and Uturn
(3)

and Uturn
(4) ) constitute a negligible fraction of the CPU time

with a single processor, they take relatively more and more
time with an increasing number of processors and, conse-
quently, reduce the available speedup according to Amdahl’s
law and gradually become the bottleneck of the computations.
As pointed out in section 2.5.4, we attempted to parallelize
these operations, but the communication overhead turned out
to be greater than the gain from eliminating this nonparal-
lelized component of computations. However, it is possible
that the scalability of UNRES calculations can benefit from
parallelizing the above-mentioned operations on mixed
shared-and-distributed memory architectures. Additionally,
the calculation of Ucorr

(4) is not fully load-balanced at present
(see section 2.5.3) and, consequently, does not scale very
well (see Table 1); however, the relative contribution of the
computation of Ucorr

(4) to the total computation time is small.
Nevertheless, a better parallelization of this energy compo-
nent is necessary for further extension of the time scale of
UNRES calculations. The load imbalance can be addressed
in the force-decomposition scheme by randomizing distribu-
tion of peptide groups on processors in a single preprocessing
step.63,64

A practical issue in molecular simulations is the wall-clock
time in which simulations can be accomplished. In Figure
10a, the minimum nonsetup times per MD (irrespective of
efficiency of a parallel run) and, in Figure 10b, the nonsetup
times at 50% efficiency are plotted vs the number of residues
in a chain. Additionally, the data corresponding to 50%
efficiency are presented in Figure 10c as the achievable
length of simulation expressed in nanoseconds of MD

Figure 6. Plots of (a) nonsetup times per MD step and (b)
the achievable simulation length (ns/day) as functions of
number of residues with a single processor for the four
supercomputers used in this study. A logarithmic scale is used
on both axes; it can be seen that the slope is approximately
2, indicating a quadratic dependence on the number of
residues. The per-day simulation lengths achievable with
GROMACS 4.0.5 at jugene.fz-juelich.de are also included for
comparison. The nonsetup time per MD step (in seconds) can
be expressed approximately as t ) 4.95 × 10-7n2 for
galera.task.gda.pl, t ) 7.0 × 10-7n2 for bigben.psc.edu, t )
4.26 × 10-6n2 for intrepid.alcf.anl.gov, and t ) 3.94 × 10-6n2

for jugene.fz-juelich.de, respectively, where n is the number
of residues.

η(P) ) t(1)
Pt(P)

(17)

s(P) ) [f + 1 - f
P ]-1

(18)
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simulation per day, which is a commonly used metric.15 It
can be seen that the curves presented in Figure 10a and b
are slightly convex initially, then approximately linear, and
for the largest proteins, the slope starts to decrease. The
convex shape of the initial portion of the time vs number of
residues plots is the most pronounced for galera.task.gda.pl,
while for IBM BlueGene/P supercomputers, the dependence
of the minimum nonsetup time and the nonsetup time at 50%
efficiency on the number of residues is nearly linear. The
approximately linear dependence of the wall-clock time per
MD step on protein size is a big advantage over single-
processor runs in which this dependence is quadratic (Figure
6). On the other hand, it can be seen from Figure 10 that
fast communication does not overcome greater processor
speed. The lines corresponding to both IBM BlueGene/P
supercomputers are always above those of the other two
machines with faster processors. For the 1TF5 protein (the
largest one), the minimum and the 50% efficiency times are
longer by about 12% and 30% on IBM BlueGene/P than on
galera.task.gda.pl and bigben.psc.edu, respectively. On the
other hand, this is still better than the ratio of the single-
processor time of the faster IBM BlueGene/P (jugene.
fz-juelich.de) to that of galera.task.gda.pl and bigben.psc.edu,
which are 6.36 and 4.21, respectively (however, 4 times more
processors have to be used on IBM BlueGene/P).

For reference, the single-processor nonsetup times of
the small 1KOY protein (62 residues) are also indicated
in Figure 10. For this small protein, 20 000 000 MD steps
(100 ns with the 5 fs time step used in UNRES simula-
tions), which is required for a converged canonical or
replica-exchange UNRES/MD run, can be accomplished
in about 12 h of wall-clock time on galera.task.gda.pl and
in about 18 h on bigben.psc.edu, respectively, without fine-
graining the code. It can be seen from Figure 10 that fine-
graining enables us to accomplish simulations for about
200-residue proteins on galera.task.gda.pl and bigben.
psc.edu in the same wall-clock time as for 1KOY. For
the two IBM BlueGene/P computers, simulations of the
largest (1TF5) protein can be accomplished in a shorter
wall-clock time than that required for 1KOY with these
machines, if efficiency is neglected (Figure 10a), or in a
slightly greater wall-clock time with 50% efficiency
(Figure 10b). With the maximum speedup achievable,
20 000 000 MD-step simulations for 1TF5 can be ac-
complished in about 80 wall-clock hours (3.3 wall-clock
days). A millisecond of simulations for this protein
(effectively a second, given the ∼1000-times lengthening
of the UNRES time scale with respect to the experimental
time scale)42,43 would require only slightly longer than a
month of computations on IBM BlueGene/P. This achieve-

Figure 7. Plots of the speedups for canonical single-trajectory UNRES/MD runs obtained for proteins with various numbers of
residues vs the number of processors on (a) galera.task.gda.pl, (b) bigben.psc.edu, (c) intrepid.alcf.anl.gov, and (d) jugene.
fz-juelich.de. The logarithmic scale with base 2 is used on both axes.

Coarse-Grained Molecular Dynamics J. Chem. Theory Comput., Vol. 6, No. 3, 2010 901



ment makes the biological time scales achievable with the
UNRES model.

In Figure 10c, the data corresponding to all-atom calcula-
tions with GROMACS15 at 50% efficiency with jugene.
fz-juelich.de are also presented. GROMACS is currently one
of the most efficient and best load-balanced MD software
programs. An 11 Å cutoff was applied on all nonbonded
interactions. As shown, UNRES provides 5-7 times longer
per-day simulation length compared to GROMACS. Because
the UNRES event-based time scale is at least 4 times longer
than that of the all-atom approach,42,43 the effective speedup
with respect to GROMACS is at least 20 times. When the
single-processor times are compared, the UNRES per-day
simulation length is 27 times greater for 1BDD, 8 times
greater for 1P1D, and 2 times greater for 1TF5 (see also
Figure 6b). The decrease of the UNRES/GROMACS per-
day simulation length with a single processor is not surpris-
ing, because UNRES does not implement a cutoff on
nonbonded interactions, as opposed to GROMACS and,
consequently, the complexity of UNRES is O(n2), while that
of GROMACS (which implements the cutoff) is O(n).
Therefore, introducing a cutoff on nonbonded interactions
in UNRES and, thereby, reducing the complexity to O(n),
could be advantageous for large proteins. Preliminary results
with an 11 Å cutoff on nonbonded interactions in UNRES

have shown that the scaling becomes almost linear and the
ratio of single-processor per-day simulation time with
UNRES to that with GROMACS becomes 10 for 1TF5.

3.2. Two-Grain Multiplexed Replica-Exchange Simu-
lations. The scalability data reported in section 3.1 pertain
to single-trajectory runs or canonical runs with multiple
independent trajectories. In the replica-exchange (REMD)
and multiplexed replica exchange molecular dynamics
(MREMD) simulations, exchange of information occurs. Fine
graining might influence the scalability of the coarse-grained
tasks because even residual load imbalance can cause
remarkable differences in the wall-clock time required to
compute the number of MD steps between exchanges. In
this section, we, therefore, report the results of the scalability
of short MREMD runs. We chose only three proteins: 1KOY
(small size), 1P1D (medium size), and 2KHO (large size).
The calculations were run on galera.task.gda.pl, bigben.
psc.edu, and jugene.fz-juelich.de; we omitted intrepid.alcf.
anl.gov because it gives the same scalability profiles as those
of jugene.fz-juelich.de. We ran from 1 to 256 MREMD
trajectories (the numbers of trajectories were the consecutive
powers of 2 and simulations for 1 trajectory were taken as
reference because they were canonical MD simulations). The
number of fine-grained processors was generally either 1
(reference for an MREMD simulation with a given number

Figure 8. Plots of the efficiencies for canonical single-trajectory UNRES/MD runs obtained for proteins with various numbers
of residues vs the number of processors on (a) galera.task.gda.pl, (b) bigben.psc.edu, (c) intrepid.alcf.anl.gov, and (d) jugene.
fz-juelich.de. The logarithmic scale with base 2 is used on the abscissae.
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of trajectories) or corresponding to about 50% efficiency for
a given protein and a given machine (section 3.1). However,
in runs on the IBM BlueGene/P machine, we also used the
number of fine-grained processors corresponding to nearly
maximum scalability. The number of MD steps per trajectory
and the frequency of replica exchange were the same for a
given protein (weak-scaling tests); 40 000 steps with ex-
change each 10 000 steps for 1KOY, 20 000 steps with
exchange each 5000 steps for 1P1D, and 10 000 steps with
exchange each 5000 steps for 2KHO, respectively. The most
massively parallel calculation was that run for 2KHO on
jugene.fz-juelich.de; it comprised 256 trajectories (CG tasks),
each run with 256 processors (FG tasks), i.e., 65 536
processors total.

Plots of the nonsetup time and efficiency vs the number
of trajectories (nonfine grained tasks) for different numbers
of fine-grain tasks are shown in Figures 11, 12, and 13 for
1KOY, 1P1D, and 2KHO, respectively. It can be seen that
the efficiency of MREMD calculations decreases slightly
with the number of trajectories, although the decrease is not
remarkable. The most remarkable decrease is observed for
the runs on the IBM BlueGene/P supercomputer; there is a
clear efficiency drop (about 5%), after which the efficiency
does not decrease remarkably with the number of trajectories.
It can be noted that, except for the smallest 1KOY protein,

Figure 9. Plots of (a) the fraction of the collective-com-
munication time to single-processor nonsetup time vs the
number of processors in a single-trajectory UNRES/MD run
for 1TF5 and (b) fraction of the collective-communication time
to the wall-clock time with a given number of processors.
Logarithmic scales are used on both axes.

Figure 10. Plots of the minimum nonsetup time per MD step
(a), the nonsetup time per MD step with 50% parallel efficiency
(b), and the achievable formal simulation length (in nanoseconds/
day; taking the 4.89 fs MD time step) with 50% efficiency (c) vs
the number of residues obtained in fine-grained single-trajectory
UNRES/MD runs on galera.task.gda.pl, bigben.psc.edu, intrepi-
d.alcf.anl.gov, and jugene.fz-juelich.de. For references, horizontal
lines (solid for galera.task.gda.pl, long-dashed for bigben.p-
sc.edu, short-dashed for intrepid.alcf.anl.gov, and dotted for
jugene.fz-juelich.de) are drawn which correspond to single-
processor nonsetup times of the 62-residue 1KOY protein. The
time at 50% efficiency was obtained by linear interpolation from
the times at the efficiencies bracketing 50%. The achievable
simulation lengths at 50% efficiency obtained for 1BDD, 1P1D,
and 1TF5 proteins with GROMACS 4.0.515 (taking the 2 fs time
step) run at jugene.fz-juelich.de are also included in part c for
comparison. For 1E0L, 1BDD, 1KOY, 2K4N, 2K5I, 1P1D, 3G5A,
2KHO, and 1TF5, respectively, the numbers of processors
corresponding to part a are 8, 8, 16, 16, 16, 16, 32, 128, and
128 with galera.task.gda.pl; 4, 8, 8, 32, 32, 128, 128, 256, and
512 with bigben.psc.edu; and 128, 128, 64, 128, 128, 512, 1024,
1024, and 1024 with intrepid.alcf.anl.gov and jugene.fz-juelich.de.
The numbers of processors corresponding to UNRES runs
reported in parts b and c are 8, 8, 16, 16, 16, 16, 32, 128, and
128 with galera.task.gda.pl; 4, 8, 8, 32, 32, 128, 128, 256, and
512 with bigben.psc.edu; and 8, 8, 16, 32, 32, 64, 64, 128,
and 256 with intrepid.alcf.anl.gov and jugene.fz-juelich.de. The
numbers of processors used in the GROMACS runs reported
in part c were 32 for 1BDD and 64 for 1P1D and 1TF5.
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the drop of efficiency or the increase of the nonsetup time
for IBM BlueGene/P is nearly constant. By detailed timing
of the runs, we found that the decrease of efficiency is caused
by increasing waiting times by the master processors which
distributes coarse-grained tasks (Figure 2). Most probably,
this waiting time increases because the calculations for each
trajectory take slightly different times, which results in a load
imbalance of the coarse-grained tasks.

4. Conclusions

In this work, we have extended the parallelization of UNRES
MD from the already-existing one processor per trajectory
mode,51 by fine-graining single-trajectory calculations. Even
for the smallest protein (1E0L, 37 residues), a speedup from
about 2 to about 5 can be achieved depending on the machine
(the largest on IBM BlueGene/P which has the fastest
communication); for the largest protein studied (1TF5, 767

Figure 11. Plots of nonsetup times and efficiencies in 40 000-step MREMD simulations with replica exchange each 10 000
steps, numbers of trajectories from 1 (reference) to 256, and various numbers of fine-grain tasks per trajectory obtained for the
1KOY (62-residue) protein with (a) galera.task.gda.pl, (b) bigben.psc.edu, and (c) jugene.fz-juelich.de.
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residues), a 160-fold maximum speedup has been reached
with 1024 processors/trajectory, and 120-fold speedup at 50%
parallel efficiency with 256 processors/trajectory was reached
with IBM BlueGene/P. Even for machines with slower
communications (but 4- or 6-times greater processor speed
than that of IBM BlueGene/P), a reasonable speedup of 32
or 16 can be achieved at 50% efficiency with the Cray XT3
and Xeon cluster, respectively. The efficiency is slightly
diminished for MREMD runs which involve communication
between coarse-grained tasks; however, this does not seem
to be a significant issue. Given the fine-grained parallelism,

the wall-clock time necessary to compute a single trajectory
increases linearly with the number of residues, as opposed
to an increase with the square of the number of residues when
using a single processor per trajectory. For the 1TF5 protein,
a single MD step can be accomplished in 0.015 wall-clock
s, which means that a 20 000 000 step run (0.1 µs with 5 fs
MD time step) can be accomplished in about 3.5 days of
simulations. Given the fact that the UNRES (and, generally,
a coarse-grained approach) time scale is about 1000 times
wider than that of the experimental time scale (i.e., protein
folding with UNRES takes only nanoseconds,42,43 while the

Figure 12. Plots of nonsetup times and efficiencies in 20 000-step MREMD simulations with replica exchange each 5000 steps,
numbers of trajectories from 1 (reference) to 256, and various numbers of fine-grain tasks per trajectory obtained for the 1P1D
(196-residue) protein with (a) galera.task.gda.pl, (b) bigben.psc.edu, and (c) jugene.fz-juelich.de.
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fastest-folding proteins fold in microseconds),44 this achieve-
ment enables us to carry out millisecond-scale simulations
of large-size proteins in real time. Introducing a cutoff on
nonbonded interactions, as pointed out in section 3.1, might
push the achievable time scale even farther or, at least, reduce
the cost of calculation, and we are currently working on this
modification. As mentioned in section 3.1, the load balance
can be achieved with a cutoff in the force-decomposition

scheme;63,64 however, we will also explore the domain-
decomposition scheme.

At present, UNRES requires about 1 GB/processor memory
to run calculations for ∼900-residue proteins. A large part
of this memory is occupied by matrix G, its inverse, and
auxiliary matrices. This poses some problems, although a
great part of this could be eliminated by switching to single
precision (which, additionally, should reduce the CPU time)

Figure 13. Plots of nonsetup times and efficiencies in 10 000-step MREMD simulations with replica exchange each 5000 steps,
numbers of trajectories from 1 (reference) to 256, and various numbers of fine-grain tasks per trajectory obtained for the 2KHO
(600-residue) protein with (a) galera.task.gda.pl, (b) bigben.psc.edu, and (c) jugene.fz-juelich.de. The reference time (1 trajectory
with 1 fine-grained processor) corresponding to the runs of part c was calculated from the 2KHO entry in the data plotted in
Figure 6.
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and by putting the arrays in shared memory. Because the
array G for multichain proteins consists of independent
blocks, each pertaining to a different chain, and the maximum
number of residues per chain usually does not exceed 2000,
this modification will solve a large part of the memory
problem. The second substantial part of memory is required
to store the information to compute the Ucorr

(4) terms; however
this part can be distributed between fine-grained processors.
This work is presently being carried out in our laboratory.

The successful fine-grain parallel implementation of
UNRES reported in this work suggests that the UNRES code
can be ported efficiently to the GPUs, reaching an even
greater speedup of the fine-grained part of the code than on
IBM BlueGene/P; for all-atom MD, a 700-fold speedup was
recently reported.18 In particular, large constant arrays
belonging to given conformations could be shared by all
processors of a GPU unit, which would eliminate the present
problem occurring with distributed-memory fine-grained
UNRES. However, even though implementation of UNRES
on the GPUs seems to be very attractive, it is not clear if a
similar speedup can be achieved with UNRES as that with
all-atom-code implementation on GPUs. We are currently
in the process of porting UNRES code to GPUs.
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Forschungszentrum Jülich, Germany, and (c) the Informatics
Center of the Metropolitan Academic Network (IC MAN) in
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Abstract: Functional RNA molecules such as ribosomal RNAs (rRNAs) frequently contain highly
conserved internal loops with a 5′-UAA/5′-GAN (UAA/GAN) consensus sequence. The UAA/GAN
internal loops adopt a distinctive structure inconsistent with secondary structure predictions. The
structure has a narrow major groove and forms a trans Hoogsteen/Sugar edge (tHS) A/G base pair
followed by an unpaired stacked adenine, a trans Watson-Crick/Hoogsteen (tWH) U/A base pair,
and finally a bulged nucleotide (N). The structure is further stabilized by a three-adenine stack and
base-phosphate interaction. In the ribosome, the UAA/GAN internal loops are involved in extensive
tertiary contacts, mainly as donors of A-minor interactions. Further, this sequence can adopt an
alternative 2D/3D pattern stabilized by a four-adenine stack involved in a smaller number of tertiary
interactions. The solution structure of an isolated UAA/GAA internal loop shows substantially
rearranged base pairing with three consecutive non-Watson-Crick base pairs. Its A/U base pair
adopts an incomplete cis Watson-Crick/Sugar edge (cWS) A/U conformation instead of the expected
Watson-Crick arrangement. We performed 3.1 µs of explicit solvent molecular dynamics (MD)
simulations of the X-ray and NMR UAA/GAN structures, supplemented by molecular mechanics,
Poisson-Boltzmann, and surface area free energy calculations; locally enhanced sampling (LES)
runs; targeted MD (TMD); and nudged elastic band (NEB) analysis. We compared parm99 and
parmbsc0 force fields and net-neutralizing Na+ versus excess salt KCl ion environments. Both force
fields provide a similar description of the simulated structures, with the parmbsc0 leading to modest
narrowing of the major groove. The excess salt simulations also cause a similar effect. While the
NMR structure is entirely stable in simulations, the simulated X-ray structure shows considerable
widening of the major groove, a loss of base-phosphate interaction, and other instabilities. The
alternative X-ray geometry even undergoes a conformational transition toward the solution 2D
structure. Free energy calculations confirm that the X-ray arrangement is less stable than the solution
structure. LES, TMD, and NEB provide a rather consistent pathway for interconversion between
the X-ray and NMR structures. In simulations, the incomplete cWS A/U base pair of the NMR structure
is water-mediated and alternates with the canonical A-U base pair, which is not indicated by the
NMR data. Completion of the full cWS A/U base pair is prevented by the overall internal loop
arrangement. In summary, the simulations confirm that the UAA/GAN internal loop is a molecular
switch RNA module that adopts its functional geometry upon specific tertiary contexts.
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Introduction

RNA secondary structures comprise four basic elements such
as helices, external loops (hairpin loops), internal loops, and
junction loops. The first crystallographic structures of the
ribosome1-3 determined in this decade have revealed that
the internal loops are structured by amazingly variable non-
Watson-Crick base pairs, and many of them form recurrent
structural motifs with distinct shapes.4 (By internal loops we
mean short series of nominally unpaired bases within a longer
paired helix, that is, bases that do not form canonical
Watson-Crick base pairs). Thus, the RNA structures can
be considered as fascinating combinations of short canonical
helices responsible for a major part of the thermodynamics
stability and various noncanonical (non-Watson-Crick)
functional elements with diverse sequences, shapes, and
flexibilities. Some of the recurrent motifs are autonomous,
that is, their structures are within the ribosome independent
of context, while others have arrangements affected by
surrounding structures, that is, exhibit induced fit binding.
In the present work, we investigate one of the most salient
recurrent nonautonomous RNA structural motifs that adopts
its functional shape only in very specific tertiary contexts.
The aim is to complement the existing structural data by
analyses utilizing the available computational methods based
on classical atomistic explicit solvent simulations and to
establish what kind of information can in principle be
gathered using modern computations for such RNA structural
elements. A typical example of this element occurs in Helix
40 (H40) of the large ribosomal subunit. H40 contains a
highly conserved internal loop in all three domains of life
with a 5′-UAA/5′-GAN (UAA/GAN) consensus sequence
(Figure 1A).5

This motif is present in seven internal loops of 23S rRNA
and in other RNAs such as the RNase P RNAs and groups
I and II introns with different degrees of conservation.5

Despite different locations and tertiary interactions, the
majority of the UAA/GAN internal loops adopt a distinctive
structure with an unpaired stacked adenine, and a bulged
nucleotide (N). The three conserved adenines create a
characteristic cross-strand AAA stack (Figure 1A).5 An
alternative secondary structure of the loop was seen in the
crystal structures of the H68 of Escherichia coli (E.c.) 23S
rRNA9 (Figure 1B) and the intact RNase P RNA from
Bacillus stearothermophilus,10 indicating structural plasticity
of this motif.

Considering the structural data, spatial arrangement of this
loop is likely to be dictated by surrounding ribosomal
segments. In the ribosome, the H40 loop forms contacts with
the hairpin structure between H39 and H40 by the adenines

of the AAA stack via A-minor interactions.5,11 A-minor
interactions represent the most numerous and highly con-
served tertiary interactions in large structured RNAs and
ribonucleoproteins. The bulged nucleotide is involved in
tertiary contacts as well. The bacterial H40 internal loop is
additionally a part of the binding site of the ribosomal protein
L20.12 Recently, the boxed motif in Figure 1A was classified
as a UA_handle submotif, which is a highly versatile
nonautonomous common RNA building block.8

The structure of the UAA/GAA motif flanked by Watson-
Crick base pairs was determined in solution by NMR spec-
troscopy.13 There are striking differences between the X-ray
ribosomal H40 and the solution structure (Figure 1A,C). The
pairing is restructured so that there are no unpaired or bulged
bases. The solution structure is much more consistent with the
arrangement expected on the basis of 2D thermodynamics
prediction, except that the standard 2D predictions would
propose a canonical A-U base pair instead of the observed
A/U base pair. The solution structure has a considerably wider
(more open) major groove compared to the X-ray H40 UAA/
GAA segment, which has a narrow (closed) major groove and
wide minor groove (Figure 1). However, this feature may be a
trivial consequence of the NMR structure refinement utilizing
force field calculations. Thus, the functional structure seen in
the ribosomes differs from the presumably intrinsically preferred
arrangement seen in solution and is likely stabilized by tertiary
and quaternary interactions.13

X-ray and NMR studies of RNAs can be complemented
by molecular dynamics (MD), which provides dynamic data
and additional insight into the structure.14-30 For instance,
MD simulations can characterize isolated RNA building
blocks independent of their structural context. The simula-
tions capture intrinsic stochastic fluctuations of geometries
and reveal intrinsic elastic properties that are important for
function.31-34 In addition, simulations can disclose whether
an RNA building block is entirely internally relaxed or is
deformed due to its interactions with the surroundings. In
the latter case, simulations can reveal rapid structural
relaxation toward low-energy conformations.35,36 These
insights are unique, and they would be hard to obtain by
other methods. Thus, despite being limited by force field
approximations and time scale, MD simulations provide
valuable data that can complement experiments.37-42

In the present study, we run explicit solvent MD simula-
tions on isolated internal loops of H40 starting with solution
structure determined by NMR and the structure in ribosomes
as determined by X-ray diffraction (Figure 1A,C). The study
is complemented by MD simulation of the X-ray loop of
H68 from the ribosome (Figure 1B). The main aim was to
characterize base pairing and local arrangement of the loop
on the nanosecond time scale to better understand its
structural plasticity. The simulations were supplemented by
free energy calculations that extract free energy directly from
the trajectories. We also utilized locally enhanced sampling
(LES), nudged elastic band (NEB), and targeted MD (TMD)
to investigate the pathway for the conformational change
between the NMR and X-ray structures. Standard net-
neutralizing Na+ simulations with the parm99 AMBER force
field43 were compared with the parmbsc044 force field and
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excess salt KCl simulations. This study had two purposes:
first, to investigate an important RNA modular block
stabilized by tertiary contacts that appears to act as a flexible
RNA structural switch; second, to test the capability of
explicit solvent simulations and some auxiliary techniques
to describe structural dynamics of RNA. The combination

of methods provides interesting qualitative insights into the
intricate properties of the UAA/GAN RNA internal loop.

Our standard simulations show relaxation of the ribosomal
H40 loop. The X-ray conformation opens significantly and
adopts an arrangement that resembles the solution structure.
However, the X-ray secondary structure of the loop was

Figure 1. The 2D structures (left) and 3D stereo views (right) of studied segments including non-Watson-Crick base pairs in
the internal UAA/GAA loop (middle). (A, left) The 2D X-ray structure of H40 with unified sequence flanking the internal loop (see
the Materials and Methods). (A, middle) Sheared A/G and rH U/A base pairs. (A, right) Stereo view of E. coli H40 X-ray structure.
(B, left) The 2D X-ray structure of E. coli 23S rRNA H68 exhibiting an alternative conformation of the UAA/GAA motif with a
unified canonical flanking sequence. The black dashed line indicates a single H bond. (B, middle) Unpaired G and A bases,
stacking middle adenines, and single-bonded A/U base pair. (B, right) Stereo view of this structure. (C, left) The 2D NMR structure.
(C, middle) Sheared A/G, sheared A/A, and incomplete cWS A/U base pairs. (C, right) Stereo view of the NMR structure. In all
parts, bases of the UAA/GAA internal loop are in red, 3D structures are colored accordingly, hydrogens are not shown in the
X-ray structures, bases in yellow boxes in the 2D structures are involved in stacking, and the marks between the bases indicate
the base paring family according to the Leontis and Westhof classification (tHS ) trans Hoogsteen/Sugar edge A/G or A/A,
known also as “sheared” base pairs; tWH ) trans Watson-Crick/Hoogsteen U/A, known also as reverse Hoogsteen (rH) base
pair; and cWS ) cis Watson-Crick/Sugar edge A/U).6,7 X-ray nucleotide numbers are in blue; NMR numbers are in black. The
green rectangular trapezium for H40 structure marks bases forming the UA_handle submotif.8
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maintained on the 200-300 ns time scale despite numerous
local disturbances evidenced by the simulations. Thus,
spontaneous transition of the H40 loop to the solution
structure (presumably the global free energy minimum
conformation) was not achieved. Disruption of the H40 X-ray
secondary structure was detected in the LES simulations,
where the NMR-like secondary structure was sampled, albeit
not dominantly. In contrast, almost perfect transition was
observed in the standard simulation of the H68 loop, which
is probably not as deformed as the ribosomal H40 loop due
to the reduced number of tertiary contacts. The free energy
calculations clearly show that the solution structure of the
UAA/GAA internal loop is more stable compared to its
ribosomal geometries and reveal a free energy change of the
conformational transition between the H68 and NMR
structures. Finally, LES, NEB, and TMD calculations allowed
us to propose a plausible mechanism by which the solution
conformation could rearrange into the “ribosomal” H40 X-ray
geometry. Both parmbsc0 and KCl simulations are qualita-
tively in agreement with standard net-neutralizing Na+

parm99 simulations. The major groove opening is, however,
reduced compared to that of the Na+ parm99 simulations.

Materials and Methods

Starting Structures. The H40 X-ray structure was taken
from the available 50S subunits, that is, from the archaeal
subunit of Haloarcula marismortui (H.m.; pdb code 1S72)45

and from bacterial subunits of E.c. (2AW4),9 Deinoccocus
radiodurans (D.r.; 1NKW),2 and Thermus thermophilus (T.t.;
2J01)46 (Figure 1A and Figure S1, Supporting Information).
We have compared conformations of 23S rRNA H40 from
the recent structures of Ramakrishnan that include EF-G47

and EF-Tu48 to the T.t. X-ray structure used in the present
study. No visible structural differences were detected among
the structures. The RMSDs between the X-ray structure used
in the present study and the newly released structures were
below 1 Å, so they are identical. The H40 NMR structure
was taken from pdb 2H49 (we utilized model 1;13 Figure
1C). Both X-ray and NMR structures have a UAA/GAA
internal loop (only the H.m. helix contains the UAA/GAG
sequence) flanked by various Watson-Crick base pairs
(Figure 1). In our study, the Watson-Crick base pairs in
the X-ray structures (Figure S2, Supporting Information)
were mutated to match the NMR structure (Figure 1C), with
an additional UAA/GAG f UAA/GAA substitution intro-
duced for the H.m. structure. Thus, all systems have the same
sequence, which allowed us to compare free energies in the
studied systems (see below). Although all simulated struc-
tures have identical sequences, the starting structures still
reflect some local structural differences of the X-ray struc-
tures. We used the NMR nucleotide numbering (1-18) for
X-ray H40s throughout the text to unify the description of
the systems (Figure 1). Original X-ray numbers are indicated
in Figures 1 and S2 (Supporting Information) and Table 1.

All the X-ray H40s have the same secondary structure and
almost identical local geometry (Figures 1 and S1 and S2,
Supporting Information).

The X-ray internal loop comprises a sheared A6/G13 pair
and rH U4/A14 pair, a bulging A15 base, and an A5 base

stacked within the stem without a base pairing partner on
the other strand (Figure 1A). A5 forms an intrastrand stack
with the A6 base and an interstrand “cross”-strand stack with
the A14 base, resulting in the characteristic AAA stack
(Figure 1A). These interactions shape the internal loop into
a specific arrangement exhibiting a broadened minor groove
and narrow major groove (∼6-8 Å) stabilized by a
base-phosphate (BPh) interaction.49 The E.c. X-ray structure
of H40 exhibits a bifurcated binding mode (peculiar alterna-
tive of base phosphate interaction type 4BPh) in which N2
and N1 of G13 bind to the same anionic oxygen of the
phosphate group.49 In particular, there are G13(N1)-A5(O2P)
and G13(N2)-A5(O2P) H bonds (Figure 2). In contrast,
H.m., D.r., and T.t. X-ray structures exhibit base phosphate
interaction type 5BPh, including only the G13(N1)-A5(O2P)
H bond (Figure 2).49

The NMR internal loop also shows the sheared A6/G13
base pair seen in the H40 X-ray structures; however, the loop
contains two additional single hydrogen bonded noncanonical
base pairs: a sheared A14/A5 and cWS A15/U4 base pair
(Figure 1C). The latter base pair is classified as a cWS,6

although it contains only one direct A(N6)-U(O2) H bond.
The simulations reveal that the other interaction characteristic
for cWS A/U base pairs, the A(N1)-U(O2′) interaction, is
in fact water-mediated. The major groove of the NMR
structure is wide (open, ∼17 Å; Figure 1C), and it does not
have any base-phosphate contacts across the groove.13 The
NMR structure reveals another AAA stack (Figure 1C) with
a cross-strand A6/A14 and intrastrand A14/15 interactions.

The X-ray UAA/GAA loop of H68 was taken from E.c.
50S (2AW4)9 (Figure 1B). Base pairs above and below the
loop were mutated according to the Watson-Crick base pairs
of the NMR structure (Figure 1). The internal loop of H68
consists of unpaired G13 and A6 bases (Figure 1B) where
the G13 base is in the syn conformation. In the ribosomal
H40 and in the solution structure, the G13 is in anti
orientation, and in both of these structures it forms a sheared
A6/G13 pair (see Figure 1). Furthermore, the loop of H68
comprises stacked middle adenines A5 and A14 and an
imperfect cWS A15/U4 base pair stabilized by a single H
bond (A(N6)-U(O2); Figure 1B). In addition, the A5 and
A14 bases form intrastrand stacks with adjacent adenines
A6 and A15, respectively, resulting in a four-adenine stack
(Figure 1B). The major groove is a little wider (∼9-10 Å)
compared with the H40 geometry.

Ribosomal Contacts of H40. The studied UAA/GAN H40
internal loops are involved in identical A-minor interactions
in all four 50S subunits. The three adenines of the cross-
strand AAA stack interact with two consecutive highly
conserved CdG base pairs of the hairpin between H39 and
H40.5 In particular, the adenine of the sheared A/G pair forms
a type I A-minor interaction with one CdG pair, while the
A5 adenine forms a type II A-minor interaction with the next
CdG pair (GdC in T.t.). Finally, the adenine of the rH U/A
base pair forms a tilted variant of A-minor type I also with
the second GdC base pair (Figure 3).5

In bacterial ribosomes, the minor groove side of the UAA/
GAN motif interacts with the hairpin between H39 and H40,
while the major groove side interacts with ribosomal protein
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L20 (Figure 3). In contrast, in the archaeal H.m. 50S, the
ribosomal protein L20 is substituted by ribosomal protein
L30, which interacts with the minor groove side of the
UAA/GAN internal loop (Figure 3). Moreover, the H.m.
UAA/GAN has contact with H25 (Figure 3). Apparently,
the UAA/GAN internal loop of H40 exhibits different
interactions on its minor groove side in bacteria and archaea.

As noted by Lee et al.,5 the UAA/GAN motifs in other
helices adopting the same 2D/3D arrangement are also
involved in extensive molecular contacts resembling those
of H40 UAA/GAN. The alternative 2D/3D UAA/GAN
conformation (H68 of E.c. 23S rRNA and in intact RNase P
RNA) contacts just one RNA helix (Figure 3). This is another
indication that structural context may alter the geometry of
the UAA/GAN motif.

Standard MD Simulations. Standard explicit solvent
simulations were carried out (at 300 K) using the pmemd
module of AMBER 9.050,51 and force field parm9943 version
of the Cornell et al. force field52 on a time scale of 200+ ns
each. Control simulations of 100 ns were run with parmb-
sc0.44 Parmbsc0 is the latest reparametrization of the Cornell
et al. force field aimed to stabilize B-DNA simulations by
penalizing substates with γ-trans backbone topologies. While

Table 1. Survey of Performed Simulationsa

organism
simulated segment (original

experimental numbering)
simulation

name
resolution (Å)
and pdb code

length of
simulation (ns) RMSDb (Å)

force
field

Standard MD Simulations with Net-Neutralizing Na+ Atmosphere
E.c. 996-1004, 1151-1159 MD_Ec_99 3.5, 2AW4 350c 4.4 ( 1.2 Parm99
E.c. 996-1004, 1151-1159 MD_Ec_bsc0 3.5, 2AW4 100 2.3 ( 0.4 Bsc0
H.m. 1093-1101 1255-1263 MD_Hm_99 2.4, 1S72 250d 3.5 ( 1.0 Parm99
H.m. 1093-1101, 1255-1263 MD_Hm_bsc0 2.4, 1S72 100 2.7 ( 0.5 Bsc0
D.r. 1007-1015, 1162-1170 MD_Dr_99 3.1, 1NKW 200 4.8 ( 0.7 Parm99
D.r. 1007-1015, 1162-1170 MD_Dr_bsc0 3.1, 1NKW 100 4.3 ( 0.8 Bsc0
T.t. 996-1004, 1151-1159 MD_Tt_99 2.8, 2J01 200d 2.4 ( 0.7 Parm99
T.t. 996-1004, 1151-1159 MD_Tt_bsc0 2.8, 2J01 100 2.3 ( 0.5 Bsc0
E.c. 996-1004, 1151-1159 MD_A5Ue 3.5, 2AW4 100 2.4 ( 0.5 Parm99
E.c. 996-1004, 1151-1159 MD_A14Uf 3.5, 2AW4 100 2.2 ( 0.3 Parm99
H.m. 1093-1101, 1255-1263 MD_A14G_U4Cg 2.4, 1S72 50 1.9 ( 0.4 Parm99
E.c. 996-1004, 1151-1159 MD_nosalth 3.5, 2AW4 150 4.3 ( 1.0 Parm99
E.c. 996-1004, 1151-1159 MD_400Ki 3.5, 2AW4 20 6.7 ( 3.2 Parm99
E.c. 996-1004, 1151-1159 MD_400Kj 3.5, 2AW4 20 5.1 ( 2.7 Parm99
E.c. 996-1004, 1151-1159 MD_LES_Eck 3.5, 2AW4 80 4.2 ( 1.7 Parm99
N/A 1-18 MD_NMR_99 N/A, 2H49 200 1.6 ( 0.3 Parm99
N/A 1-18 MD_NMR_bsc0 N/A, 2H49 100 1.2 ( 0.2 Bsc0
N/A 1-18 MD_NMR_restrl N/A, 2H49 200 1.7 ( 0.3 Parm99
E.c. 1885-1893, 1849-1857 MD_H68 3.5, 2AW4 100 3.9 ( 0.5 Parm99

Standard MD Simulations in Excess of KCl
E.c. 996-1004, 1151-1159 MD_Ec_K1m 3.5, 2AW4 100 2.1 ( 0.5 Parm99
E.c. 996-1004, 1151-1159 MD_Ec_K2m 3.5, 2AW4 100 2.0 ( 0.3 Bsc0
E.c. 996-1004, 1151-1159 MD_Ec_K3n 3.5, 2AW4 100 2.9 ( 0.4 Parm99
N/A 1-18 MD_NMR_Km N/A, 2H49 100 1.5 ( 0.3 Parm99

LES Simulations
E.c. 996-1004, 1151-1159 LES_Ec 3.5, 2AW4 60 6.7 ( 2.2 Parm99
D.r. 1007-1015, 1162-1170 LES_Dr 3.1, 1NKW 40 5.9 ( 1.3 Parm99
T.t. 996-1004, 1151-1159 LES_Tt 2.8, 2J01 40 6.4 ( 1.3 Parm99
H.m. 1093-1101, 1255-1263 LES_Hm 2.4, 1S72 40 6.4 ( 2.0 Parm99

a The sequence of the simulated molecules was unified to match the sequence used in the NMR study (see the Materials and Methods
and Supporting Information). b RMSD values are calculated along the trajectory for the individual snapshots with respect to the starting
structure. c Due to disruption of the structure, we considered only the 0-300 ns trajectory portion in the analyses. d Due to disruption of the
structure, we considered only 0-150 ns in the analyses. e Simulation run with A5U mutation. f Simulation run with A14U mutation.
g Simulation run with A14G and U4C mutations. h Simulation run under no-salt conditions. i Simulation run at 400 K (NVT). j Simulation run
at 400 K (NPT). k Standard MD simulation that started from the NMR-like conformation observed in the LES_Ec simulation. l Simulation run
with restraint, which enforced a direct A(N1)-U(O2′) H bond of the cWS A/U base pair (instead of the water-mediated one) for 10 ns.
m Simulation run with Dang’s parameters for K+ and Cl- (see the Materials and Methods). n Simulation run with Joung and Cheatham’s
parameters for K+ and Cl- (see the Materials and Methods).

Figure 2. Base phosphate interactions observed in the
ribosomal X-ray structures of H40. The E.c. structure exhibits
a bifurcated binding mode (base phosphate interaction type
4BPh) in which N2 and N1 of G13 bind to the same anionic
oxygen of the phosphate group A5(O2P). The H.m., D.r., and
T.t. structures exhibit only the G13(N1)-A5(O2P) H bond,
which represents base phosphate interaction type 5BPh. The
differences might reflect limits of the resolution of the experi-
mental structures.
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parmbsc0 achieves a considerably improved performance at
predicting DNA backbone conformations as compared to
parm99, no systematic comparative testing was done for
RNA with both parm99 and parmbsc0 until now. This work
supports the viability of both force fields for RNA simula-
tions. An overview of all simulations is given in Table 1.
The total length of performed simulations was 3.1 µs. The
simulated molecules were neutralized by standard AMBER
Na+ monovalent cations (radius 1.868 Å and well depth
0.00277 kcal/mol),53 initially placed using the xleap module
of AMBER at the most negative sites around the solute. RNA
molecules were solvated by a TIP3P water box to a depth
of 10 Å. Net-neutralization corresponds to a cation concen-
tration of ∼0.15-0.2 M. Some control simulations were
carried out in KCl with ∼0.2 M excess salt concentration
(Table 1). For this purpose, we used either modified
parameters for K+ (radius 1.705 Å and well depth 0.1936829
kcal/mol) and Cl- (radius 2.513 Å and well depth 0.0355910
kcal/mol), which prevents salt crystallization at low to
medium salt concentrations,54 or Dang’s parameters for K+

(radius 1.87 Å and well depth 0.1 kcal/mol)55 and Cl- (radius
2.47 Å and well depth 0.1 kcal/mol)56 together with an
SPC/E water box.57,58 The simulations were carried out using
the particle mesh Ewald (PME) technique with a 9 Å
nonbonded cutoff and a 2 fs integration time step. The
trajectory was saved once a picosecond. Equilibration and
production phases were carried using standard protocols.20

Trajectories were analyzed using the ptraj module of
AMBER, and structures were visualized using the VMD
molecular visualization program, http://www.ks.uiuc.edu/
Research/vmd/ (accessed January 2010).59 The figures were
prepared using VMD. The stability of stacking interactions
within the AAA stack of H40 was monitored by calculating
the van der Waals interaction energies between the A5 and
A14, A5 and A6, and A5 and G13 bases utilizing the anal
module of AMBER.

To enhance sampling of H40, two simulations were carried
out at an elevated temperature (400 K; Table 1). The system
was gradually heated from 300 to 400 K during the first 100
ps using NPT conditions (constant pressure ensemble). The
production runs were continued at 400 K using both NPT
and NVT (constant volume ensemble). There are no clear
guidelines whether NVT or NPT simulations should be
preferred, and in fact, both approaches have drawbacks.60

Elevated temperature simulations were previously success-
fully applied to studies of a base substitution in an RNA
frameshifting pseudoknot.61 Additionally, a “no-salt” simula-
tion of H40 in which cations were omitted from the
simulation box was carried out (Table 1). The missing
counterions were substituted by a net-neutralizing plasma
representing a uniform neutralizing charge distribution over
the box. This feature is implemented in the AMBER program
package for use with the PME method and guarantees the
neutrality of the system.62 The aim of the no-salt simulation
was to destabilize the simulated structure.

Locally Enhanced Sampling (LES) Simulations. LES
simulations63-65 were carried out using the sander program
of AMBER 9.050,51 to enlarge sampling of the internal loop
started from the X-ray structures of H40 UAA/GAA internal
loops. The addles module of AMBER was used to split the
internal loop region into five independent copies; that is,
residues 4-6 and 13-15 were copied five times. Force field
parameters for the copies were scaled, which lowered the
energy barriers on the potential energy surface and increased
the flexibility of the given region. The equilibration and
production phases were carried out using standard proto-
cols.20 Heating during the equilibration phase was continued
up to 300 K. The LES method along with explicit solvent
simulations were successfully utilized in studies of several
nucleic acids systems.20,66-68

Free Energy Calculations. The molecular mechanics,
Poisson-Boltzmann, and surface area method (MM-

Figure 3. (A) Stereo view of three adenines of the UAA/GAA motif from E.c. H40 forming an AAA stack which interacts with two
CdG base pairs from the hairpin between H39 and H40 via A-minor interactions. The CdG pair and the corresponding interacting
adenine(s) are highlighted with the same color. Details of these interactions are visualized below the stereo view in corresponding
green and red boxes, including a description of the A-minor interaction type. (B) Stereo view of bacterial E.c. H40 interacting
with the hairpin between H39 (in green) and H40 and ribosomal protein L20 (in magenta). (C) Stereo view of archaeal H.m. H40
interacting with the hairpin between H39 (in green) and H40, ribosomal protein L30 (in yellow), and H25 (in gray). (D) Stereo
view of bacterial E.c. H68 (exhibiting the alternative conformation of UAA/GAN internal loop) interacting with H75 (in gray).
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PBSA)69,70 implemented in AMBER 9.050,51 was used for
free energy analysis of the explicit solvent MD trajectories.
This method is based on a continuum solvent approach that
replaces the explicit solvent and utilizes snapshots directly
from the simulation. Here, it was employed to estimate the
total free energy of H40 along MD_Ec_99, MD_Hm_99,
MD_Dr_99, and MD_Tt_99 simulations and of H68 along
the MD_H68 simulation (see Table 1). Total free energy of
the solution structure along the MD_NMR_99 simulation was
also obtained. The calculations of MM-PBSA energy in-
cluded calculations of molecular mechanics energy (EMM)
and solvation energy (EPBSA). EMM was calculated by the
sander module of AMBER (explicit solvent and ions were
not included) with parm99.43 EPBSA is composed of two
types of contributions, electrostatic (EPB) and nonpolar
(ESA). The electrostatic part was calculated with a numerical
solver with the Poisson-Boltzmann method implemented
in the PBSA program.71 The nonpolar part depends on
solvent-accessible surface area, which was calculated by the
molsurf program implemented in AMBER.72 Conformational
entropy was obtained using the nmode module of AMBER
9.0,50,51 which performs normal-mode analysis73 to predict
the conformational entropy. The program provides a total
solute entropic term as a sum of translational, rotational, and
vibrational entropic contributions. All free energy terms were
derived using each consecutive 20th snapshot.

Nudged Elastic Band (NEB) Method. The NEB method
was employed to investigate the conformational change
pathway for the transformation between the NMR and X-ray
structures. The original NMR and X-ray structures were
energy-minimized using standard methods with AMBER
10.074 and parm99.43 The potential energy for the minimized
NMR structure was -4087.4 kcal/mol, and for the X-ray
structure was -4000.1 kcal/mol. These structures were used
as end points in NEB calculations.75-77 The initial NEB
pathway consisted of 16 NMR structures followed by 16
X-ray structures. Twenty-one NEB trajectories were calcu-
lated using a simulated annealing protocol and varying the
random number seed. The simulated annealing protocol
(Table S1, Supporting Information)78 involved quickly
heating the system to 1000 K, followed by slow cooling and
finally quenched dynamics to remove any remaining kinetic
energy from the system.

Targeted MD (TMD). TMD was used as implemented
in AMBER 9.050,51 to perform a forced conformational
transition between the NMR and X-ray structures. The NMR
structure was equilibrated using the standard protocol,20 and
then it was used as a starting point (reactant structure) and
the equilibrated E.c. X-ray structure of H40 as the end point
(target structure). The reaction coordinate was defined as the
RMSD of the internal loop (residues: 4-6, 13-15) between
the instantaneous reactant structure and the fixed target
(product) structure. Since the RMSD is dependent on a group
of atoms, which are used for the best fit to the target structure,
we ran two TMD simulations with different initial settings.
In the MD_TMD_1 simulation, modest positional restraints
(0.01 kcal ·mol-1 ·Å-2) were applied to terminal WC base
pairs (residues: 1, 2, 8-11, 17, 18), which were simulta-
neously used for the best fit. Simulation was carried out in 20

1-ns-long windows. In each window, the molecule was forced
to target RMSD, which gradually decreased (in each window
about ∼0.4 Å increment; Figure S3, Supporting Information).
In the MD_TMD_2 simulation, the positional restraints were
not used, and the best fit was carried out over the whole structure
(i.e., over residues 1-18). This simulation included only 10
1-ns windows where target RMSD gradually decreased by ∼0.4
Å increments (Figure S3, Supporting Information). Both
simulations were run in explicit solvent at 300 K using NPT
conditions. Control simulations for both MD_TMD_1 and
MD_TMD_2 were run with different random number seeds.
The force constant was set to 0.1 kcal ·mol-1 ·Å-2 in both
simulations. Apart from tracking the conformational transition,
we employed the weighted histogram analysis method79 (ver-
sion 1.0) to estimate the free energy profile of the conversion.
Note that targeted MD is substantially affected by the imposed
path80 such that any large-scale conformational changes like
those in refs 22 and 81 as well as in the present study should
always be reviewed carefully and only be viewed as crude
estimates of the real transitions.

Results

Standard MD Simulations. Geometry of the Ribosomal
H40 Relaxes in parm99 MD Simulations. Definitely the most
striking feature in the 350 ns MD_Ec_99 simulation was
considerable opening of the structure due to widening of the
major groove (Figures 1A, right, and 4A).

In the course of the simulation, the major groove width
was monitored by two interphosphate distances (11P-4P and
12P-3P; Figure 4A). In the time period from 0 to 30 ns,
the major groove width oscillated around 9 Å (Figure 4B);
then it rapidly increased up to ∼16 Å and oscillated around
this value until ∼100 ns (Figure 4B). In the 100-300 ns
time period, the major groove width fluctuated around 20 Å
(Figure 4B). The opening, which was also seen in other
simulations of X-ray H40, was coupled with the disruption
of the BPh interaction.49 The two noncanonical base pairs
of the internal loop showed instabilities during the simulation.
Particularly, opening events of both H bonds of the sheared
A/G pair were detected (Table 2).

Disruption of this pair was seen in the 133-297 ns time
period, during which the A6 base flipped out of the helix.
Changes were also detected for the rH U/A base pair. An
opening event and eventual disruption was seen for the
U(N3)-A(N7) H bond (Table 2). The cross-strand A5A14
stack exhibited fluctuations in the 0-100 ns time period;
however, in the rest of the simulation, it was essentially stable
(Figure 5).

Larger changes were found for the A5A6 intrastrand stack.
In the 0-100 ns time period, the A5 base alternatively
stacked between A6 and G13 and, afterward, established
stable stacking with G13 (Figure 5). The A15 bulge
fluctuated outside the helix over the whole simulation. Its
insertion into the stem was obstructed by A14, which was
involved in cross-strand stacking. The MD_Ec_99 simulation
was extended up to 350 ns. However, the canonical segment
(residues 7-12) including the sheared A6/G13 base pair was
disrupted at ∼300 ns (Figure S4, Supporting Information).

916 J. Chem. Theory Comput., Vol. 6, No. 3, 2010 Réblová et al.



Thus, the simulated structure was ultimately lost, and the
300-350 ns time period was not considered in our analyses.

The MD_Hm_99 and MD_Dr_99 simulations showed a
picture similar to the MD_Ec_99 simulation, that is, a marked

Figure 4. (A) Stereo view of the averaged 55-57 ns MD structure of the simulated X-ray H40 UAA/GAA internal loop from the
MD_Ec_99 simulation. The structure exhibits a wider (more open) major groove compared to the original geometry (see Figure
1A). Monitored interphosphate distances across the major groove are indicated by black (12P-3P) and red (11P-4P) arrows in
blue transparent boxes. (B) Time courses of two interphosphate distances (12P-3P in black and 11P-4P in red) in standard
MD simulations of X-ray H40 run with the parm99 force field and in control simulations run with the parmbsc0 force field, all with
net-neutralizing Na+ (Table 1). The x axis stands for time (in nanoseconds), while the y axis stands for interphosphate distance
(in angstroms). Horizontal lines show experimental distances. (C) Time course of two interphosphate distances (12P-3P in
black and 11P-4P in red) in a standard MD simulation of the NMR structure run with the parm99 force field and in a control
simulation run with the parmbsc0 force field.
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opening of the major groove (Figure 4B), fluctuation of the
A15 base outside the helix, instability of the two non-
Watson-Crick base pairs (Table 2), and changes in base
stacking (Figure 5). Hence, full description of these simula-
tions is given in the Supporting Information. In the MD_Tt_99
simulation, the major groove did not convert into a perma-
nently open conformation in contrast to the previous simula-

tions. The major groove width oscillated, and it was stabilized
by a temporarily formed X-ray G13(N1)-A5(O2P) H bond
(Figure 2). Apart from this contact, an additional H bond
formed between G13(N2) and A5(O2P), which however
oscillated in a larger range compared to the G13(N1)-A5
(O2P). This binding mode in which N2 and N1 of G bind to
the same anionic oxygen of the phosphate group represents

Table 2. Base Pairing Changes Detected in the Standard Simulations Performed with the X-Ray H40 UAA/GAA Structurea

sheared A/G pair reverse Hoogsteen U/A pair

simulation name A(N7)-G(N2), H bond A(N6)-G(N3), H bond U(O2)-A(N6), H bond U(N3)-A(N7), H bond

MD_Ec_99 75-78 nsoe 33-40 nsoe stable 89.2-90.1 nsoe

133-297 nsd 65-78 nsoe at 101d

133-297 nsd

MD_Ec_bsc0 f stable stable 18.5-23.2 nsoe

41.3-46.8 nsoe

at 65 nsd

MD_Hm_99 at 150 nsd 39-45 nsoe stable 56-81 nsoe

45-97f

97-109oe

150 nsd

MD_Hm_bsc0 1-5 nsoe f stable 5-15 nsoe

90-94 nsoe 26-37 nsoe

75-96 nsoe

MD_Dr_99 stable f stable at 7 nsd

MD_Dr_bsc0 stable f stable at 30 nsd

MD_Tt_99 63-65 nsoe 63-65 nsoe stable 70 - 122 nsoe

MD_Tt_bsc0 58-69 nsoe 58-69 nsoe stable 13-17 ns nsoe

24-32 nsoe

60-78 nsoe

83-96 nsoe

MD_Ec_K1 f stable 77-80 nsoe 4-22 nsoe

77-80 nsoe

96-98 nsoe

MD_Ec_K2 stable f stable 11-28 nsoe

MD_Ec_K3 stable stable stable 8-9 nsoe

16-20 nsoe

a oe, d, and f stand for temporary opening, disruption (until the end of the simulation), and considerable fluctuations, respectively.

Figure 5. (A) Time courses of the van der Waals interaction energy calculated between bases forming A5A6, A5A14, and
A5G13 stacks in the standard simulations of an X-ray H40 run with the parm99 force field. (B) Stereo views of the X-ray H40
UAA/GAA internal loop with colored bases forming stacks. (Top) The original stacking pattern highlighted by the black oval; that
is, A5 forms an intrastrand stack with A6 and, simultaneously, a cross-strand stack with A14. (Bottom) The stacking pattern
formed in the course of the simulations (highlighted by the black oval) where A5 stacks with G13 and also with A14.
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base phosphate interaction type 4BPh, which can be seen in
the E.c. X-ray structure of H40 (Figure 2). In the course of
the MD_Tt_99 simulation, the original 5BPh interaction thus
alternated with the 4BPh interaction. Both the intrastrand
and cross-strand stack fluctuated, but replacement of the
A5A6 stack by the A5G13 stack was not seen. Similarly to
the other simulations, instabilities of the two noncanonical
base pairs were detected (Table 2). Details of this simulation
are also indicated in the Supporting Information.

MD Simulations of the Ribosomal H40 with Mutated
Residues. The A5A14 cross-strand stack is likely key for
maintaining the stability of the X-ray loop. Thus, we carried
out the MD_A5U simulation with an A5U mutation aimed
at destabilizing this stack (Table 1). The simulation showed
expulsion of the uracil out of the stem and subsequent
stacking of the sheared pair and the rH pair. This caused
shortening of the helix by one base pair level and formation
of a more compact and presumably more stable structure.
This substitution apparently destabilizes the functional
structure of the UAA/GAN internal loop. Two additional
simulations, including the MD_A14U simulation with A14U
substitution and the MD_A14G_U4C simulation with A14G
and U4C substitutions (Table 1), did not show disturbance
of the cross-strand stacking, although instabilities of substi-
tuted base pairs were detected (data not shown). In the latter
simulation, we initially attempted to introduce a canonical
G14C4 base pair, but this base pairing was not stable in this
context.

EleVated Temperature and No-Salt Simulations of H40.
Both simulations performed at 400 K led to disruption of
the whole structure within the first 10 ns (data not shown).
During the first 5 ns of the no-salt simulation, the major
groove rapidly widened to 18 Å, and changes occurred in
the internal loop. In particular, the sheared A/G pair and the
rH pairs disrupted after 120 and 95 ns, respectively; however,
the A5A14 cross-strand stack remained stable, indicating that
this stack has considerable stability.

Geometry of the Solution Structure Is Stable in MD
Simulations. The MD_NMR_99 simulation of the NMR
solution structure is significantly more stable than that of
the X-ray structure (see low RMSD value in Table 1). The
major groove remained as wide as in the experimental
structure, and the interphosphate distances oscillated around
the starting values (Figure 4C). The sheared A/G and A/A
pairs were stable. It must be admitted that the experimental
structure was refined with the same force field, albeit using
500 K in vacuo annealing instead of using explicit solvent
at 300 K.

The peculiar cWS A/U base pair that is incomplete in the
NMR structure exhibits interesting behavior. Its presence
conflicts with secondary structure predictions that would
place a Watson-Crick base pair there. In addition, the
Watson-Crick A-U base pair would be achievable from
the incomplete cWS starting geometry by a modest rear-
rangement. This base pair may be essential to understanding
the internal loop. The simulation reveals that the incomplete
cWS base pair is in fact water-bridged, as its sugar-base
A15(N1)-U4(O2′) interaction is mediated by water, a
substate not apparent from the classification by Leontis and

co-workers.6 The bridging water molecules do not show
anomalously long residency times82 and exchange typically
on the time scale of hundreds of picoseconds. Further
development of the trajectory revealed two alternative
geometries. In the 0-47 ns and 130-160 ns time periods, it
was seen in the starting geometry, but it assumed a standard
Watson-Crick (cWW) conformation in the rest of the
simulation. It never sampled geometry with a fully completed
cWS base pair with direct A15(N1)-U4(O2′) H bond.
Therefore, the simulation appears to be consistent with the
unusual experimental structure, albeit perhaps subtly biased
toward canonical pairing. Note that very small bias of the
force field (in terms of free energy) would be sufficient to
change the balance between these two substates if they are
close in energy. Thus, the simulation behavior does not
indicate any large imbalance of the force field.

In the MD_NMR_restr simulation, we imposed a direct
A15(N1)-U4(O2′) H bond in the cWS A/U base pair via a
restraint. At 10 ns, the restraint was released, after which
the H bond changed immediately to the water-mediated bond.
This is another indication of the overall (qualitative) cor-
rectness of the force field, which clearly eliminates the fully
paired cWS structure, in line with the experiments. This
reflects very good balance of the AMBER force field for
stacking interactions and noncanonical RNA base pairing.83,84

At 17 ns, the base pair adopted standard cWW geometry,
which was stable until the end of the simulation.

MD Simulations of H40 with parmbsc0 Are Similar to
the Simulations with parm99. The 100 ns control simulations
of the ribosomal H40 run with the parmbsc0 force field44

(Table 1) showed similar albeit reduced widening of the
groove relative to that of the corresponding parm99 simula-
tions (cf. Figure 4B). However, the A5A6 and A5A14 stacks
were not disrupted in three out of four simulations (cf. Figure
4B, top). Full details are given in the Supporting Information.
The control simulation of the solution structure with parmb-
sc0 (MD_NMR_bsc0, see Table 1) provided an identical
picture to that of the MD_NMR_99 simulation (Supporting
Information and Figure 4C).

MD Simulations of H40 in Excess of KCl. In the simula-
tions carried out with an excess of KCl (MD_Ec_K1-3,
Table 1), instabilities in base pairing were mostly seen for
the U(N3)-A(N7) H bond of the rH pair, in agreement with
the parm99 Na+ simulations (Table 2). However, the two
stacks (A5A6 and A5A14) were stable similarly to the
parmbsc0 force field simulations.

In the MD_Ec_K1 simulation (KCl, Dang’s parameters
and parm99, see Table 1), the opening of the major groove
was reduced by ∼4 Å compared to the parm99 Na+

simulation (Figure S5, Supporting Information). In the
MD_K2 simulation (KCl, Dang’s parameters, parmbsc0) and
in the MD_K3 simulation (KCl, Joung’s parameters and
parm99), the widening of the major groove coupled with
disruption of the BPh G13(N1)-A5(O2P) contact was only
seen during the first 18 and 30 ns, respectively (Figure S5,
Supporting Information). After that, we observed narrowing
of the major groove and restoration of the X-ray BPh H bond,
in a form of the bifurcated G13(N1, N2)-A5(O2P) 4BPh
interaction. This H bond was seen in the MD_Tt_99
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simulation (see above). In addition, in the MD_Ec_K3
simulation, the structure expelled the unpaired A5 base from
the stem at 23 ns, which was accompanied by subsequent
stacking of the sheared pair and the rH pair. A similar event
has been detected in the net-neutralizing Na+ simulation with
A5U mutation (see above).

The MD_NMR_K simulation provided a picture close to
identical to the MD_NMR_99 simulation. Similarly to the
MD_NMR_bsc0, subtle compaction of the major groove by
∼1 Å compared to the parm99 result was detected (Figure
S5, Supporting Information). The sheared A/G and A/A base
pairs were stable. The A/U base pair showed the starting
geometry until 70 ns, while after 70 ns it converted to the
canonical cWW conformation.

MD Simulation of the H68 X-Ray Structure ConVerts to
the Solution Structure. In the simulation of the ribosomal
H68 (MD_H68), the widening of the major groove was also
detected (Figures 1B right and 6A), similarly to the H40
simulations (see above and Figure 4).

The interphosphate distances quickly increased up to 20
Å and then fluctuated around this value (Figure 6B). At the
beginning of the simulation, a single H bond (A(N6)-G(N7))
formed between A6 and G13 bases, and it was stable until
the end of the simulation. This pairing does not correspond

to any established base pair family.6 Around 30 ns, the
middle stacking adenines A14 and A5 formed a sheared pair,
and the A15 and U4 bases formed a cWS pair with one direct
bond (A(N6)-U(O2)) and one water-mediated bond (A(N1)-
U(O2′); Figure 6C). Both of these pairs occur in the solution
structure (Figure 1C). The sheared pair was stable by the
end of the simulation, while the cWS pair alternated with
the cWW geometry, similarly to the simulations of the
solution structure (see above). The cWS geometry was seen
in the time periods of 30-45 and 52-57 ns, and the cWW
geometry in the time periods of 45-52 and 57-100 ns.
Importantly, the final transformed H68 geometry is very close
to the solution structure, with a RMSD of only 1.6 Å (Figure
S6, Supporting Information). The solution structure A6/G13
base pair was, however, not formed. This is due to the fact
that G13 in the X-ray structure is in unusual syn conforma-
tion. The simulation was not long enough to flip the G13 to
the anti conformation, which would lead to entire agreement
with the NMR structure. In fact, it cannot be ruled out that
the initial G13 syn conformation is an experimental refine-
ment error. In the RNase P RNA X-ray structure, the
equivalent guanine is indeed in anti orientation. We have
attempted three 150 ns simulations (two with parm99 and
one with parmbsc0, data not shown) where the G13 was

Figure 6. (A) Stereo view of the snapshot structure of the H68 UAA/GAA internal loop from the MD_68 simulation at 5 ns. The
structure exhibits a wider (more open) major groove compared to the original geometry (see Figure 1B). (B) Time courses of
two interphosphate distances (12P-3P in black and 11P-4P in red) along the MD_68 simulation. (C) Stereo view of the snapshot
structure of the H68 UAA/GAA internal loop from the MD_68 simulation at 40 ns with formed sheared A14/A5 and cWS A15/U4
pairs, which are highlighted in the color transparent boxes. This structure closely resembles the NMR structure.
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initially flipped to anti. These simulations, however, did not
reveal larger transitions toward the solution structure. It may
reflect both a stabilizing effect of the initial G13 anti
conformation as well as sampling limitations. Despite this,
we still consider the above-analyzed MD_H68 simulation
as a solid piece of evidence of the tendency of the X-ray
structure to convert spontaneously to the solution structure,
which is also supported by the free energy computations (see
below).

LES Simulations of the Ribosomal H40. The aim of the
LES simulations was to achieve transition from the X-ray
H40 structure to the NMR structure, which did not occur in
multiple standard simulations. The solution structure internal
loop arrangement was sampled only in two LES simulations,
which are described below. Other LES simulations are
presented in the Supporting Information.

In the first 12 ns of the LES_Ec simulation (Table 1), the
original X-ray base pairing of the internal loop was disrupted
and the major groove width increased to ∼20 Å. In the
12-40 ns time period, the “multiplied” bases of the internal
loop (nucleotides involved in LES) adopted various rapidly
changing arrangements and did not form stable base pairs.
At 41 ns, G13 and A6, A14 and A5, and A15 and U4 became
coplanar (Figure 7), which markedly resembled the solution
structure (Figure 1C).

However, the LES bases failed to establish stable pairs.
This “NMR-like” arrangement was maintained in the rest
of the simulation except for several short disruptions. We
started standard MD simulation from this “NMR-like”
geometry (see Table 1). After 40 ns, single H bonds formed
between G13 and A6, and between A14 and A5; however,
the A15 and U4 bases were expelled from the stem. After
70 ns, the internal loop was disrupted, resulting in disturbing
of the whole structure (data not shown).

During the first 5 ns of the LES_Dr simulation (Table 1),
internal loop base pairs were disrupted and the width of the
major groove increased to ∼20 Å, similar to the LES_Ec
simulation. At 7 ns, the bulging A15 base flipped into the
stem, and during the 10-12 ns time period, the LES bases
formed an arrangement where G13 and A6, A14 and A5,
and A15 and U4 were coplanar, like in the LES_Ec

simulation (Figure 7). In the 12-40 ns time period, the LES
bases sampled various unstable arrangements (data not
shown). Thus, in summary, LES may show some signs of
the transition, but no complete transition was achieved.

Free Energy Calculations. Figure 8 summarizes the MM-
PBSA free energy calculations for the parm99 simulations
of the UAA/GAN internal loop X-ray and NMR structures.

For H40 simulations, the initial rapid expansion of the
major groove (Figure 4) is accompanied by a free energy
drop of about 3-6 kcal/mol (Figure 8). The total free energy
time course of the H68 loop simulation revealed two marked
decreases of free energy. The first one (by ∼10 kcal/mol)
can be seen after the first 5 ns, and it corresponds to the
rapid expansion of the major groove (Figure 6B), similarly
to the H40 total free energy time courses. The second one
(by ∼12 kcal/mol) can be seen around 30 ns and it corre-
sponds to the transition of the 2D structure (i.e., formation
of the sheared A/A and cWS A/U base pairs, see above).

Comparing the averaged total free energies for the 1-100
ns time periods, the NMR structure is predicted to be more
stable than the X-ray H40 structure by about 17 kcal/mol
(E.c. H40 simulation), 19 kcal/mol (H.m. H40), 11 kcal/mol
(D.r. H40), and 18 kcal/mol (T.t. H40). The solute entropic
term favors the X-ray structure by ∼4-5 kcal/mol, which
is consistent with the expectation that the X-ray structure is
intrinsically less rigid in isolation. The H68 after the
transition (since ∼30 ns) is on average by ∼5 kcal/mol more
stable than the NMR structure. With exclusion of the entropic
term, the averaged free energies of final H68 and NMR
structures would be identical. In summary, the free energy
computations give a clear hint that the NMR structure of
the UAA/GAN internal loop is indeed intrinsically more
stable than the X-ray H40 and H68 structures, albeit the
energy difference is probably overestimated as usual with
this kind of highly approximate free energy calculation. Note
that the free energy computations should in no case be taken
quantitatively, despite abundant such attempts in the con-
temporary literature.

We have further tested an alternative potential of mean
force method of free energy computations which was recently
used for 16S ribosomal decoding bases 1492 and 1493.85

We could not use it for the transition between X-ray and
solution structures, as we did not see a full transition.
However, we used the method to investigate the free energy
basin around the H40 X-ray structure while comparing
sampling with the parmbsc0 and parm99 force fields. The
results are in full detail in the Supporting Information.

NEB and TMD Reveal a Possible Pathway for the
Transformation between the NMR and X-Ray H40
Structures. The NEB calculations provide a 32-image
pathway where the end points are fixed conformations, with
the first image being the energy-minimized NMR structure
(Figure 9A) and the final structure being the X-ray structure.

Observations of all pathways reveal that they pass through
similar intermediates. Potential energy profiles for the
pathways also are similar (Figure S7, Supporting Informa-
tion). The pathways involve a particular order of structural
events. First, A14 breaks its pairing with A5 and moves away
from being stacked with A6 and A15 (Figure 9B). A15 slides

Figure 7. The 3D stereo view of a snapshot of the UAA/
GAA structure from the LES_Ec simulation with multiple
copies of nucleotides in the internal loop (LES region). The
structure resembles the solution structure (Figure 1C); that
is, it has a wide major groove and coplanar A6 and G13 (red),
A5 and A14 (blue), and U4 and A15 (green) bases.
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rapidly out of the helix to become the bulged A15 observed
in the X-ray structure. A14 moves to pair with U4 as soon
as A15 is out of the way and stacks with G16 (Figure 9C).
A5 is left unpaired and loses its stacking interaction with
U4 to end up hovering over the pairing region of the
U4-A14 pair. A5 also shifts further from G13 to become
stacked with A6 (Figure 9D) and forms a hydrogen bond
with the backbone of the opposite strand, as it is no longer
base-paired.

The potential energy profile is a plot of the potential energy
for each of the 32 images along the pathway (Figure S7,
Supporting Information). The potential energy difference
between the product and reactant structure, 87 kcal/mol, is
large compared to the above-noted free energy differences.
Note that the NEB potential energy does not include the
entropic effect of conformational freedom, and it would
require a sampling method such as umbrella sampling to
relate the NEB potential energy to free energy.

The NEB calculations were run from the NMR structure,
which turned out to have the lowest potential energy, to the
high-energy X-ray structure. All pathways start with a slight
increase in potential energy to about -4060 kcal/mol and
remain there until the last few images, where there is a
sudden increase in energy to the X-ray structure. There is
variation in the slight peaks and valleys throughout the region
where the potential energy is about -4060 kcal/mol, but no
clear or consistent transition states or intermediates are
observed for the 21 NEB pathways. In summary, the limited
variation between NEB trials suggests that the conformational
change occurs using a single predominant pathway (Figure
9). There is some minor energetic variation as the balance

of molecular forces is slightly different for the different
pathways, as indicated by the occasional and inconsistent
energy minima and maxima in the potential energy profile.

The conformational transitions between NMR and X-ray
structures obtained from the TMD simulations are basi-
cally identical to the NEB data (Figure 9). In the 20-ns-
long MD_TMD_1 simulation, the conversion started at
11 ns (Figure S3, Supporting Information) with disruption
of the sheared A14/A5 pair, similar to the NEB result,
followed by disruption of the cWS A15/U4 pair. Then,
the A15 base bulged out of the helix, and the A14 base
moved by one base in the strand and created a pair with
U4. The A5 base remained unpaired and formed a stack
first with G13, and then it moved and stacked with A6.
In the MD_TMD_2 simulation, the transition started
directly with disruption of the A15/U4 base pair. Other-
wise, the transition was identical to the MD_TMD_1
simulation. Additional control simulations revealed identi-
cal pictures to the MD_TMD_1 and MD_TMD_2 simula-
tions (data not shown). The energy profiles extracted from
the MD_TMD_1 and MD_TMD_2 simulations indicate
that the X-ray geometry of the H40 UAA/GAN internal
loop has about 30 kcal/mol higher free energy than the
NMR structure (Figure S3, Supporting Information).
However, the extracted energies must be taken with care
because step changes in the RMSD profiles (mainly in
the MD_TMD_2 simulation) can be seen (Figure S3,
Supporting Information). This indicates insufficient over-
lap between windows in these regions, which may bias

Figure 8. Total free energy time courses in standard net-neutralizing Na+ simulations with the parm99 force field. The x axes
stand for time (in nanoseconds), while the y axes stand for total free energy (in kcal/mol). The gray vertical dashed lines mark
the time period when initial opening of the major groove was observed. In the MD_Tt_99 simulation, the major groove oscillated
back and forth with the gray lines indicating the first opening. In the time course of the MD_H68 simulation, the vertical black
dashed lines indicate the time period when the sheared A/A and cWS A/U pairs formed.
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the potential.86 The trend in the free energy is, however,
entirely consistent with the MM-PBSA and NEB data.

Discussion and Conclusions

We employed MD methods to investigate the highly
conserved UAA/GAN internal loop of 23S rRNA H40
(Figure 1),5 which also occurs in six other 23S rRNA helices
and in other RNAs.5 It consists of rH U4/A14 and sheared
A6/G13 base pairs interconnected via an unpaired A5 base
by two stacks, the A5A14 cross-strand stack and the A5A6
intrastrand stack, as well as a bulged N15 base (Figure 1).
The UAA/GAN internal loop in the ribosomal structure has
a narrow major groove and wide minor groove (Figure 1).
This functional conformation is involved in tertiary contacts
with surrounding ribosomal elements that drastically rear-
range the base pairing and stacking of the loop compared to
its solution structure.13 These contacts include involvement
of conserved adenines in A-minor interactions (Figure 3).

The solution structure contains three noncanonical base
pairs (the A6/G13 sheared pair, the A14/A5 sheared pair,
and the cWS A15/U4 pair) with no unpaired base. The cWS
A15/U4 base pair observed in the NMR structure is surpris-
ing because secondary structure predictions posit a canonical
A-U base pair at this position. In addition, the cWS A15/
U4 pair is incompletely paired.

We studied the H40 UAA/GAN internal loop taken from
available X-ray bacterial and archaeal 50S subunits along
with the NMR solution structure13 (Table 1, Figure 1, and
Figures S1 and S2, Supporting Information). Furthermore,
we investigated the less frequent UAA/GAN geometry from
23S rRNA H68, which adopts yet another (alternative) 2D/
3D arrangement (Figure 1). Therefore, the UAA/GAN
internal loop is an RNA molecular switch that has functional
geometry in folded RNAs that differs from its optimal
geometry in isolation.

H40 UAA/GAN Basic Simulations. Unrestrained explicit
solvent MD simulations revealed relaxation of the X-ray H40
UAA/GAN internal loop on a scale of tens of nanoseconds.
In particular, considerable expansion of the major groove
width from the original value of 6-8 Å up to 16-22 Å was
detected, coupled with disruption of the X-ray base-phosphate
interaction across the major groove (Figures 2 and 4).
Further, widening of the major groove was accompanied by
replacement of the X-ray A5A6 intrastrand stack by a new
A5G13 stack (Figure 5). The newly formed stack was
probably more compatible with the wide major groove than
the original X-ray one. The relaxed X-ray geometry (Figure
4A) partially resembles the solution structure with its wide
major groove with a width of ∼17 Å (Figures 1 and 4).
However, the open conformation of the solution structure

Figure 9. The 3D stereo view of structures showing the conformational transition between NMR and X-ray structures predicted
by NEB calculations. G13 is highlighted in red, A6 in green, A14 in blue, A5 in yellow, A15 in magenta, and U4 in cyan. (A)
Starting NMR structure. (B) Intermediate structure where the A14/A5 pair breaks and moves away from being stacked with A6
and A15. (C) Intermediate structure where A15 slides out of the helix to become bulged out. (D) Final structure where A14 pairs
with U4 while A5 is unpaired and stacks with A6. This structure corresponds to the arrangement of the H40 X-ray structure.
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may be a result of the NMR refinement procedure, which
utilizes NMR-restrained molecular dynamics and energy
minimization13 because the NMR experiment does not
provide precise structural information about the sugar
phosphate backbone. Further, all standard simulations of the
X-ray H40 UAA/GAN exhibited opening events and fluctua-
tions of base pairs in the internal loop (Table 2). Irreversible
disruptions of H bonds were also detected in these pairs
(Table 2). The increased dynamics of the sheared A/G pairs
can be because of the large number of potential hydrogen
bonds which cannot all be made simultaneously, which was
proposed in an NMR study of GNRA hairpin loops.87

Despite such dynamics and changes, the overall X-ray H40
secondary structure of the internal loop was maintained in
the simulations; that is, the base pairing does not spontane-
ously rearrange toward the solution structure. Occasionally,
in some long simulations, the structure was ultimately
disrupted.

The cross-strand A5A14 stack shows only modest fluctua-
tions in our simulations in comparison with the intrastrand
A5A6 stack and may be one of the key stabilizing elements
of the X-ray secondary structure. It has been suggested13

that the cross-strand stack allows base pairing of A14 and
U4 and additionally compensates for H bonds lost between
A15 and U4 and between A14 and A5. We attempted to
disrupt the cross-strand stack in the simulations with several
mutations (A5U, A14U, and A14G together with U4C, Table
1). The first substitution led to expulsion of the U5 from the
stack and subsequent substantial rearrangements, hinting at
the key role of A5 not only for the tertiary interactions but
also for the stability of the functional X-ray structure of the
UAA/GAN loop. The other substitutions had an inconclusive
impact on the simulations. Likewise, simulations at elevated
temperature and assuming no-salt conditions did not provide
any insights into the properties of the UAA/GAN internal
loop.

H68 Simulations. In the standard simulation of the
ribosomal H68 UAA/GAA loop, we observed a large
spontaneous transition clearly toward the solution structure
(Figure S6, Supporting Information), except that the A6 and
G13 bases did not form any classified base pair, which
probably relates with the initial syn orientation of the G13
base. The simulation was not able to overcome this initial
syn orientation.

Solution Structure. Simulations of the solution UAA/
GAN loop structure were stable (Table 1). The wide major
groove remained unchanged, and the base pairs of the loop
were stable except for fluctuations of the A15/U4 base pair.
In particular, the experimental cWS A15/U4 base pair is
stabilized by only one direct H bond, despite the fact that
two direct bonds are assumed by standard classification.6 The
simulations reveal that there is an additional stabilizing
interaction in this base pair, namely, a sugar-base water
bridge. In the simulations, this partially paired base pair
alternates with the canonical (cWW) geometry expected from
thermodynamic considerations,88,89 but not indicated by the
NMR experiment.13 On the other hand, a fully paired cWS
A15/U4 base pair never formed in the simulations and was
immediately disrupted even when initially imposed by

restraints, entirely in agreement with NMR. Thus, simulations
of the NMR structure of the UAA/GAN internal loop indicate
a satisfactory performance of the simulation force field, albeit
the balance of the simulation might be subtly shifted toward
formation of the canonical A15-U4 base pair. We suggest
that the solution structure of the UAA/GAN internal loop
represents an interesting test molecule for verification of
simulation methods and force fields.

Structural Plasticity of the UAA/GAA Internal Loop. To
obtain additional insights, we applied a range of auxiliary
methods that can enhance the capabilities of standard simula-
tions. Note, however, that all of these methods necessarily
introduce additional approximations and are thus inherently less
reliable than standard simulations. The LES technique was
applied to enhance sampling of bases in the X-ray H40 loop.
All of the LES simulations revealed widening of the major
groove and disruption of the internal loop. The internal loop
adopted various arrangements where bases involved in the LES
region mutually stacked or formed temporary contacts. How-
ever, LES was not robust enough to converge into a stable
prevalent conformation. Occasionally, the bases formed a
secondary structure arrangement similar to the solution con-
formation (Figures 1 and 7), although no stable base pairing
was established.

Total free energies were extracted from the standard
simulations utilizing the MM-PBSA method. Free energy
time courses along the UAA/GAN H40 X-ray loop trajec-
tories showed a ∼3-6 kcal/mol free energy improvement
during the significant 10-15 Å increases in the major groove
width (see Figures 4 and 8). Furthermore, MM-PBSA data
predicted the free energy of the X-ray H40 UAA/GAN
internal loop structure to be ∼10-20 kcal/mol less favorable
compared to the NMR structure. A previous experimental
study13 predicted the internal loop of the NMR structure to
be favorable by ∼5 kcal/mol when compared to the X-ray
H40 functional structure. This estimate was based on an
experimental measurement of free energy of the internal loop
in the solution structure and a prediction of free energy of
the X-ray ribosomal internal loop utilizing a nearest neighbor
model.89,90 Thus, the free energy calculations identify the
correct trend but do not reach quantitative accuracy.

The conformational transition between NMR and H40
X-ray structures was investigated by the NEB and TMD
methods. Results are mutually consistent. The conversion
could start with breaking the sheared A14/A5 pair. This is
in accord with the NMR study,13 which suggested structural
dynamics of the A5 base and proposed that the dynamics
may provide a pathway for conformational conversion. The
transition continues with disruption of the cWS A15/U4 pair
and bulging out of the A15 base, and eventually formation
of the rH U5/A14 pair, the A5A6 stack, and the cross-strand
A5A14 stack (Figure 9). Calculations thus predict a likely
mechanism for rearrangement of the solution conformation
into the functional “ribosomal” X-ray geometry. In the
ribosome, the conversion could be induced by an adjacent
rRNA (hairpin structure between H39 and H40) and ribo-
somal protein L20, which binds E.c. 23S rRNA at an early
stage of ribosomal assembly.91 The presence of two single
H-bond pairs, the sheared A/A and cWS A/U pairs, in the
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internal loop of the solution structure suggests that the loop
structure may be internally weak and easily disrupted by
external forces. The weakness of the pairing in the solution
structure, which is the global minimum of the UAA/GAN
internal loop, may be one of the important prerequisites for
its smooth transition to the functionally important substate.
This may contribute to determination of the consensus
sequence of the UAA/GAN internal loop whose sequence
signature is otherwise primarily determined by the X-ray
architecture and the tertiary interactions it is involved in.

Force Field Choice. We see a modest difference between
the parm99 and parmbc0 force fields, but this does not affect
any key conclusions of the paper. Overall, the control MD
simulations carried out with the parmbsc0 force field44

provided a similar picture as the simulations run with
parm9943 (400 ns of comparable trajectories for the H40
initial structure). Nevertheless, in simulations of the riboso-
mal H40, the major groove width was reduced by 2-4 Å
when using parmbsc0 compared to parm99 simulations
(Figure 4). In the simulation of the solution structure, the
major groove width was reduced only by 1 Å. There are
two competing R/γ backbone substates, canonical geometry
and t/t conformation (two established A-RNA families, 20
and 24).92 During the 100 ns portion of the E.c. parm99
simulation, we detected a 17% population of nucleotides in
the R/γ t/t conformation while the t/t flips are reversible.
This is comparable with the 10-15% population reported
in the MD study of 16S rRNA H44 and canonical A-RNA.36

In contrast, the γ-trans states are fully suppressed using the
parmbsc0 force field. The suppression of the γ-trans substates
allows the major groove narrowing. As the R/γ t/t substate
occurs occasionally also in experimental structures and is
compatible with overall A-RNA topology, both force fields
have satisfactory performance, despite the above-noted
difference. The actual propensity of A-RNA to populate the
R/γ t/t substates is likely in between the parm99 and
parmbsc0 propensities, while the overall difference between
the two force fields is, for the present RNA system, small.

In the excess salt KCl simulations, the major groove width
was also reduced compared to the net-neutralizing Na+

simulations (by ∼2-4 Å for the H40 structure). In addition,
in some KCl simulations, the major groove after the initial
widening returned to the closed X-ray conformation stabi-
lized by the BPh interaction. We suggest that the results are
explained by better screening of the phosphates with a higher
ionic strength, which allows their closer approach across the
groove. Thus, the stability of the functional H40 conforma-
tion may be affected by ionic conditions or other interactions
reducing the interphosphate repulsion.

Which of the force field options is better? The answer is
not unambiguous. The simulations clearly show a tendency
of the major groove to widen for the UAA/GAA internal
loop when it is taken out of its ribosomal context. We earlier
reported widening of the major groove width for the 5S
rRNA loop E in parm99 Na+ simulations. Loop E is an
internal loop with seven consecutive noncanonical RNA base
pairs. Shorter, ∼10 ns, trajectories gave increases in the P-P
distances for the 5S rRNA loop E system by only a few
angstroms compared to the X-ray structure.82 In contrast to

H40, however, loop E is in its global minimum in its X-ray
structure. All of these results may give an impression that
simulations tend to overshoot the RNA major groove width.
This effect is larger with parm99 than with parmbsc0 and
can be reduced by using excess salt conditions instead of
net-neutralization. Our very recent reference simulations on
canonical A-RNA,93 however, show that the picture is more
complex. These reference simulations also usually show a
tendency for widening of the major groove in simulations
compared to the X-ray structures, which is larger with the
parm99 than with the parmbsc0 force field. These simula-
tions, however, also show that the A-RNA major groove
width and its relaxation depend on the base sequence and
are different for different X-ray structures. Therefore, there
is no unambiguous experimental target value of the major
groove width, as the experimental values depend on the
sequence and crystallization conditions. In some cases,
parm99 with net-neutralization can remain closest to the
experimental structures. Therefore, the right interpretation
is that the RNA major groove width is sensitive to the
sequence, environment and molecular interactions and the
simulations reflect this groove width plasticity. We suggest
that all force field options utilized in the present study are
justified for RNA simulations. Nevertheless, RNA simula-
tions can perhaps indirectly profit from the parmbsc0 force
field choice, since its tendency to keep the major groove more
closed may reduce the likelihood of irreversible structural
disruptions during some large temporary major groove width
fluctuation events. On the other hand, the parmbsc0 force
field appears to somewhat rigidify the simulated structures
compared to parm99, as evidenced by less frequent changes
of the adenine stacks (see above). We cannot tell, however,
whether this behavior is an improvement or not compared
with the parm99 force field.

The H40 UAA/GAA simulations further show some local
instabilities, and some long simulations result in an entire loss
of the X-ray structure topology for the UAA/GAA internal loop
without approaching closer to the solution structure. Develop-
ment of the simulations on a much longer time scale is thus
uncertain. The perturbation may either reflect the genuine
internal instability of the functional (ribosomal) structure of
UAA/GAA when considered in isolation or it may be an
accumulation of force field imbalances in our long simulations.
Most likely, both factors contribute.

Concluding Remarks. The simulations provide atomistic
characterization of the structural dynamics of the UAA/GAA
internal loop in three distinct experimental topologies. The
simulations appear to be consistent with experimental data
and give new insights. Our study is probably the first
simulation study of a recurrent RNA non-Watson-Crick
element that is not autonomous; that is, it folds only in
specific contexts. The H40 simulations do not spontaneously
transform to the solution (ground state) structure, and such
transition is probably beyond the limits of contemporary
computational chemistry. However, almost complete trans-
formation was seen for the alternative H68 X-ray structure.
Methods like TMD or NEB can achieve transformation
between the H40 and solution UAA/GAA topologies;
however, they impose an artificially selected path and require
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a priori knowledge of both the starting and final structures.
Free energy computations can provide some very crude
estimates of the free energy trends but are probably far from
reaching even qualitative accuracy.

The results suggest that the H40 and H68 internal loops
are under stress due to tertiary and quaternary interactions,
and that H68 can relax to its conformation in isolation much
faster than H40 if the interactions with its surroundings are
relieved or altered. Thus, the MD results suggest that the
different structures induced by tertiary and quaternary
interactions may also have implications for the temporal
control of events. Both the MD and NMR results indicate
that there is no significant population of higher free energy
structures in isolated RNA. This suggests that the approach
of other parts of the rRNA or of protein induces a confor-
mational change rather than trapping a minor species. This
type of conformational switch may be important for assembly
or movement in molecular machines such as the ribosome.
We demonstrate that, despite the above-explained limitations,
modern MD-based computations can complement experi-
mental techniques and provide insights into the role of
molecular interactions in shaping RNA building blocks.
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Abstract: The effects of hydration on the lowest triplet states of the DNA/RNA pyrimidines
have been studied by including one and two water molecules explicitly. Three configurations
for the singly hydrated cytosine moiety were located, and six for the doubly hydrated system.
For thymine and uracil, four singly and eight doubly hydrated structures were found. The
singlet-triplet energy gaps of all three pyrimidines (cytosine, thymine, and uracil) fall in the
low-energy range of ultraviolet radiation (UVA). Energetic excited states can be a step leading
to lesions in DNA, such as a mismatched base pairs. Although the adiabatic and vertical electronic
excitation energies for all three pyrimidines slightly increase upon inclusion of additional water
molecules, this effect upon the excitation energies is much smaller than hydration effects upon
the electron affinities and ionization energies of the three nucleobases. Because both the ground
state and the triplet state are neutral, the hydration energy difference between the two states is
not significant (compared to those between the neutral and charged species), making the
excitation energy less sensitive to hydration.

Introduction

Growing concern for the effects of radiation damage on living
cells has motivated the study of various mechanisms of such
damage on the molecular scale. Radiative damage to DNA
can occur both through direct ultraviolet (UV) exposure, or
indirectly, as a result of interaction with reactive products
(often reactive oxygen-containing radicals) created by radia-
tion damage to other nearby molecules. Helpful reviews
describing the effects of UV light on DNA have recently
appeared.1,2

An example of a directly UV-induced photoproduct, the
cyclobutane pyrimidine dimer (CPD) has been known and
studied for nearly half a century.3 CPDs are the primary
photoproducts of DNA UV damage,1,4,5 and can result from
exposure to UVA and UVB light.6,7 A majority of UV-
induced mutations occur due to the formation of CPDs;5,8

they are mutagenically effective due to their slow rate of
repair and high rate of bypass by nucleic acid polymerases9,10

(the cell’s mechanism for repair to damaged DNA), thus
allowing their persistence in the genome. Although many

vertebrates such as fish, reptiles, and marsupials have an
alternative repair mechanism involving photolyases,11-16

which reverse the CPD lesion to two pyrimidine monomer
units using visible light, it is believed that placental mammals
including humans do not have this enzyme.16-19 Formation
of CPDs is sequence-specific,6,20,21 and various combinations
of pyrimidines [usually thymine (T) and cytosine (C)] can
arise, including T-T, C-T, and C-C dimers. Especially after
exposure to UVA radiation, the most common CPD produced
is the T-T dimer.5,6 Various experimental and theoretical
studies have shown that it is formed through an ultrafast
triplet-energy exchange,5,22,23 for which a mechanism has
recently been proposed.24 Hence it is important to understand
the configurational changes within the pyrimidines that result
from excitation, leading to the formation of CPDs and other
photoproducts.

The singlet-triplet energy separations (gaps) of the
pyrimidines fall well within the UVA absorption range
(cytosine: 3.50 eV,25 uracil: 3.65-3.68 eV,26,27 thymine: 3.6
eV28). For all of the pyrimidines, the lowest-lying excited
states are triplets; the excited singlets lie higher energetically
(at ∼4 eV).29,30 Using electron energy loss spectroscopy* Corresponding author e-mail: sch@uga.edu.

J. Chem. Theory Comput. 2010, 6, 930–939930

10.1021/ct900478c  2010 American Chemical Society
Published on Web 02/03/2010



(EELS), Abouaf, Pommier, and Dunet determined the
singlet-triplet energy gap of thymine to be 3.6 ((0.08) eV.28

The same group later measured the singlet-triplet energy
gap of cytosine at 3.50 eV25 and uracil at 3.65 ((0.05) eV.31

A recent study by Bosca et al.32 has also delivered an
estimate of the adiabatic triplet excitation energy of thymine
in DNA of ∼2.8 eV. Recent DFT computations by Nguyen
and co-workers are in good agreement with experimental
results.31 Although hydration plays an important role in
biological systems, few studies have explored the hydration
effects on the triplet excited states of the DNA/RNA
nucleobases.33

Much work has been done on the hydration of nucleobases
in their ground states. Over the years, many studies have
detailed the effects of discrete and continuous hydration of
the DNA/RNA nucleobases34-44 as well as studies focusing
specifically on cytosine,45-58 uracil,59-73 and thymine.74-76

In the present work, hydration effects on the lowest triplet
states of the three pyrimidine nucleobases have been studied
using density functional theory. In particular, structural
changes, changes in the triplet excitation energies upon
hydration, sites favoring hydration, and hydration energies
are reported.

Computational Methods

All computations were performed using the Gaussian 94
computational chemistry software package.77 Only com-
plexes of the canonical forms of the pyrimidines (Figure 1)
were considered, with the water molecules hydrogen bonded
in the plane of the molecule. A search was carried out for
new monohydration sites for the triplet state of the three bases
including nonplanar complexes, in which a water molecule
may interact with the aromatic π-system of the pyrimidine
ring, but none were encountered.

For all computations, a specially calibrated double-�
quality basis set with polarization and diffuse Gaussian
functions (DZP++) was used. This basis set is constructed
with the Huzinaga-Dunning sp contractions, adding one set
of five d-type polarization functions for each C, N, and O
atom, and one set of p-type polarization functions for each
H atom.78,79 Lee’s prescription,80

determined the even-tempered orbital exponents (R1 < R2 <
R3), with the final DZP++ basis set containing six functions
per H atom and 19 functions per C, N, and O atom. When
tested, the use of a similar triple-� quality (TZ2P++) basis
set afforded no significant change in results for several times
the computational cost, so it was not further employed.
Structural optimizations and harmonic frequency analyses
for each base and its corresponding mono- and dihydrates
were obtained using the B3LYP density functional, a
combination of Becke’s three-parameter functional (B3),81

with the correlation functional of Lee, Yang, and Parr
(LYP).82 The self-consistent isodensity polarized continuum
model (SCIPCM)83 was employed to take into account the
effect of macrosolvation upon the energetics of the pyrimi-
dine hydrates. The SCIPCM single point energies at their
optimized gas-phase geometries were computed at the
B3LYP/DZP++ level of theory, with the dielectric constant
of water (ε ) 78.39) and the isodensity value of 0.0001.

In the present work, we estimated physical properties of
interest as follows: the vertical excitation (VEx) energy is

Table 1. Relative Energies (Erel) in kcal mol-1 for Singly
and Doubly Hydrated Uracil, Thymine, and Cytosine
Ground State and Triplet Excited State (Denoted by *)a

structure

Erel

structure

Erel

gas SCIPCMGas gas SCIPCM

uracil hydrate
U1A 0.00 (0.00) 0.00 U1A* 0.00 (0.00) 0.00
U1B 1.61 (1.52) 0.23 U1B* 1.41 (1.42) 0.36
U1C 2.30 (2.13) 0.68 U1C* 1.91 (1.79) 0.65
U1D 3.38 (3.05) 2.03 U1D* 2.80 (2.49) 1.97
U2A 0.00 (0.00) 0.00 U2A* 0.00 (0.00) 0.00
U2B 2.59 (2.37) 1.14 U2B* 2.11 (2.03) 1.68
U2C 3.40 (2.94) 3.57 U2C* 3.73 (3.23) 3.87
U2D 4.01 (3.55) 2.01 U2D* 3.25 (2.90) 1.71
U2E 4.71 (4.09) 4.14 U2E* 4.61 (3.96) 4.14
U2F 5.44 (4.69) 5.46 U2F* 5.21 (4.50) 5.49
U2G 7.43 (6.47) 6.03 U2G* 6.89 (6.06) 6.04
U2H 7.36 (6.50) 5.77 U2H* 6.81 (6.11) 5.81

thymine hydrate
T1A 0.00 (0.00) 0.00 T1A* 0.00 (0.00) 0.00
T1B 1.73 (1.60) 0.28 T1B* 1.42 (1.39) 0.24
T1C 2.12 (1.93) 0.59 T1C* 1.95 (1.81) 0.68
T1D 4.25 (3.80) 2.24 T1D* 3.62 (3.24) 2.07
T2A 0.00 (0.00) 0.00 T2A* 0.00 (0.00) 0.00
T2B 2.80 (2.60) 1.28 T2B* 2.22 (2.19) 1.10
T2C 3.51 (3.03) 3.55 T2C* 3.61 (3.15) 3.63
T2D 3.82 (3.36) 1.92 T2D* 3.38 (3.06) 1.83
T2E 4.52 (3.95) 4.02 T2E* 4.57 (3.98) 4.10
T2F 6.23 (5.42) 5.64 T2F* 5.91 (5.08) 5.53
T2G 8.11 (7.11) 6.11 T2G* 7.70 (6.69) 6.15
T2H 8.51 (7.57) 6.15 T2H* 7.75 (6.96) 5.82

cytosine hydrate
C1A 0.00 (0.00) 0.00 C1A* 1.38 (1.27) 1.61
C1B 0.61 (0.54) 0.09 C1B* 0.00 (0.00) 0.00
C1C 6.08 (5.14) 2.94 C1C* 4.96 (4.03) 2.80
C2A 0.00 (0.00) 0.00 C2A* 1.84 (1.68) 2.08
C2B 1.36 (1.24) 0.80 C2B* 0.38 (0.23) 0.23
C2C 1.47 (1.24) 2.09 C2C* 2.54 (2.18) 3.17
C2D 2.78 (2.37) 2.70 C2D* 0.00 (0.00) 0.00
C2E 6.65 (5.68) 4.66 C2E* 7.52 (6.26) 5.84
C2F 7.30 (6.30) 4.86 C2F* 5.96 (4.97) 4.14

a Zero-point vibrational energy (ZPVE)scorrected values are in
parentheses.

Figure 1. Canonical structures of uracil, thymine, and cy-
tosine with atom numbering schemes.
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defined as the change in absolute energy for a ground state
equilibriumgeometryuponphotonicexcitation.Thesinglet-triplet
gap is the difference between the energies of the optimized
ground state geometry and the optimized triplet state
geometry.

Results

Predicted relative energies of the pyrimidine mono- and
dihydrates are listed in Table 1. Figures 2, 3, and 4 display
the lowest-energy structures for the free bases and their
hydrates in both the ground and the lowest triplet states. All
optimized structures have been included as Supporting
Information and their intermolecular hydrogen bond lengths
are summarized in Tables 2 and 3. The numbering formalism
used is as follows: C, T, or U denoting cytosine, thymine or
uracil structure, respectively, followed by a 1 or 2 indicating
the number of water molecules included, and a capital letter
for the relative energetic ordering within each set of either
singly or doubly hydrated pyrimidines (i.e., C2A < C2B <
C2C). The corresponding triplet structure is indicated by an
asterisk (*) and the letter may not indicate the relative
energetic ordering of the triplet structures (i.e., in the case
of cytosine, C1B* is the lowest-energy triplet structure, not
C1A*).

Molecular Structures and Relative Energies. The low-
est-energy monohydrate structure of the ground-state uracil
(U1A) is characterized by a N1-H · · ·Ow-Hw · · ·O2dC2

cyclic hydrogen bond between the uracil base and the water
molecule. The N1-H · · ·Ow and C2dO2 · · ·Hw hydrogen bond
lengths are computed to be 1.910 and 1.912 Å, respectively.
The lowest-energy structure of uracil dihydrate in the ground
state (U2A) also has a cyclic hydrogen bond that connects
the uracil moiety and two water molecules. However, its
intermolecular distances are shorter than those of monohy-
drate U1A, with the N1-H · · ·Ow, C2dO2 · · ·Hw, and
Ow-Hw · · ·Ow hydrogen bond lengths being 1.766, 1.757,
and 1.722 Å, respectively. The excitation of U1A and U2A
to their lowest-triplet states (U1A* and U2A*) increases the
intermolecular hydrogen bond distances, implying that
stabilization through hydration is reduced in the triplet state,
compared to the ground state. Other uracil mono- and
dihydrate structures also show a similar weakening of the
intermolecular hydrogen bond upon excitation to their lowest-
triplet states.

Structural differences between the ground state and the
lowest-triplet state of thymine hydrates are similar to those
of uracil hydrates in general. In addition, the different
hydrated ground state and triplet state thymine and uracil
structures display the same energetic ordering. However, in
the case of cytosine, neither the singly nor doubly hydrated
isomers have the same energetic ordering for the ground state
and the triplet state. While the lowest-energy structures of

Figure 2. Structures of uracil and its lowest-energy mono- and dihydrates in the ground and lowest triplet states, optimized at
the B3LYP/DZP++ level of theory.

VEx ) E(triplet energy at optimized singlet geometry) -
E(optimized singlet)

singlet-triplet gap ) E(optimized triplet) -
E(optimized singlet)

932 J. Chem. Theory Comput., Vol. 6, No. 3, 2010 Rasmussen et al.



Figure 4. Structures of cytosine and its lowest-energy mono- and dihydrates in the ground and lowest triplet states, optimized at the
B3LYP/DZP++ level of theory.

Figure 3. Structures of thymine and its lowest-energy mono- and dihydrates in the ground and lowest triplet states, optimized at the
B3LYP/DZP++ level of theory.
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the ground-state cytosine mono- and dihydrates (C1A and
C2A) have a N1-H · · · (Ow-Hw)n · · ·O2dC2 cyclic hydrogen
bond, the water molecules in the lowest-energy structures
of the triplet-state cytosine hydrates (C1B* and C2D*) bind
to the cytosine unit through the N3 and N4-H atoms of
cytosine, implying that the intermolecular hydrogen bonding
in C1B* and C2D* stabilizes the system more strongly than
C1A* and C2A*, respectively.

In general, the spread in relative energies for the triplet
state structures is approximately 0.5 kcal mol-1 smaller than
that of their ground state analogs. The SCIPCM method
predicted that the effects of macrosolvation narrow the energy
differences among the different hydrate structures for the
three pyrimidines, but do not significantly change the relative
orderings for all three pyrimidine hydrates both in the ground
and in the lowest triplet states. Especially for all the
nucleobases, the lowest-energy mono- and dihydrate struc-
tures in the gas phase were also predicted to be energetically
favorable in the condensed media.

Excitation Energies. Estimated vertical and adiabatic
excitation energies of the bases and their hydrates are
reported in Table 4. In general, cytosine and its hydrates
show the largest vertical and adiabatic excitation energies,
while thymine and its hydrates have the smallest excitation
energies. The methyl group of the unhydrated thymine lowers

the vertical and adiabatic excitation energies by 0.13 and
0.18 eV, respectively, compared to those of free uracil. In
the thymine hydrates, the methyl group also lowers the
excitation energies by similar magnitudes (0.11-0.16 eV for
and 0.17-0.20 eV for the vertical and adiabatic excitation
energies, respectively). A consequence of this methyl group
effect is that the excitation energies of uracil and its hydrates
become closer to those of cytosine and its hydrates, compared
to the thymine hydrates.

The singlet-triplet gaps of the gas phase uracil, thymine,
and cystosine are estimated to be 2.92, 2.74, and 2.97 eV,
respectively. The addition of one and two water molecules
to thymine and uracil causes a negligible increase in the
vertical excitation energies and singlet-triplet gap, as shown
in Figure 5. For the cytosine molecule, the effect is slightly
more pronounced, with the addition of each water molecule
adding ∼0.05 to 0.1 eV to the vertical excitation energies
and singlet-triplet gap. In addition, the macrohydration
effects estimated using the SCIPCM method were not
predicted to cause a significant change in both the vertical
and adiabatic excitation energies for the three nucleobases
and their hydrates. These results are encouraging in sug-
gesting that the hydrated species are well approximated by
the isolated pyrimidines.

Table 2. Intermolecular Hydrogen Bond Distances in Å for Singly and Doubly Hydrated Uracil and Thymine in the Ground
States and the Lowest Triplet Excited States

structure parametera singlet triplet structure parametera singlet triplet

uracil monohydrates thymine monohydrates
U1A N1-H · · ·Ow 1.910 1.912 T1A N1-H · · ·Ow 1.923 1.923

C2dO2 · · ·Hw 1.912 1.938 C2dO2 · · ·Hw 1.894 1.918
U1B N3-H · · ·Ow 1.952 1.968 T1B N3-H · · ·Ow 1.963 1.981

C4dO4 · · ·Hw 1.891 1.925 C4dO4 · · ·Hw 1.886 1.898
U1C C2dO2 · · ·Hw 1.937 1.960 T1C C2dO2 · · ·Hw 1.917 1.939

N3-H · · ·Ow 1.977 1.989 N3-H · · ·Ow 1.986 2.006
U1D C4dO · · ·Hw 1.882 1.905 T1D C4dO4 · · ·Hw 1.878 1.867

uracil dihydrates thymine dihydrates
U2A N1-H · · ·Ow1 1.766 1.773 T2A N1-H · · ·Ow1 1.776 1.783

Ow1-Hw1 · · ·Ow2 1.722 1.732 Ow1-Hw1 · · ·Ow2 1.722 1.732
C2dO2 · · ·Hw2 1.757 1.775 C2dO2 · · ·Hw2 1.747 1.764

U2B N3-H · · ·Ow1 1.765 1.777 T2B N3-H · · ·Ow1 1.771 1.786
Ow1-Hw1 · · ·Ow2 1.754 1.762 Ow1-Hw1 · · ·Ow2 1.757 1.764
C4dO4 · · ·Hw2 1.759 1.780 C4dO4 · · ·Hw2 1.754 1.764

U2C N1-H · · ·Ow1 1.905 1.912 T2C N1-H · · ·Ow1 1.919 1.923
C2dO2 · · ·Hw1 1.900 1.934 C2dO2 · · ·Hw1 1.883 1.914
N3-H · · ·Ow2 1.949 1.975 N3-H.. .Ow2 1.956 1.984
C4dO4 · · ·Hw2 1.884 1.922 C4dO4 · · ·Hw2 1.881 1.895

U2D C2dO2 · · ·Hw1 1.785 1.799 T2D C2dO2 · · ·Hw1 1.773 1.788
Ow1 · · ·Hw2-Ow2 1.786 1.790 Ow1 · · ·Hw2-Ow2 1.783 1.791
N3-H · · ·Ow2 1.767 1.779 N3-H · · ·Ow2 1.773 1.788

U2E N1-H · · ·Ow1 1.907 1.909 T2E N1-H · · ·Ow1 1.919 1.919
C2dO2 · · ·Hw1 1.920 1.944 C2dO2 · · ·Hw1 1.905 1.926
C2dO2 · · ·Hw2 1.950 1.963 C2dO2 · · ·Hw2 1.930 1.945
N3-H · · ·Ow2 1.973 1.988 N3-H · · ·Ow2 1.980 2.002

U2F N1-H · · ·Ow1 1.901 1.906 T2F N1-H · · ·Ow1 1.909 1.913
C2dO2 · · ·Hw1 1.929 1.957 C2dO2 · · ·Hw1 1.917 1.941
C4dO4 · · ·Hw2 1.879 1.906 C4dO4 · · ·Hw2 1.878 1.868

U2G C2dO2 · · ·Hw1 1.952 1.978 T2G C2dO2 · · ·Hw1 1.940 1.960
N3-H · · ·Ow1 1.957 1.973 N3-H · · ·Ow1 1.957 1.984
C4dO4 · · ·Hw2 1.870 1.898 C4dO4 · · ·Hw2 1.871 1.864

U2H N3-H · · ·Ow1 1.935 1.954 T2H N3-H · · ·Ow1 1.939 1.956
C4dO4 · · ·Hw1 1.928 1.954 C4dO4 · · ·Hw1 1.927 1.939
C4dO4 · · ·Hw2 1.886 1.905 C4dO4 · · ·Hw2 1.891 1.868

a Oxygen and hydrogen atoms of a water molecule are denoted with Ow and Hw, respectively. Subscripts w1 and w2 are used to
distinguish two different water molecules in the dihydrate structures.
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Hydration Energies and Dipole Moments. Table 5
reports hydration energies of the different hydrate structures
of the three bases in the ground and lowest triplet states.
For comparison purposes, those of the anionic hydrates,
computed at the same level of theory, are also included. In
all singly and doubly hydrated structures of cytosine,
thymine, and uracil considered, with the exception of C2D*,
the hydration energy of the triplet state is less (∼0.5 to 3.5
kcal mol-1) than that of the corresponding singlet structure.
The difference is more pronounced for the cytosine structures
than for thymine and uracil. The decrease in the hydration
energy upon the excitation from the ground state to the
lowest-triplet state for all three bases is attributed to the
smaller dipole moment in the lowest triplet states, as shown
in Table 6, which compares the dipole moments of the three
bases and their hydrates in the ground and lowest triplet
states. In a recent study on 4-thiouracil by Shukla and
Leszczynski,84 a similar decrease in dipole moment was
predicted upon the excitation from the ground to the lowest
singlet excited state.

For the cytosine hydrates, the hydration energy change
upon the excitation of the hydrated structures may alter their
relative energy ordering compared to that of the correspond-
ing neutrals. For example, the excitation from C2A to C2A*
is accompanied by a large decrease in the hydration energy
by 3.6 kcal mol-1 (from 19.9 to 16.3 kcal mol-1). On the
contrary, the excitation from C2D to C2D* increases the

hydration energy by 0.4 kcal mol-1 (from 17.5 kcal mol-1

to 17.9 kcal mol-1). As a consequence, the energy ordering
between C2A* and C2D* is swapped, compared to that
between the corresponding neutrals, C2A and C2D. There-
fore, it is the change in hydration energy upon excitation
that alters the relative energetic ordering of the lowest-triplet
hydrate structures of cytosine. For the uracil and thymine
hydrates, the changes in hydration energy upon excitation
do not vary enough to affect their energetic orderings.

Discussion

In order to better understand hydration effects upon excitation
of the three pyrimidine bases from the ground state to the
lowest triplet state, it would be helpful to consider two
pathways through which the ground-state unhydrated base
changes into the hydrate of the triplet state. As displayed in
Figure 6(a), one involves the excitation from the ground state
to the triplet state of the unhydrated base, followed by

Table 3. Intermolecular Hydrogen Bond Distances in Å for
Singly and Doubly Hydrated Cytosine in the Ground States
and the Lowest Triplet Excited States

structure parametera singlet triplet

cytosine monohydrates
C1A N1-H · · ·Ow 1.921 1.965

C2dO2 · · ·Hw 1.783 1.889
C1B N3 · · ·Hw-Ow 1.894 1.897

N4-H · · ·Ow 1.981 1.983
C1C N4-H · · ·Ow 2.023 2.051

cytosine dihydrates
C2A N1-H · · ·Ow1 1.799 1.828

Ow1-Hw1 · · ·Ow2 1.703 1.743
C2dO2 · · ·Hw2 1.683 1.762

C2B N3 · · ·Hw1-Ow1 1.819 1.811
Ow1 · · ·Hw2-Ow2 1.731 1.729
N4-H · · ·Ow2 1.841 1.826

C2C N1-H · · ·Ow1 1.917 1.953
C2dO2 · · ·Hw1 1.796 1.881
N3 · · ·Hw2-Ow2 1.901 1.892
N4-H · · ·Ow2 1.980 1.970

C2Db C2dO2 · · ·Hw1 1.904
N3 · · ·Hw1-Ow1 1.814
Ow1 · · ·Hw2-Ow2 1.857 1.714
N4-H · · ·Ow2 1.892 1.827

C2E N1-H · · ·Ow1 1.945 1.989
C2dO2 · · ·Hw1 1.758 1.846
N4-H · · ·Ow2 2.018 2.031

C2F N3 · · ·Hw-Ow1 1.873 1.868
N4-H · · ·Ow1 2.037 2.025
N4-H · · ·Ow2 2.027 2.029

a Oxygen and hydrogen atoms of a water molecule are denoted
with Ow and Hw, respectively. Subscripts w1 and w2 are used to
distinguish two different water molecules in the dihydrate
structures. b Upon excitation of C2D to its lowest triplet excited
states, the C2dO2 · · ·Hw1 bond breaks and the N3 · · ·Hw1-Ow1

forms.

Table 4. Vertical and Adiabatic Excitation Energies in eV
for Singly and Doubly Hydrated Uracil, Thymine, And
Cytosinea

structure

VEx singlet-triplet gap

gas SCIPCM gas SCIPCM

uracil and its hydrates
U 3.56 3.59 3.04 (2.92) 3.09
U1A 3.57 3.60 3.07 (2.95) 3.11
U1B 3.56 3.59 3.06 (2.95) 3.11
U1C 3.59 3.62 3.06 (2.94) 3.11
U1D 3.54 3.58 3.05 (2.93) 3.11
U2A 3.58 3.61 3.09 (2.97) 3.12
U2B 3.56 3.60 3.07 (2.96) 3.15
U2C 3.57 3.60 3.11 (2.99) 3.14
U2D 3.60 3.63 3.06 (2.94) 3.11
U2E 3.60 3.63 3.09 (2.97) 3.12
U2F 3.55 3.58 3.08 (2.96) 3.12
U2G 3.58 3.61 3.07 (2.95) 3.12
U2H 3.53 3.57 3.07 (2.96) 3.13

thymine and its hydrates
T 3.43 3.45 2.85 (2.74) 2.89
T1A 3.44 3.46 2.88 (2.76) 2.90
T1B 3.42 3.44 2.87 (2.75) 2.90
T1C 3.47 3.49 2.87 (2.76) 2.91
T1D 3.39 3.42 2.85 (2.74) 2.90
T2A 3.45 3.47 2.90 (2.78) 2.92
T2B 3.42 3.45 2.88 (2.77) 2.91
T2C 3.43 3.45 2.91 (2.79) 2.92
T2D 3.49 3.50 2.88 (2.77) 2.92
T2E 3.48 3.49 2.90 (2.78) 2.92
T2F 3.40 3.43 2.89 (2.77) 2.92
T2G 3.44 3.46 2.88 (2.76) 2.92
T2H 3.37 3.40 2.87 (2.76) 2.91

cytosine and its hydrates
C 3.54 3.62 3.10 (2.97) 3.19
C1A 3.63 3.68 3.21 (3.08) 3.27
C1B 3.56 3.62 3.13 (3.00) 3.19
C1C 3.56 3.64 3.11 (2.98) 3.19
C2A 3.67 3.71 3.26 (3.13) 3.30
C2B 3.58 3.62 3.14 (3.01) 3.18
C2C 3.64 3.66 3.22 (3.10) 3.26
C2D 3.65 3.69 3.06 (2.95) 3.09
C2E 3.64 3.69 3.22 (3.08) 3.26
C2F 3.56 3.62 3.12 (3.00) 3.18

a Zero-point vibrational energy (ZPVE)scorrected values are in
parentheses.
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subsequent hydration. In the other process, formation of the
hydrate of the ground-state base occurs first, and then the
hydrate is excited to the triplet state. Because the energy
difference between the initial state (the unhydrated base at
its ground state equilibrium geometry) and the final state (the
hydrate of the triplet-state base) should be independent of
the two pathways, an equation for hydration effects on the
excitation energy of a DNA/RNA base can be derived:

where B and B* denote a nucleobase in its ground and triplet-
excited states, respectively. The equation above shows that
the change in the excitation energy upon hydration,
∆Eex(B ·H2O, B), is equivalent to the negative value of the
difference in hydration energy between the ground and triplet
states of the unhydrated base, ∆Ehyd(B*,B). As shown in
Table 5, the hydration energy of the triplet state is smaller

Figure 5. Changes in adiabatic excitation energies (eV) for
the lowest energy structure upon addition of one and two
water molecules for the three pyrimidines.

Table 5. Comparison of Hydration Energies (kcal mol-1) of
the Neutral Hydrates of Uracil, Thymine, And Cytosine in
the Ground and the Triplet Excited States with the
Corresponding Anionic Hydrates Computed at the B3LYP/
DZP++ Level of Theorya

structure

neutral

anionbground state triplet state

uracil hydrates
U1A 10.7 (8.5) 9.9 (7.8) 13.1 (10.9)
U1B 9.1 (6.9) 8.5 (6.4) 14.8 (12.9)
U1C 8.4 (6.3) 8.0 (6.0) 12.0 (10.2)
U1D 7.3 (5.4) 7.1 (5.3) 15.0 (13.2)
U2A 23.4 (18.5) 22.1 (17.3) 24.4 (19.9)
U2B 20.8 (16.1) 20.0 (15.3) 27.3 (22.6)
U2C 20.0 (15.6) 18.4 (14.1) 27.6 (23.4)
U2D 19.4 (15.0) 18.9 (14.4) 27.2 (22.6)
U2E 18.6 (14.4) 17.5 (13.4) 23.9 (19.8)
U2F 17.9 (13.8) 16.9 (12.8) 27.6 (23.6)
U2G 15.9 (12.0) 15.2 (11.3) 26.3 (22.6)
U2H 16.0 (12.0) 15.3 (11.2) 28.6 (24.7)

thymine hydrates
T1A 10.7 (8.4) 10.0 (7.8) 13.0 (10.9)
T1B 9.0 (6.8) 8.5 (6.4) 14.7 (12.7)
T1C 8.6 (6.5) 8.0 (6.0) 11.9 (10.1)
T1D 6.4 (4.6) 6.3 (4.6) 14.2 (12.4)
T2A 23.3 (18.5) 22.1 (17.4) 24.4 (19.8)
T2B 20.5 (15.9) 19.9 (15.2) 27.1 (22.3)
T2C 19.8 (15.5) 18.5 (14.3) 27.4 (23.2)
T2D 19.5 (15.1) 18.8 (14.4) 27.1 (22.3)
T2E 18.8 (14.5) 17.6 (13.4) 23.8 (19.6)
T2F 17.1 (13.1) 16.2 (12.4) 26.8 (22.8)
T2G 15.2 (11.4) 14.4 (10.7) 25.5 (21.8)
T2H 14.8 (10.9) 14.4 (10.5) 27.5 (23.7)

cytosine hydrates
C1A 12.1 (9.7) 9.4 (7.1) 15.7 (13.7)
C1B 11.5 (9.1) 10.7 (8.4) 17.7 (15.3)
C1C 6.0 (4.5) 5.8 (4.3) 9.7 (6.6)
C2A 24.8 (19.9) 21.1 (16.3) 27.6 (23.7)
C2B 23.5 (18.6) 22.6 (17.7) 31.4 (26.8)
C2C 23.3 (18.6) 20.4 (15.8) 32.3 (27.9)
C2D 22.0 (17.5) 22.9 (17.9) 33.6 (28.7)
C2E 18.2 (14.2) 15.4 (11.7) 22.7 (18.4)
C2F 17.5 (13.6) 17.0 (13.0) 22.2 (18.0)

a Zero-point vibrational energy (ZPVE)scorrected results are in
parentheses. b Refs., 73, 76 and 58 for uracil, thymine, and
cytosine, respectively.

Table 6. Dipole Moments (µ, Debye) of the Neutral
Hydrates of Uracil, Thymine, And Cytosine in the Ground
and the Triplet Excited States, Computed at the B3LYP/
DZP++ Level of Theory

structure µ structure µ

uracil hydrate
U 4.63 U* 3.91
U1A 4.00 U1A* 3.31
U1B 4.57 U1B* 3.95
U1C 5.16 U1C* 4.31
U1D 2.95 U1D* 2.25
U2A 3.72 U2A* 2.98
U2B 4.14 U2B* 3.49
U2C 3.90 U2C* 3.05
U2D 5.12 U2D* 4.57
U2E 5.16 U2E* 4.40
U2F 2.97 U2F* 2.25
U2G 3.78 U2G* 2.98
U2H 2.57 U2H* 2.12

thymine hydrate
T 4.59 T* 4.28
T1A 3.69 T1A* 3.29
T1B 4.79 T1B* 4.69
T1C 5.01 T1C* 4.44
T1D 3.68 T1D* 3.28
T2A 3.36 T2A* 2.97
T2B 4.34 T2B* 4.18
T2C 3.93 T2C* 3.57
T2D 4.96 T2D* 4.77
T2E 4.74 T2E* 4.14
T2F 3.74 T2F* 3.37
T2G 4.64 T2G* 4.09
T2H 3.31 T2H* 3.17

cytosine hydrate
C 6.79 C* 5.28
C1A 5.71 C1A* 4.49
C1B 6.23 C1B* 5.10
C1C 9.64 C1C* 8.41
C2A 5.23 C2A* 3.98
C2B 5.99 C2B* 5.19
C2C 4.84 C2C* 3.84
C2D 5.42 C2D* 4.97
C2E 9.01 C2E* 8.12
C2F 8.73 C2F* 8.05

Eex(B) - Ehyd(B*) ) Eex(B ·H2O) - Ehyd(B)

Eex(B · H2O) - Eex(B) ) -[Ehyd(B*) - Ehyd(B)]

∆Eex(B · H2O, B) ) -∆Ehyd(B*, B)
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than that of the ground state, making the ∆Ehyd(B*,B) term
negative and hence, the ∆Eex(B ·H2O, B) term positive.
However, note that the magnitude of the ∆Ehyd(B*,B) term
for monohydrates of uracil and thymine, which is only 0.4
kcal mol-1 on average, indicates that the change in excitation
energy upon hydration, ∆Eex(B ·H2O, B), is less than 0.02
eV. The corresponding value for the cytosine monohydrates
is 1.1 kcal mol-1 (∼0.05 eV).

Many experimental and theoretical studies have shown
that, in spite of the near-zero electron affinities of the gas-
phase DNA/RNA bases, hydration with even a single water
molecule causes an increase in the adiabatic electron affinities
of the three pyrimidine bases (by as much as 0.3 eV) and
successive addition of more water molecule increases the
AEA values even more.58,73,76 These effects enable negative
charge formation on the DNA bases in aqueous solution,
leading to lethal DNA lesions through subsequent single- or
double-strand breaks. On the contrary, the excitation energies
of the three nucleobases computed in the present study are
insensitive to the hydration effects, compared to their electron

affinities. Therefore, it may be helpful to compare anion
hydration with the triplet state hydration in the present study.
As shown in Figure 6(b), there are also two possible
pathways for forming the anionic hydrates of the bases from
the unhydrated bases. Similar to the triplet state cases, the
changes in electron affinities of the bases upon hydration
can be correlated with the changes in the hydration energy
between anion (B-) and neutral bases (B).

That is, the change in adiabatic electron affinity,
∆AEA(B ·H2O,B), is equivalent to the difference between
the base and its anion, ∆Ehyd(B-, B). As shown in Table 5,
the hydration energies of the anions, essentially greater than
those of neutrals, are responsible for the increase in the AEA
upon hydration. In a similar manner, Figure 6(c) can be used
to show that the hydration effect on the ionization potential
is equivalent to the difference in the hydration energy
between the cation (B+) and the neutral (B).

Although no studies have been reported on the hydration
energies of the cations that are computed at the same level
of theory employed in the present study, many experimental
evidence85 as well as other theoretical studies86,87 using
different levels of theory showed a significant increase in
hydration energy for the cation, compared to the correspond-
ing neutrals, leading to a significant decrease in the ionization
potentials of the DNA/RNA bases. For example, while
monohydration of thymine is predicted in the present study
to increase its excitation energy by only 0.02 eV, its
ionization potential upon monohydration was computed to
decrease by 0.1 eV (at the B3LYP/6-31+G** level of
study)86,87 and the experimentally determined decrease (by
0.3 eV) is even more significant.85 Figure 7 displays a
schematic energy diagram that compares hydration effects
upon the electron affinities, ionization potentials, and excita-
tion energies of the nucleobases. Stabilization due to hydra-
tion is more significant in charged species than in neutral
species, causing the increase in the electron affinity and the
decrease in the ionization potential. On the other hand,

Figure 6. Two potential pathways in which the unhydrated
neutral nucleobase in the ground state (B) is converted into
(a) the hydrate of the neutral base in the lowest triplet state
(B*); (b) the anionic hydrate of the base (B-); and (c) the
cationic hydrate of the base (B+). Eex, AEA, and AIP represent
the excitation energy, adiabatic electron affinity, and adiabatic
ionization potential, respectively.

Figure 7. Schematic energy diagram showing the hydration
effects upon the excitation energy, electron affinity and
ionization potential of the DNA/RNA bases.

∆AEA(B · H2O,B) ) ∆Ehyd(B
-, B)

∆AIP(B · H2O,B) ) -∆Ehyd(B
+, B)
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because both the ground state and the excited state of the
nucleobases are neutral, the hydration energy difference
between the two states is relatively small, compared to that
between the neutral and charged bases, making the excitation
energies of the nucleobases less sensitive to hydration than
their electron affinities and ionization potentials.

Conclusions

The singlet ground states and lowest triplet states of mono-
and dihydrates of the three DNA/RNA pyrimidine bases,
cytosine, uracil, and thymine, have been investigated at the
B3LYP/DZP++ level of theory. For uracil and thymine, the
energetic ordering of hydrate structures of the triplet states
is the same as that of the corresponding singlet ground states.
For all three bases, it was found that hydration does not have
a significant effect upon the energy difference between the
singlet and triplet states, compared to hydration effects on
electron affinities and ionization potentials, which involve
charged species. A water molecule is likely to interact with
a charged species more strongly than with a neutral species,
resulting in the increase in electron affinity and the decrease
in ionization potential. On the contrary, if a molecule is
neutral in the ground state, its triplet state is necessarily also
neutral, and as shown in the present study, the differential
stabilization due to hydration of the triplet state is quite
modest, making the excitation energy relatively insensitive
to hydration.
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Abstract: The hybrid CASPT2/MM approach is employed to systematically study the ground
and low-lying excited states of the ultimate active species of the enzymes P450cam and
chloroperoxidase (CPO): the oxoiron(IV)-porphyrin cation-radical Por•+FeIVdO(Cys) species,
the so-called Compound I (Cpd I). The results underscore the fact that the B3LYP/MM method
is quite accurate on the most part. However, the CASPT2/MM energies for the ferryl-
pentaradicaloid quartet state and the perferryl FeVO doublet and quartet states are significantly
lower than the B3LYP/MM results. Thus, while the present CASPT2/MM may still overestimate
the stability of these states, nevertheless, taken at its face value, the result raises the question
whether these states actually contribute to the reactivity of Cpd I. Our paper tries to grapple
with this question in view of (a) the recent speculations that the perferryl FeVO states may be
involved in unusual reactivities of Cpd I species (Pan, Z. Z.; Wang, Q.; Sheng, X.; Horner, J. H.;
Newcomb, M. J. Am. Chem. Soc. 2009, 131, 2621-2628) and (b) the DFT/MM results which
show that the pentaradicaloid states have intrinsically low barriers for H-abstraction (Altun, A.;
Shaik, S.; Thiel, W. J. Am. Chem. Soc. 2007, 129, 8978-8987). The application of CASPT2/
MM to high valent transition metal states like the perferryl are far from being trivial, and the
experience and insight gained in this study are expected to be helpful for future successful
application of this type of method to resolve key issues in P450 reactivity.

Introduction

It is generally accepted that the reactive species in the
thiolate-ligated heme enzyme cytochromes P450 (P450s)1,2a

and chloroperoxidase2 (CPO) is the oxoiron(IV) porphyrin
π-cation radical active species Por•+FeIVdO(Cys), termed
Compound I (Cpd I), which is responsible for the potent
catalytic monooxygenase and peroxidase activities of these
enzymes and has the electronic structure shown in Scheme
1. While Cpd I in CPO has been characterized by many
spectroscopic methods,3 the corresponding species in P450s

is still elusive in the native catalytic cycle.1,4 To bypass these
difficulties, P450 Cpd I species were generated directly, by
reacting the enzyme with m-chloroperoxybenzoic acid, and
were followed using rapid scan stopped-flow absorption
spectroscopy.5 Very recently, P450 Cpd I species were
produced also by laser flash photolysis (LFP) of the one-
electron reduced species, in a manner that enabled the
following of their reactivity patterns toward a variety of
substrates.6 These studies questioned the consensus that the
reactive state for P450 in the native cycle is the π-cation
radical ferryl state, Por•+FeIVdO(Cys).

Thus, the elusive nature of Cpd I in the native P450 cycle
has generated alternative hypotheses regarding the nature of
the “active oxidant” of P450. One of the species that has
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recently been invoked to explain the high reactivity of
P450cam compared with those of the LFP-generated Cpd I
species is the perferryl, PorFeVdO,6 in which the porphyrin
gets one electron from one of the orbitals (dxy or π*) in the
d-block of iron to become closed-shell (see Scheme 1).
Another state that has been revealed by density functional
theory (DFT)7 and DFT/MM calculations8,9 is the pentaradi-
caloid state, in which an electron from the dxy (also called
δ) orbital of the triradicaloid state, in Scheme 1, is promoted
to the σ*x2-y2 orbital. This latter state has just recently been
speculated as a possible cause of the extremely high reactivity
of a model Cpd I species.10

Due to the prominent role played by Cpd I in P450s
chemistry and its elusive status, within the native catalytic
cycle, it has been extensively studied by the hybrid quantum
mechanical/molecular mechanical (QM/MM) approach,11

which accounts for effects associated with the protein
environment. The major QM tool has so far been DFT/MM,
which basically gave results compatible with DFT-only
calculations that included bulk polarity and hydrogen bonding
(H-bonding) effects due to NH · · ·S interactions with the
thiolate ligand. However, it has been obvious that further
studies should ultimately be carried out at the ab initio level
with the multireference configuration interaction (MRCI) or
multireference second-order perturbation (MRPT2) with an
adequate basis set and a large active space. In this work, we
report such a study of this key species, for the two heme
enzymes, based on high level ab initio multiconfigurational
second-order perturbation12 CASPT2/MM calculations, with
an aim of establishing the state ordering of all the low-lying
states within around 30 kcal/mol, the lower ones of which
could possibly contribute to the reactivity of this species.

Three ab initio multireference studies have been reported
so far, which addressed either the gas phase species or were
limited to a few states.8,13,14 Thus, Thiel and co-workers used
the difference dedicated configuration interaction (DDCI2)
method8 and, later, DDCI2-Q with MR-Davidson correction
(which treats the size-consistency problem of CI) to conduct
QM/MM calculation on Cpd I of P450cam.13 The quartet a2u

triradicaloid state, having the electronic structure in Scheme
1 (a2u

1π*yz
1π*xz

1), but with all electrons being spin-up, was
found to be the lowest quartet state in DFT/MM calculations8,9

but only slightly lower (1.9 kcal/mol) than the corresponding

a1u triradicaloid state (a1u
1π*yz

1π*xz
1) at the DDCI2-Q/MM

level.13 However, the corresponding calculation for the
doublet state with the large active space encountered
convergence problems. So with large active space, no states
other than the quartet triradicaloid a1u and a2u states were
explored to date using in-protein calculations. Radoń et al.14

used the CASPT2 method to study a Cpd I model of P450
in the gas phase and found that multistate CASPT2 was
crucial for generating the porphyrin-based cation radical state
as the ground state. Inclusion of the axial thiolate ligand
orbital into the active space seemed to be necessary because
the sulfur-based radical state was significantly lower in
energy than the porphyrin-based triradicaloid state at the
complete active space self-consistent field (CASSCF) level
that precedes the CASPT2 calculations. So the situations in
gas phase and in protein calculations of Cpd I appear very
different. This difference was also exhibited by gas phase
DFT studies15 which revealed a ground state with a high
sulfur radical character, vis-à-vis in protein DFT/MM
calculations,8,11 which showed a dominant porphyrin-based
radical structure. By contrast to the gas phase results, in CPO,
where Cpd I is observable, electron-nuclear double reso-
nance (ENDOR) measurements have shown that the thiolate
spin density of Cpd I is less than 0.23,3e which supports the
DFT/MM8,11 and the DDCI2/MM results.13 It is apparent
therefore that QM/MM treatments based on ab initio mul-
tireference correlated methods for the important open-shell
Cpd I system are essential but have still not been used to
describe a variety of low lying states that might be contribut-
ing to the reactivity of this species. There are many important
and interesting questions to be answered in this field. As we
mentioned above, DFT16 and DFT/MM9 calculations have
shown that the pentaradicaloid states of Cpd I in P450 could
be more reactive than the triradicaloid ground state. But how
high is the pentaradicaloid state in energy relative to the
triradicaloid ground state for Cpd I species? B3LYP7,16 and
B3LYP/MM calculations8,9 for P450cam suggested that this
state is adiabatically about 14 and 12 kcal/mol higher than
the ground state, respectively. However, previous spectros-
copy-oriented configuration interaction (SORCI) calculations
on model nonheme iron-oxo systems8,17 suggested that the
state having an iron dxy

1σ*x2-y21 configuration (two iron d-type
orbitals spanning the equatorial plane), analogous to the
pentaradicaloid state in Cpd I, and the state having a
dxy2σ*x2-y20 configuration, analogous to the triradicaloid state
in Cpd I, are close in energy. Another intriguing question is
how high the perferryl FeV-oxo species are in Cpd I, which
has been repeatedly proposed to be the actual reactive species
in native P450 chemistry.6,18 According to recent TD-DFT/
MM calculations of P450cam Cpd I, these FeV states are at
least 37 kcal/mol higher in energy relative to the doublet
ground state triradicaloid state (Scheme 1) and hence cannot
possibly contribute to reactivity.9 In order to answer these
questions using a high-level wave function theory, we
decided to carry out systematic CASPT2/MM calculations
of both the ground state of Cpd I and its low lying excited
states. Thus, while the present results may certainly not be
the last word on Cpd I, still they constitute state-of-the-art
values that will provide a challenge to proceed to even higher

Scheme 1. Orbital Diagram for the Doublet Ground State
of Cpd I Species in P450cam and CPO on the Basis of
DFT/MM Calculation
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QM/MM levels, with an aim of establishing a broader and
deeper understanding of the electronic structures of Cpd I
of thiolate enzymes and its potential as a multistate reactivity
(MSR) reagent.

The Computational Methodology. DFT/MM Calcula-
tions. The QM/MM setup procedure used here for P450cam

and CPO was described extensively in our previous works.19

Here, we addressed only the essential features and relegated
the rest of the details to the Supporting Information (SI)
document.

All DFT/MM computations were performed using Chem-
Shell20 interfaced with Turbomole21 and DL_POLY.22 The
hybrid B3LYP23 functional was used for the QM region, and
the CHARMM2224 force field was used for the MM region.
The geometries were optimized with the double-� LACVP25

basis set (B1), followed by a single-point energy correction
with a larger basis set B2, and the Wachters’ all electron
basis set26 augmented with diffuse d and polarization f
functions on iron (8s7p4d1f) and 6-31++G(d,p)27 on the
other atoms. The QM region in our QM/MM calculations
involves porphine with an iron-oxo unit and axial cysteine
ligand modeled as SH. The electronic embedding scheme28

was used to account for the polarization effect of the QM
part induced by the protein environment. No cutoffs were
introduced for the nonbonding MM and QM/MM interac-
tions. The dangling bond at the QM/MM boundary was
saturated by a hydrogen-link atom and treated in the
framework of the charge-shift method.28 Full geometry
optimizations were performed with HDLC optimizer.29 No
symmetry constraints were imposed on the studied Cpd I
systems.

CASPT2/CASSCF/MM Calculations. The multireference
ab initio CASPT2/CASSCF/MM calculations were carried
out with the MOLCAS 7.2 suite of programs30 using
geometries optimized at the B3LYP/MM level. The QM-
polarizing point charges generated in the DFT/MM geometry
optimization were used during the CASPT2/CASSCF/MM
procedure. The Douglas-Kroll-Hess Hamiltonian31 was
used to account for the scalar relativistic effects. A large
basis set was required in the CASPT2/CASSCF calculations:
On iron, we used a triple-� cc-pwCVTZ-DK basis set (Fe,
9s8p6d3f2g),32 which can handle the 3s3p semicore correla-
tion of Fe well. For the six atoms of the immediate
coordination sphere, we employed a triple-� cc-pvTZ-DK
basis set (O, N, 4s3p2d1f; S, 5s4p2d1f),33 while for the rest
of the system we used the double-� cc-pvDZ-DK basis set
(C, 3s2p1d; H, 2s1p).33 The total number of basis functions
is 631.

Cholesky decomposition (CD) techniques34 were used
during the CASPT2/CASSCF calculations with a well-tested
threshold of 10-4 (see Table S1 in the SI) to reduce the
computational time and disk storage requirements. All
valence electrons plus the 3s and 3p electrons of iron were
correlated in the CASPT2 calculations. To bracket more
critically the results, the CASPT2 calculations used two types
of zero order Hamiltonians: the standard IPEA zero-order
Hamiltonian, using an orbital energy shift correction by the
gap between ionization potential (IP) and electron affinity
(EA) of active orbitals, i.e., IPEA shift ) 0.25. This latter

procedure is suggested in MOLCAS, as a method of choice,
for reducing systematic errors of calculated gaps between
states having different numbers of unpaired electrons.35

However, to the best of our knowledge, there are still no
systematic calibrations to show that this IPEA shift value
provides better results for other cases, i.e., in isogyric
processes where the number of unpaired electrons is kept
constant. Therefore, we used also a second zero-order
Hamiltonian (IPEA shift ) 0), which is the original formula-
tion, and applied it for some triradicaloid states with three
unpaired electrons such as the a1u singly occupied states,
quartet FeV states, and sulfur-based triradicaloid states. An
imaginary level shift of 0.1 au was used in the CASPT2
calculation to avoid the intruder state problem.36

As already noticed by Radoń et al. in their gas phase
calculation,14 state-average CASSCF orbitals could be far
from optimal for any of the states involved. So in this work,
wherever possible, we used state-specific calculations to
compute one state at a time. For higher excited states for
which state-specific calculations were not possible due to
root flipping, we performed state-average calculations fol-
lowed by multistate (MS) CASPT2 calculations37 to improve
the possible deficiency of the state-average reference CASS-
CF wave function.

The used QM region and active orbitals are shown in
Figure 1. The 14 orbitals depicted in the figure formed an
active space of 15 electrons distributed in 14 orbitals, labeled
as (15,14). The active space includes for the first time all
iron 3d orbitals, and this enables us to explore all the possible
configurations within the iron valence 3d shell. The 4dxy

orbital and 4dyz+3py and 4dxz+3px are orbitals accounting
for the so-called “double-shell” effect12 in Cpd I and are
found to be important for a balanced treatment of states
wherein an electron is excited out of the 3dxy (as in the case
of the pentaradicaloid state) or Fe-O π type orbitals (as in
the case of doublet FeV states). The latter two orbitals were
first included in the active space by Neese and Thiel et al.
in their DDCI2-Q/MM calculation for Cpd I in P450cam.13

These two orbitals are seen in Figure 1 to be combinations
of iron 4d and oxygen 3p orbitals rather than pure iron 4d
orbitals because of strong covalent interaction between Fe
and O of the iron-oxo moiety. All three of the above empty
orbitals for the “double-shell” effect were also found to have
an additional beneficial effect of stabilizing the active space
used here.

Using CASSCF(15,14) calculations (see Table S2-S3 in
SI), we found that the states characterized by singly occupied
porphyrin a1u or a2u orbitals can be studied separately with
active spaces that exclude the corresponding a2u or a1u

orbitals. This finding enabled us to use two (13,13) active
spaces generated from (15,14) by moving the a1u or a2u orbital
out of active space and thereby studying more economically
the a2u or a1u singly occupied states. For sulfur-based
radicaloid states, it was necessary to introduce two sulfur-
based σS and πS orbitals, which are the sulfur lone pair
orbitals, the former one pointing toward iron and the latter
being perpendicular to the Fe-S-H plane. These two
orbitals are not shown in Figure 1 since they are only used
to calculate the sulfur-based radicaloid states. The active
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space employed for the sulfur-based radicaloid states ΠS/ΣS

was generated from the one shown in Figure 1, by replacing
the a1u and a2u orbitals with sulfur-based πS/σS orbitals.

For simplicity, the various states are conventionally labeled
by the orbital that accommodates the free radical; we use
superscripts to represent spin multiplicity of the state, and
in parentheses we add the formal oxidation state of iron;
e.g., 2A2u(FeIV) represents the triradicaloid FeIV state in
Scheme 1, while 4∆xy(FeV) represents the quartet FeV state
in which iron 3dxy (δ) orbital is singly occupied. If there is
more than one state for a given label, we add a serial number
before the label to indicate energy ordering at the CASPT2/
MM level, e.g., 2 2A2u(FeIV) represents the second FeIV

doublet state, in which porphyrin a2u orbital is mainly singly
occupied. The singly occupied orbitals are specified in the
fifth columns of Tables 2 and 5. Schemes 2 and 3 further
show the simple orbital diagram for these states.

Results and Discussion

As was shown in the previous theoretical work on model
nonheme iron-oxo species,17a some geometric parameters
such as equatorial Fe-N bond distances are quite important
for the energy gap of different states. Therefore, we first
summarize the key bond distances of Cpd I obtained from
B3LYP/MM calculations for CPO and P450cam in Table 1.
It can be seen that, for CPO, where experimental data of
extended X-ray absorption fine structure (EXAFS) measure-
ment are available,38 the bond distances all agree well with
the experimental results, except for the Fe-S bond distance,
which is about 0.1 Å longer in the calculated geometry. From
previous calculations for iron-oxo species as well as our own
test calculation at the DFT/MM level (see Table S4 in SI),
this geometric difference is not likely to affect the energetic
levels of the states we are interested in.

Our main results at the CASPT2/CASSCF/MM level are
summarized in Tables 2-5 for Cpd I of CPO and P450cam.
We calculated 11 doublet and 9 quartet states for each
enzyme in Tables 2 and 5. Unless specified, all the relative

energy data that we used from ab initio multireference
calculations refer to the ones at the CASPT2/MM level.
Identification of the various states can be aided by the orbital
occupancies in the tables and in Schemes 2 and 3. The full
set of results is summarized in the Supporting Information
document, while below we present only the key results.

A. Triradicaloid FeIV Doublet and Quartet States. As
seen from Table 2 and Scheme 2, for CPO and P450cam, our
lowest doublet and quartet triradicaloid states (1 and 10) at
the CASPT2/MM level correspond, with one exception, to
the lowest two states in DFT/MM calculations, in which
porphyrin a2u and two Fe-O π* orbitals are singly occupied,
with good accord between the two sets of results. Thus, in
agreement with B3LYP/MM, the quartet state, 1 4A2u(FeIV),
is very slightly higher (by 0.6 to 0.9 kcal/mol) in energy
than the corresponding doublet state, 1 2A2u(FeIV), which is
stabilized slightly by the antiferromagnetic coupling S ) 1
iron-oxo ferryl unit and S ) 1/2 porphyrin radical in the
thiolate-ligated Cpd I system. This suggests that DFT and
DFT/MM are quite reliable in describing the quartet and
doublet ground states of Cpd I. The second triradicaloid
doublet state 2 2A2u(FeIV) (5), which involves singlet pairing
of the electrons in the two π* orbitals, and a singly occupied
a2u, was located to lie about 18 kcal/mol higher above the
ground state 1, which is comparable with gas phase B3LYP
calculations reported before for Cpd I39 and nonheme iron-
oxo species.40 As such, these states for either CPO or
P450cam are not likely to be accessible for reactivity, since
most calculated barriers for hydroxylation and epoxidation
are lower than this value.41 We also calculated two other
triradicaloid quartet states 3 4A2u(FeIV) and 4 4A2u(FeIV) (15
and 16) where one of the two electrons in two π* orbitals is
excited to the Fe-N antibonding σ*x2-y2 orbital. Their high
relative energy (more than 26 kcal/mol) indicates they are
even less likely than state 5 to affect the reactivity of Cpd I.

B. The Pentaradicaloid FeIV Quartet State. From Table
2, the pentaradicaloid FeIV quartet state 2 4A2u(FeIV) (11),
having five unpaired electrons, is very close (within 2 kcal/

Figure 1. Active orbitals used to generate active space (15,14). The contour value is (0.05 e/au3.
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mol) to the triradicaloid FeIV states 1 2,4A2u(FeIV) (1 and 10)
in energy in both CPO and P450cam. We note that there exists
also a 6A2u(FeIV) state with a spin-up a2u electron,8,9,16 which
is not computed here. On the basis of the results for the 1
2,4A2u(FeIV) and previous DFT and DFT/MM calcula-
tions,8,9,16 this sextet pentaradicaloid state will lie slightly
higher than the quartet state, 11.

As seen from Scheme 2, the pentaradicaloid FeIV state 11
differs from the triradicaloid state 1 by excitation of one dxy

electron to Fe-N antibonding σ*x2-y2 orbital. The gap
between state 11 and 1 is smaller than the ones provided by
the B3LYP/MM calculation of CPO and P450cam where

vertical gaps from the ground doublet FeIV state to this state
are both calculated to be about 14-15 kcal/mol at the
B3LYP(B2)/MM level. We also tried the recently developed
double hybrid functional B2-PLYP,42 which showed very
promising results for improvement of the B3LYP functional
in previous extensive calibration calculations.43 Using a split-
valence triple-� polarized level basis set (Def2-TZVP44), the
B2-PLYP/MM calculated vertical gap of 16.9 kcal/mol,
between the pentaradicaloid state and triradicaloid state, is
close to the B3LYP/MM results in P450cam. Thus, CASPT2/
MM gives a substantially lower gap than any DFT(func-
tional)/MM method that we tested. In fact, CASPT2/MM

Scheme 2. Schematic Representation of Orbital Occupancies of the Main Electronic Configurations of Various (a) Doublet
and (b) Quartet States of Cpd I Calculated in Table 2a

a The number in bold after state label is the entry number in Table 2.

944 J. Chem. Theory Comput., Vol. 6, No. 3, 2010 Chen et al.



predicts that the pentaradicaloid state for P450 is actually
the lowest lying state. However, we must note that the

original zero-order Hamiltonian of CASPT2 is known to
overestimate the stability of states with more unpaired
electrons.35b The current zero-order Hamiltonian (IPEA shift
) 0.25) used here, designed to minimize this deficiency, has
been obtained from a fitting of CASPT2 calculations for
some small molecule vis-à-vis experimental data,35a and one
cannot exclude the possibility that it still favors the pent-
aradicaloid state over the triradicaloid state for Cpd I.45 Thus,
due to the accuracy limit of the CASPT2 method (about
0.2-0.3 eV) and the proximity of the two states, we still
cannot determine the accurate gap between the pentaradi-
caloid FeIV quartet state 11 and the ground doublet triradi-
caloid FeIV state 1. What we can deduce from the results is
that 11 may be closer to 1 than the DFT/MM datum. We
note that previous ab initio multireference correlated treat-
ments for other nonheme iron-oxo species also gave a similar
energetic proximity of corresponding S ) 1 and S ) 2 ferryl
units.8,17

Table 3. The Mulliken Charges of FeV and FeIV States
Calculated at the CASPT2/MM Level for Cpd I of P450cam

Mulliken charge

state entry Fe O Por S

1 2A2u(FeIV) 1 1.65 -0.34 -0.56 -0.86
2Πyz(FeV) 2 1.72 -0.13 -0.90 -0.81
4∆xy(FeV) 12 1.78 -0.19 -0.87 -0.84

Table 4. The Mulliken Spin Population of Some Low-Lying
FeV and FeIV States Calculated at the CASSCF/MM Level
for Cpd I of CPO and P450cam

CPO P450cam

state entry Fe O Por S Fe O Por S

1 2A2u(FeIV) 1 0.76 0.59 -0.33 -0.02 0.77 0.57 -0.33 -0.01
2Πyz(FeV) 2 0.89 0.14 -0.03 0.00 0.78 0.25 -0.03 0.00
2Πxz(FeV) 3 0.80 0.23 -0.03 0.00 0.90 0.13 -0.03 0.00

1 4A2u(FeIV) 10 1.17 0.85 0.93 0.05 1.15 0.87 0.92 0.06
2 4A2u(FeIV) 11 3.27 0.20 -0.45 -0.02 3.27 0.20 -0.45 -0.02

4∆xy(FeV) 12 2.09 0.99 -0.08 0.00 2.11 0.98 -0.09 0.00

Scheme 3. Schematic Representation of Orbital
Occupancies of Main Electronic Configuration of Sulfur
Orbital Triradicaloid States of Cpd I Calculated in Table 5a

a The number in bold after state label is the entry number in Table
5.

Table 1. DFT/MM Calculated and Experimental Key Bond
Distances (Å) of the Cpd I Species of CPO and P450cam

B3LYP/MMa exptlb

enzyme Fe-O Fe-Neq
c Fe-S Fe-O Fe-Neq

c Fe-S

CPO 1.652 2.026 2.571 1.65 2.01 2.48
P450cam 1.652 2.032 2.515

a B1 used for geometry optimization. b Ref 38, no experimental
data for P450cam are available. c Averaged value for four equatorial
Fe-N bonds.

Table 2. CASPT2/MM Relative Energies (kcal/mol), Occupancies of Main Configurations, and Weights (%) of the Main
Configurations for Doublet and Quartet States of Cpd I of CPO and P450cam Shown in Scheme 2

CASPT2/MMa

state entry CPO P450cam

occupancy of main
configuration weight (%)b

1 2A2u(FeIV)c 1 0.0/0.0 0.0/0.0 (dxy)2(π*yz)1(π*xz)1(σ*x2-y2)0(a2u)1 83/83
2Πyz(FeV)d 2 5.6 6.0 (dxy)2(π*yz)1(π*xz)0(σ*x2-y2)0(a2u)2 70/71
2Πxz(FeV)d 3 5.8 6.7 (dxy)2(π*yz)0(π*xz)1(σ*x2-y2)0(a2u)2 70/70

1 2A1u(FeIV)d 4 15.6/17.4 17.7/18.8 (dxy)2(π*yz)1(π*xz)1(σ*x2-y2)0(a1u)1 82/82
2 2A2u(FeIV)e 5 18.3 18.4 (dxy)2(π*yz)1(π*xz)1(σ*x2-y2)0(a2u)1 77/76

2A2u-∆(FeIV)e 6 19.6 19.4 (dxy)2(π*yz)2(π*xz)0(σ*x2-y2)0(a2u)1 - (dxy)2(π*yz)0(π*xz)2(σ*x2-y2)0(a2u)1 77/76
3 2A2u(FeIV)e 7 23.2 23.7 (dxy)2(π*yz)1(π*xz)0(σ*x2-y2)1(a2u)1 66/66
4 2A2u(FeIV)e 8 25.4 24.6 (dxy)2(π*yz)0(π*xz)1(σ*x2-y2)1(a2u)1 64/63

2A2u-Σ(FeIV)e 9 28.5 27.2 (dxy)2(π*yz)2(π*xz)0(σ*x2-y2)0(a2u)1 + (dxy)2(π*yz)0(π*xz)2(σ*x2-y2)0(a2u)1 57/61
1 4A2u(FeIV)d 10 0.9/1.2 0.6/0.0 (dxy)2(π*yz)1(π*xz)1(σ*x2-y2)0(a2u)1 83/83
2 4A2u(FeIV)d 11 0.0 -1.9 (dxy)1(π*yz)1(π*xz)1(σ*x2-y2)1(a2u)1 80/80

4∆xy(FeV)d 12 2.2/8.0 2.2/7.4 (dxy)1(π*yz)1(π*xz)1(σ*x2-y2)0(a2u)2 79/78
1 4A1u(FeIV)d 13 15.6 16.9 (dxy)1(π*yz)1(π*xz)1(σ*x2-y2)1(a1u)1 80/80
2 4A1u(FeIV)d 14 17.6/19.8 19.2/20.6 (dxy)2(π*yz)1(π*xz)1(σ*x2-y2)0(a1u)1 83/83
3 4A2u(FeIV)e 15 26.2 28.6 (dxy)2(π*yz)1(π*xz)0(σ*x2-y2)1(a2u)1 65/66
4 4A2u(FeIV)e 16 26.6 29.2 (dxy)2(π*yz)0(π*xz)1(σ*x2-y2)1(a2u)1 65/66

a The values after the slash are from the original zero-order Hamiltonian (IPEA shift ) 0), while the other values (before slash or without
slash) are from the standard IPEA zero-order Hamiltonian (IPEA shift ) 0.25). b Weight of the shown main configuration state functions
(CSFs) of CASSCF wave function as represented in Scheme 2, data shown in the CPO/P450cam pattern. c This state is taken as the zero of
the relative energy scale. d Single state calculation. e State-average calculation.
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A technically interesting point is that excluding the “outer”
4dxy orbital from the active space leads to overestimation of
the stability of state 11 relative to state 1 by about 3 kcal/
mol (0.15 eV) and reverses the state ordering. This is the
first time that the so-called “double-shell” effect12 of this
4dxy orbital is assessed on the relative energies of the S ) 1
and S ) 2 states of ferryl iron-oxo species. The potentially
similar effect in the nonheme iron-oxo system remains to
be explored.

C. FeV States. For doublet FeV states 2Πyz(FeV) and
2Πxz(FeV) (2, 3) and quartet FeV state 4∆xy(FeV) (12), our
CASPT2/MM calculations turn out also to be quite different
from the DFT (B3LYP) or TDDFT/MM results. As reported
before, DFT methods converged for the FeV state only in
the gas phase,7 but not in a protein environment.9 In the gas
phase, the B3LYP calculations predict that the FeV states of
Cpd I are about 16-26 kcal/mol higher than the ground
state.7 However, gas phase calculated gaps of the FeV to the
ground state depend on the used functional and the identity
of the axial ligand.46 Our own exploration of a P450 Cpd I
model showed that hybrid functionals predict larger gaps than
the GGA functionals, and all the gaps are significant, 15-26
kcal/mol (see Table S5 in the SI). Furthermore, TDDFT/
MM in-protein calculations predict an even larger energy
gap for the FeV state of Cpd I, i.e., more than about 37 for
quartet and 46 kcal/mol for doublet states.9 However, our
CASPT2/MM result shows that the standard IPEA zero-order
Hamiltonian places the quartet/doublet FeV states above the
doublet FeIV ground state in P450cam by only 2.2/6.0 kcal/
mol. Interestingly, application of the original CASPT2 zero-
order Hamiltonian leads to a somewhat higher gap of 7.4
kcal/mol for the quartet FeV state, 12.47 So despite the
sensitivity of the result to the choice of zero-order Hamil-
tonian of CASPT2, the calculated CASPT2/MM values are
all significantly lower than those from DFT and TDDFT/
MM approaches. Interestingly, a recent CASPT2 calculation
for chloroiron corrole (Cor) complex shows that, within 1.5
eV of the Cor+•FeIIICl ground state, there is no high valent
FeIV state in which the corrole ring is closed-shell.48 This
may represent the different tendencies of the corrole and
porphyrin ligands to assume a cation radical state.49

From the weight of the main configurations shown in last
column of Table 2, it can be seen that most of the states,
FeV included, have dominantly single-configuration charac-
ters (70-80%). Thus, the large discrepancy between DFT
and CASPT2 based results for these FeV states may seem

surprising. Nevertheless, we note that this effect is rooted
in the large orbital relaxation that attends the CASSCF
calculation of Cpd I FeV states compared with the FeIV states.
This in turn leads to large stabilization of the FeV states in
state-specific calculations compared with the state-average
calculations at the CASSCF/MM level (the FeV states are
found to be 32.2-34.9/15.9-18.3 kcal/mol above the tr-
iradicaloid ground FeIV state for state-average/state-specific
calculations of CPO, see Tables S6, S7, and S10, Supporting
Information). Thus, as exemplified in Figure 2a using a pair
of bonding/antibonding orbitals, σx2-y2/σ*x2-y2, the FeV state
has larger 3d iron components in the Fe-N/Fe-O bonding
orbitals σx2-y2/π/σz2 and smaller 3d components in the Fe-N/
Fe-O antibonding σ*x2-y2/π*/σ*z2 orbitals, compared with
those in the FeIV state. This different d contribution is caused
by the different number of electrons in Fe-O moieties of
the FeV and FeIV states, which exerts different screening
effects. As shown schematically in Figure 2b, the energy
level of the 3d orbitals of iron is lowered in the FeV state
and thereby affects the first coordinate sphere Fe-O and
Fe-N bonding and antibonding orbitals by increasing the
contribution of the iron 3d component in the bonding orbitals,
while decreasing this contribution to the antibonding orbitals.

Due to this orbital relaxation, which is missing in TDDFT/
MM, it is likely that the latter method underestimates the
stabilities of the FeV states.50 Indeed, because of the quite
different orbitals on iron in the presence of different oxidation
states, the state-average treatment in CASSCF/MM calcula-
tions for the FeV and FeIV states of Cpd I is also inappropriate.
Such a calculation followed by the CASPT2/MM treatment
leads to FeV states that are substantially lower (by ca. 10
kcal/mol) than the ground FeIV triradicaloid state 1 (see Table
S6-S7 in SI), which we deem to be very unreasonable.
Therefore, here we calculated FeIV and FeV states separately
to get the most optimal CASSCF orbital set for each state,
and hence a balanced CASPT2 treatment. This finding also
cautions against the use of CASSCF state-aVerage treatment
for different oxidation states of transition metal containing
systems, especially when the number of states for each metal
oxidation state is different, as in the present case. Using our
approach, the reference weights of the CASSCF wave
functions for the FeV and FeIV states (see Table S10-S11 in
SI) in our final CASPT2 wave functions are almost the same,
indicating that the treatments for these two states here are
balanced.

Table 5. CASPT2/MM Relative Energies (kcal/mol), Occupancy of Main Configurations, and Weight (%) of the Main
Configurations for Four Sulfur-Based Triradicaloid Quartet and Doublet States of Cpd I of CPO and P450cam Shown in
Scheme 3

CASPT2/MMa

state entry CPO P450cam

occupancy of main
configuration weight (%)b

1 2A2u(FeIV)c 1 0.0 0.0 (dxy)2(π*yz)1(π*xz)1(σ*x2-y2)0(a2u)1(σS)2(πS)2 83/83
2ΣS(FeIV) 17 14.8 26.7 (dxy)2(π*yz)1(π*xz)1(σ*x2-y2)0(a2u)2(σS)1(πS)2 82/82

2ΠS(FeIV) 18 25.7 29.9 (dxy)2(π*yz)1(π*xz)1(σ*x2-y2)0(a2u)2(σS)2(πS)1 82/82
4ΣS(FeIV) 19 18.0 28.4 (dxy)2(π*yz)1(π*xz)1(σ*x2-y2)0(a2u)2(σS)1(πS)2 82/82

4ΠS(FeIV) 20 26.5 30.6 (dxy)2(π*yz)1(π*xz)1(σ*x2-y2)0(a2u)2(σS)2(πS)1 82/82

a The values are from the original zero-order Hamiltonian (IPEA shift ) 0) and state-specific calculation. b Weight of the shown main
CSFs of the CASSCF wave function as represented in Scheme 3, data shown in the CPO/P450cam pattern. c This state is taken as zero
point in energy.
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The calculated Mulliken charges of the doublet and quintet
FeV states are compared with those of the FeIV doublet state
at the CASPT2/MM level in Table 3. It can be seen that
FeV states have smaller negative charges on the O atom of
the iron-oxo unit, as would be expected from chemical
intuition.

In conclusion, although the CASPT2/MM energy gaps of
the FeV state are quite low,e10 kcal/mol, the variance caused
by the two choices of zero-order Hamiltonians does not allow
a clear-cut determination of the FeV-FeIV gaps. Perhaps,
future calculations with other high level ab initio multiref-
erence approaches, such as the SORCI method,51 which
could hopefully be applied to the current large system, will
give a more definitive answer to this difficult question of
how high the FeV states are. Taking the present CASPT2/
MM results at face value, the FeV states appear to be in
principle accessible for affecting the reactivity of Cpd I (see
discussion below).

D. Spin Density Distribution in the FeIV and FeV

States. The calculated Mulliken spin populations for some
of the lowest states in Table 2 are collected in Table 4. The
calculated values for two FeIV triradicaloid states here are
close to the previous multiconfigurational calculations.13,14

The trend among the other states is physically reasonable
and can be deduced from the orbital diagrams in Scheme 2.
The absolute value of spin density on the thiolate ligand in
the triradicaloid states is smalle0.06, somewhat smaller than
in DFT/MM calculations (0.08-0.16).19a By comparison, the
experimental spin density3e for CPO was determined as being
smaller than 0.23. No discussion was given3e as to how much
smaller than 0.23 the actual number is, and it would be
interesting to reconsider the experimental data in light of
these computed spin densities.

E. 1∆g and 1Σ+
g States Analogous to States of O2

and a1u Singly Occupied States. As has been noted several
times,52 the FeO moiety of Cpd I has states analogous to
those of the O2 molecule, namely, the 1∆g and 1Σ+

g states.
These states of 2A2u-∆(FeIV) (6) and 2A2u-Σ(FeIV) (9; in
Scheme 2), which involve mixing of two configurations, each
having one doubly occupied π* orbital, are problematic for
DFT. We therefore decided to calculate these states as well
and find if they are low enough to contribute to the reactivity
of Cpd I. As with previous SORCI results for the iron-oxo
model complex,8 our calculated energy gaps (see Table 2)
for the doublet states that are analogous to the 1∆g and 1Σ+

g

states of the O2 molecule (6 and 9) turn out to be quite large,
indicating that they are not likely to become relevant in Cpd
I involved reactions.53

The importance of the a1u singly occupied states has been
debated in the literature quite extensively.54,55 In our
calculation with the standard IPEA zero-order Hamiltonian,
the a1u singly occupied states 1 2A1u(FeIV), 1 4A1u(FeIV), and
2 4A1u(FeIV) (4, 13, 14) were located 15.6-16.7/17.7-18.8
kcal/mol higher than the corresponding a2u singly occupied
states 1 2A2u(FeIV), 2 4A2u(FeIV), and 1 4A2u(FeIV) (1, 11, 10)
for CPO/P450cam. These substantial gaps compared to the
a2u states are larger than a very small value of 1.9 kcal/mol
obtained at the DDCI2-Q level.13 Interestingly, the calculated
values are comparable with the TDDFT(B3LYP)/MM value
of 12.3 kcal/mol for P450cam.13 In contrast to the FeV states
above, for the a1u singly occupied state, we do not observe
large orbital relaxation phenomenon compared with the a2u

singly occupied state; hence the TDDFT results for this state
may be more reliable than that for FeV states. As observed
before,13,14,56 we notice that the a2u singly occupied states
are lower than the corresponding a1u singly occupied states

Figure 2. (a) Orbital relaxation of the quartet FeV state, 4∆xy(FeV), compared with the quartet FeIV state, 1 4A2u(FeIV), exemplified
by the σx2-y2/σ*x2-y2 bonding/antibonding MOs pair in CPO. The contour value is (0.05 e/au3. The data underneath the natural
orbitals are the ratios of the absolute values of the Fe and N atomic coefficients in a given MO. (b) A schematic representation
of effect exerted by the level shift of an iron d orbital on the orbital relaxation.
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because of dynamic correlation. Indeed, at the CASSCF/MM
level, their energetic levels are reversed compared with the
CASPT2/MM situation. As can be seen from Table 2, in
contrast to the FeV states, the sensitivity of the A1u state
energies to the choice of zero-order Hamiltonian of CASPT2
is not significant.

F. Sulfur-Based Radicaloid States. The sulfur-based
triradicaloid quartet and doublet states 2,4ΣS(FeIV) and
2,4ΠS(FeIV) shown in Scheme 3, in which the singly occupied
porphyrin a2u orbital of the A2u ground states is replaced by
singly occupied sulfur σS and πS orbitals, respectively, were
found to be very low lying in previous gas phase DFT
calculations.7,57-59 In some cases, depending on the thiolate
ligand representation (SCH3 instead of SH), these sulfur
radical states came out as the ground states, and the protein
environment was needed to retrieve the A2u ground states.58

We therefore decided to explore their energy levels using
CASPT2/MM calculations. The states are shown in Scheme
3, while the relative energies are collected in Table 5.

Similarly to the case of FeV states, here too the state-
average orbitals are far from being optimal for the A2u and
ΣS/ΠS states at the same time. Large CASSCF(15,14)
calculations (see Table S8 in SI) that include either a2u and
one of two sulfur orbitals or two sulfur orbitals in the active
space indicate that the A2u state and ΣS/ΠS state can be
calculated separately in active spaces excluding the nearly
doubly occupied σS/πS orbital and a2u orbital (with occupan-
cies >1.999), respectively. So we used such a state-specific
strategy to calculate one state in each calculation. The results
for these states show (see SI for details) that they are at least
14.8 kcal/mol higher above the ground doublet state 1 for
CPO at the CASPT2/MM level.60 This value is higher than
the corresponding lowest result (9.6 kcal/mol) of the previous
CASPT2 gas phase calculation,14 clearly indicating that the
protein environment causes the sulfur-based triradicaloid state
to be less favored than the porphyrin-based triradicaloid state
of Cpd I. Another interesting difference between CASPT2
gas phase and CASPT2/MM calculations for the ΣS/ΠS state
is that our CASPT2/MM calculation predicts that the former
state is lower in energy than the latter, while in the gas phase
the state ordering is opposite. This difference may be caused
by the larger stabilization of the πS orbital compared with
the σS orbital, due to interactions with the protein environ-
ment caused by the different orbital directionalities. The main
stabilizing factor for the σS orbital comes from the iron ion
and it is present in the gas phase already, while for the πS

orbital, the protein may have additional stabilization through
an amidic hydrogen-bonding-type interaction (NH · · ·S)
between the sulfur atom and the peptide bonds (HN-CO)
of the proximal residues around the proximal cysteine ligand.
We note that these sulfur-based radicaloid states were
predicted to be 60-70 kcal/mol lower than the a2u triradi-
caloid state at the CASSCF level in the previous gas phase
calculation,14 but here within the protein environment, the
sulfur and a2u triradicaloid states of Cpd I are already
comparable at the CASSCF/MM level, in accord with
previous analysis.7 This situation in protein makes the
multistate strategy less crucial here than that in the gas phase
(see Table S9 in SI).14

Another noteworthy feature in Table 5 is that the differ-
ences between the corresponding relative energies of sulfur-
based triradicaloid states of CPO and P450cam are quite large,
which is in contrast with the similar state gaps for the other
states in Table 2. The gaps in CPO are significantly smaller
than the corresponding ones in P450cam, especially for the
ΣS state. This result indicates that the relative stability of
sulfur-based triradicaloid states can be quite enzyme-de-
pendent. It is generally accepted that CPO has a more polar
pocket than the one possessed by P450cam,1,2 which was also
confirmed by the previous QM/MM analysis.19a But our
results show that at least for the region near the sulfur atom,
the accumulation of the negative charges on S in state 1
compared with the sulfur-based triradicaloid states (17-20)
is less favored energetically in CPO than that in P450cam.
This result is quite surprising since it is usually considered
that the polar environment should generally favor the
electronic state with more charge separation and localization.
The most probable explanation for these very different
relative energies of the ΣS states in the two enzymes could
be due to the Fe-S bond distance, which is about 0.06 Å
shorter in P450cam than that in CPO at the QM/MM level.
This shorter bond stabilizes the σS orbital of S (but less for
πS) and thereby increases the corresponding state energy gap
for P450cam.

G. A Brief Discussion on the Potential Impact of the
Cpd I States on Reactivity. The above CASPT2/MM results
reveal that Cpd I is a remarkable reagent having more than
20 states jammed within 30 kcal/mol. Considering that the
computed barriers for H abstraction range between 6-23
kcal/mol,1g depending on the substrate, it might be expected
that many of the states will contribute to the reactivity of
Cpd I by affecting the transition state character, and some
may even be involved directly. In this last respect, CASPT2/
MM shows that in addition to the consensual triradicaloid
states, 1 2,4A2u(FeIV), there may be four additional low-lying
states. These are the pentaradicaloid, 2 4A2u(FeIV), and the
perferryls, 2Πyz/xz(FeV) and 4∆xy(FeV). In the 6A2u(FeIV) state
(not calculated in this work), the a2u radical being ferromag-
netically coupled with a S ) 2 Fe-O ferryl unit should also
be close in energy to the pentaradicaloid 2 4A2u(FeIV) state.
We cannot say with certainty that the CASPT2/MM energy
gaps are converged with respect to the active space and basis
set used, but if we take the present results at their face values,
then the energy gaps of the perferryl and pentaradicaloid
states relative to the 1 2,4A2u(FeIV) states are well below most
of the barriers calculated so far for the triradicaloid states.1f,g

One should then consider that the pentaradicaloid and
perferryl states should be energetically available along the
reaction pathways of Cpd I. In such a putative scenario, if
the crossover probabilities from the triradicaloid to the
pentaradicaloid and perferryl states were nonzero, these latter
states, being so low in energy and perhaps also possessing
small barriers, would have led to MSR and brought about a
significant enhancement of reactivities of the P450 and CPO
Cpd I species. However, with one exception in model
systems,10 all the other LFP generated Cpd I species of P450
and synthetic models are reactive but not overwhelmingly
so.6 This suggests that there are no additional low-lying
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states that participate in a direct way in the normal reactiVity
nascent from the 1 2,4A2u(FeIV) states. However, if the present
CASPT2/MM results are reliable, then the FeV and the 2
4A2u(FeIV) states may affect reactivity if they could be
accessed directly, as suggested in recent papers for the
perferryl states.6,18 Will these state-specific reactions indeed
be so much faster than the ground state’s reaction? This is
still a question. Let us then discuss some prospective features
of these state-specific reactivities.

ReactiVity Patterns of the Pentaradicaloid States. As seen
from the main configuration of the pentaradicaloid state
(Scheme 2), the number of unpaired electrons on iron-
centered orbitals changes from 2 to 4 compared with the
triradicaloid state 1. This brings more exchange interaction
for the pentaradicaloid state relative to the triradicaloid
states16 and counteracts the orbital gap due to the dxy to
σ*x2-y2 excitation. This effect increases along the oxidation
pathway. Thus, as shown in Scheme 4, for example, during
the hydroxylation reaction by the pentaradicaloid state of
Cpd I, the number of unpaired electrons on iron increases
to five, and hence increasing the number of exchange
correlation interactions lowers the hydrogen abstraction
barrier from this state relative to the triradicaloid state.
Although this is counteracted to some extent by the orbital
energy gap, associated with the a2ufσ*z2 electron shift, the
exchange stabilization wins out and leads to a net stabiliza-
tion; hence, the pentaradicaloid states would be typified by
exchange-enhanced reactiVity.

The DFT16 and DFT/MM9 calculation have shown that
hydrogen abstraction barrier on the FeIV pentaradicaloid state
is indeed much lower than that on the FeIV triradicaloid state.
Given the fact that CASPT2/MM predicts the energy of the
2 4A2u(FeIV) state to be virtually degenerate with the ground
state, even if its stability is overestimated, the impact of this
state on the reactivity of Cpd I has to be seriously considered.
We note that a similar conclusion has been reached from
DFT/MM and DFT calculations, namely, that, even at these
levels, the involvement of the pentaradicaloid states in
reactivity is a likely event.9,16 However, with the exception
of a recent tentative suggestion by Groves,10 there are no
experimental data or methods that enable evaluation of the
potential contribution of the pentaradicaloid channel to
reactivity. Reconsideration of the effect of the pentaradicaloid
states on the spectroscopy (e.g., Mössbauer) of the triradi-
caloid ground state may assist the evaluation of the energy
gap between the states.

ReactiVity of the Perferryl States. Turning now to the
FeVdO states, we note that reactivities of FeVdO as well as
of FeIVdO reagents have been studied in the nonheme
complexes.61-72 However, the reactivity of the only char-
acterized perferryl reagent64 seems to be inferior compared
with the most reactive ferryl reagents like [BnTPEN-
FeIV(O)(O3SCF3)]+ (BnTPEN, N-benzyl-N,N′,N′-tris(2-py-
ridylmethyl)-1,2-diaminoethane) which can even activate an
inert C-H bond like in cyclohexane.72 In contrast, the
reactivity of the putative perferryl reagents, of the
L4FeV(O)(OH) types, is indeed higher than that of ferryl
reagents,61-63 but since these perferryl complexes have not
been characterized, one may question whether or not the
experimental trend actually reflects intrinsic perferryl reactiv-
ity. Very high reactivity has been reported for the PorMnVO
reagents.73 However, as was argued by Groves73a and
demonstrated computationally by Groves-Car et al.,74 Eisen-
stein et al.,75 and one of us,76 the high reactivity of these
reagents is due to TSR (two-state reactivity) and involves
the higher spin states of these reagents.

In summary, before drawing any conclusions on the
putative reactivity of the FeV and pentaradicaloid states of
P450, one would have to ascertain (e.g., by CASPT2/MM)
that such state specific reactions are indeed faster than those
nascent from the 1 2,4A2u(FeIV) ground states.

Conclusions

The ab initio multireference correlated QM/MM treatment
for an open-shell transition-metal-containing biochemical
system is highly complex and requires considerable insight
and technical control and hence has not been widely used
compared with the DFT/MM approach in computational
bioinorganic chemistry.77 However, the increasing number
of applications of ab initio multireference correlated methods
recently in transition metal containing molecules8,13,14,17,48,78-92

is naturally leading also to applications in the complex field
of metalloenzyme systems. In this work, we performed high
level ab initio multireference correlated CASPT2/MM cal-
culations to assess the low-lying states of the important
reactive species Cpd I in P450cam and CPO, at a significantly
advanced level of state completeness, overlaid with the
protein environment effects. This is achieved by using a large
active space with all the iron 3d orbitals and some 4d
involved orbitals to account for the double-shell effect.
Similar with a previous CASSCF/MM application to the oxy-
heme species in myoglobin,93 the current CASPT2/MM
treatment for the Cpd I system is different in many aspects
from the gas phase CASPT2 treatment. This difference
underscores the influence of the protein environment on the
state description and energy levels in these electron deficient
systems. In this respect, the CASPT2/MM study shows that
DFT/MM results are reliable for many of the states studied
here, and with the notable exception of the pentaradicaloid
and perferryl states, there is by and large a reasonably good
accord between DFT/MM and CASPT2/MM.

The CASPT2/MM calculations predict that in Cpd I in
addition to the two nearly degenerate FeIV quartet and doublet
triradicaloid states, as revealed by DFT and DFT/MM
methods, both FeIV pentaradicaloid and FeV states are

Scheme 4. Schematic Representation of Increase of the
Exchange Interaction during Electron Redistribution in
Hydrogen Abstraction of C-H Bond by Quartet
Pentaradicaloid State
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possibly accessible in energy. This raises questions whether
the FeV states or FeIV pentaradicaloid states of Cpd I could
contribute directly to the reactivity of Cpd I of P450. Previous
DFT/MM calculations suggested that the hydrogen abstrac-
tion barrier on the FeIV pentaradicaloid state is lower than
that on the FeIV triradicaloid state.9 If these states are really
involved in reactions of Cpd I, then a multistate reactivity,
rather than the two-state reactivity suggested before,94 would
necessarily become a minimal and a better model to
understand Cpd I reactivity in P450. A better assessment of
this feature can, however, be made only after ascertaining
that the present CASPT2/MM state gaps are converged with
respect to increasing the active space and basis set, and by
estimation of the barriers of reactions catalyzed by P450 such
as hydroxylation at the CASPT2/MM level. Studies along
these lines are under way in our research group.
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(44) Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994,
100, 5829–5835.

(45) Kepenekian, M.; Robert, V.; Le Guennic, B. J. Chem. Phys.
2009, 131, 114702/1–114702/8.

(46) Dey, A.; Ghosh, A. J. Am. Chem. Soc. 2002, 124, 3206–
3207.

(47) Due to the systematic error of the original CASPT2 zero-
order Hamiltonian for states with different numbers of
unpaired electrons, we did not use the original CASPT2 zero-
order Hamiltonian to calculate relative energies of doublet
FeV states.

(48) Roos, B. O.; Veryazov, V.; Conradie, J.; Taylor, P. R.; Ghosh,
A. J. Phys. Chem. B 2008, 112, 14099–14102.

(49) de Visser, S. P.; Ogliaro, F.; Shaik, S. Chem.sEur. J. 2001,
7, 4954–4960.

(50) (a) Neese, F. Coord. Chem. ReV. 2009, 253, 526–563. (b)
Neese, F. J. Biol. Inorg. Chem. 2006, 11, 702–711.

(51) (a) Neese, F. J. Chem. Phys. 2003, 119, 9428–9443. (b)
Neese, F.; Petrenko, T.; Ganyushin, D.; Olbrich, G. Coord.
Chem. ReV. 2007, 251, 288–327.

(52) (a) Shaik, S.; Danovich, D.; Fiedler, A.; Schröder, D.; Schwarz,
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M.; Ribas, X.; Luis, J. M.; Que, L.; Costas, M. Chem.sEur.
J. 2009, 15, 3359–3362. (g) Que, L. Acc. Chem. Res. 2007,
40, 493–500. (h) Costas, M.; Mehn, M. P.; Jensen, M. P.;
Que, L. Chem. ReV 2004, 104, 939–986.

(62) (a) Bassan, A.; Blomberg, M. R. A.; Siegbahn, P. E. M.; Que,
L. J. Am. Chem. Soc. 2002, 124, 11056–11063. (b) Bassan,
A.; Blomberg, M. R. A.; Siegbahn, P. E. M.; Que, L. Angew.
Chem., Int. Ed. 2005, 44, 2939–2941. (c) Bassan, A.;
Blomberg, M. R. A.; Siegbahn, P. E. M.; Que, L.
Chem.sEur. J. 2005, 11, 692–705.

(63) Quionero, D.; Morokuma, K.; Musaev, G.; Mas-Ballesté, R.;
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(h) Radoń, M.; Broclawik, E.; Pierloot, K. J. Phys. Chem. B
2010, 114, 1518–1528.

(80) (a) Ghosh, A.; Taylor, P. R. Curr. Opin. Chem. Biol. 2003,
7, 113–124. (b) Ghosh, A. J. Biol. Inorg. Chem. 2006, 11,
712–724. (c) Ghosh, A.; Gonzalez, E.; Tangen, E.; Roos, B. O.
J. Phys. Chem. A 2008, 112, 12792–12798. (d) Ghosh, A.;
Taylor, P. R. J. Chem. Theory Comput. 2005, 1, 597–600.

(81) (a) Herebian, D.; Wieghardt, K. E.; Neese, F. J. Am. Chem.
Soc. 2003, 125, 10997–11005. (b) Fouqueau, A.; Mer, S.;
Casida, M. E.; Lawson Daku, L. M.; Neese, F. J. Chem. Phys.
2004, 120, 9473–9486. (c) Fouqueau, A.; Casida, M. E.;
Lawson Daku, L. M.; Neese, F. J. Chem. Phys. 2005, 122,
044110/1-044110/13. (d) Ray, K.; Weyhermüller, T.; Neese,
F.; Wieghardt, K. E. Inorg. Chem. 2005, 44, 5345–5360. (e)
Petrenko, T.; Ray, K.; Wieghardt, K. E.; Neese, F. J. Am.
Chem. Soc. 2006, 128, 4422–4436. (f) Sundararajan, M.;
Ganyushin, D.; Ye, S. F.; Neese, F. Dalton Trans. 2009,
6021–6036.

952 J. Chem. Theory Comput., Vol. 6, No. 3, 2010 Chen et al.



(82) (a) Ordejón, B.; de Graaf, C.; Sousa, C. J. Am. Chem. Soc.
2008, 130, 13961–13968. (b) Kepenekian, M.; Robert, V.; Le
Guennic, B.; de Graaf, C. J. Comput. Chem. 2009, 30, 2327–
2333.

(83) Suaud, N.; Bonnet, M.-L.; Boilleau, C.; Labèguerie, P.;
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Abstract: The multiscale coarse-graining (MS-CG) method obtains CG interactions from
atomistic configurations, as demonstrated previously for a variety of soft matter and biological
systems. In this article, recent advances in MS-CG algorithms are described, and a recently
developed computer program MSCGFM for MS-CG calculations is introduced. The algorithms
enhance the efficiency and stability of MS-CG computations, and these algorithms are
incorporated into the MSCGFM program. As a result of these efforts, MS-CG calculations on
large scale systems such as peptide and proteins can become tractable, and the numerical
stability of solutions for ill-posed MS-CG problems can be regularized efficiently. Various
parallelization strategies are also discussed.

1. Introduction

Molecular dynamics (MD) simulations with conventional
empirical force fields such as Charmm,1,2 Amber,3 OPLS,4

and Gromos5 are widely used as a computational tool to study
soft matter and biophysical systems. A standard all-atom
force field typically contains parameters for molecular models
with one point mass representing each atom or heavy atom.
In typical atomistic MD simulations, observable time scales
range from picoseconds to a few microseconds, and tractable
system sizes are on the scale of nanometers. However, due
to the temporal and spatial limitations of simulations based
on all-atom resolution models, many processes in biology
are not able to be modeled using available force fields.6,7 In
these cases, coarse-grained (CG) modeling is a powerful tool
to study phenomena that involve larger time and length
scales.8 Here, we consider CG models that, like typical
atomistic molecular models, regard the system as a set of
point masses, called “CG sites”. Each CG site corresponds
to one or more of the atoms on the same molecule in an
atomistic model. It is common to construct such CG models

so that most molecules are represented by fewer sites than
its number of atoms in the atomistic model. In some cases,
some of the molecules, e.g., solvent molecules, have no sites
at all. CG models have fewer degrees of freedom than the
corresponding atomistic system and hence provide a lower
resolution description of the molecular system.

There are numerous ways to develop CG models for
different systems. Some approaches tune the parameters of
the CG model to reproduce selected physical properties of
particular systems. For example, in the MARTINI CG force
field,9 developed by Marrink and coworks and implemented
for lipid bilayer9 and membrane-protein systems,10 param-
eters are chosen to reproduce the experimental partitioning
free energy values for various components. Another category
of methods is based on a strategy in which the low resolution
CG model is developed using data from a high resolution
model, e.g., an all-atom MD simulation. The advantage of
this type of CG approach is that it is able to utilize existent
and mature all-atom force fields. In such approaches, an
ensemble of atomistic configurations is first generated by
performing simulations of the high resolution model, and
the low resolution model is then parametrized to reproduce
certain properties of the high resolution ensemble. The key
issue here is which properties to choose to link the models
of different resolutions. In the inverse Monte Carlo11 or
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iterative inverse Boltzmann12 method, the radial distribution
function (RDF) is usually chosen as the target for fitting in
order to obtain the CG model parameters. The inverse Monte
Carlo method has been applied to many systems. The reader
is referred to the article of Murtola et al. for a recent review.13

Some theoretical discussions of RDF matching can be found
in the literature.14-18 Higher order correlations, such as three-
body correlation functions, are not retained by RDF fitting,
and including higher order effects can become computation-
ally intractable in the inverse Monte Carlo method.17

Moreover, CG models that target the RDF do not in principle
reproduce thermodynamic properties of the system.19

In the multiscale coarse-graining (MS-CG) method,20-23

the key property that the CG model is constructed to fit is
the many-body equilibrium probability distribution function
of the positions of the CG sites in the atomistic system. A
mapping operator is used to define the location of each CG
site in an atomistic system as a function of the positions of
the atoms. (For example, if a CG site corresponds to a set
of atoms on a molecule, its location might be defined to be
the center of mass or the center of geometry of that set of
atoms.) The equilibrium distribution of atom positions in the
atomistic system then implies an equilibrium distribution of
the CG sites in the atomistic system. The MS-CG model that
corresponds to the atomistic system is defined to be the model
whose equilibrium distribution of CG sites is the same as in
the atomistic system.

The potential energy function of the MS-CG model
satisfies a variational principle. A numerical method for
performing variational calculations to obtain approximate
representations of that potential energy function has been
developed. The method requires, as input data, a large set
of configurations generated by computer simulations of the
atomistic system at equilibrium. The method also requires a
choice of basis functions to be used in the variational
calculation. The choice of a linear basis set reduces the
numerical work to standard but large scale problems in
numerical matrix computation. The method has been suc-
cessfully applied to a variety of liquids21,24,25 and biological
systems.20,26-30

The CG potential defined by the MS-CG method is in fact
the many-body potential of mean force of the CG sites
in the atomistic system at equilibrium. When a variational
approximation for that potential and its gradients are used
to simulate the CG model directly, the resulting forces acting
on the sites can be regarded as renormalized forces that take
into account the effect of the forces associated with the
degrees of freedom that were eliminated in going from the
atomistic to the CG system.

While the variational principle in MS-CG is strictly defined
from the theoretical point of view, the numerical implemen-
tation of it is more challenging. The force-matching problem
in MS-CG is a typical inverse problem in which one derives
the CG model parameters from the data of atomistic forces,
through minimizing a defined variational residual. In practice,
the least-squares problem that arises thereafter can be written
in the form of a linear matrix equation, by choosing
appropriate basis functions to ensure the linearity. However,
due to the nature of the molecular systems handled by the

MS-CG approach, there are some numerical challenges to
be overcome in developing highly efficient algorithms for
solving the least-squares problem.

The computational aspects of the variational problem are
challenging. The numerical problem can be formulated either
as that of obtaining the exact solution of a very large set of
inhomogeneous linear equations or as that of obtaining a
least-squares solution of a much larger overdetermined set
of such equations. Most algorithms for very large systems
use the latter formulation.

The first challenge in solving the MS-CG least-squares
problem arises from the huge dimension of the matrix for
the very large complicated systems to which the MS-CG
method is to be applied. For example, for problems of
interest, the column dimension of the matrix varies from
hundreds to tens of thousands. To make matters more
challenging, the row dimension of the matrix is proportional
to the product of the number of CG sites in an atomistic
configuration and the number of atomistic configurations that
are used as input data. In order to obtain good statistics for
the CG potential and force functions, a large number of all-
atom trajectory configurations are needed, which makes
storing the matrix in the physical memory of a typical
computer a formidable challenge. The whole matrix cannot
be stored in memory, which makes it hard to apply many
standard least-squares algorithms. Moreover, the enormous
problem size can even make it impossible to store the whole
matrix on a hard drive and implement some out-of-core
algorithms for the matrix equation. The large size of the
matrix equation highlights the need to develop “on the fly”
algorithms and apply corresponding least-squares algorithms.
The sparse nature of the matrix should also be utilized to
enhance computation speed and reduce the storage require-
ments. For example, the matrix in the MS-CG equations
typically contains less than 1% nonzero elements for many
large scale systems. Therefore, it is clearly desirable to
implement algorithms based on sparse matrix data structure
for more efficient memory usage and faster computation.

Another challenge in the numerical implementation of the
MS-CG equations arises from the fact that, for typical
problems of interest, basis sets typically employed, and data
sets typically used, the least-squares problem is numerically
ill-posed, with the matrix being nearly singular. Especially
for complex biomolecular systems, the ill-posed nature of
the problem usually creates a degeneracy of solutions that
can be affected by statistical noise in the input all-atom
configuration data. One way to enhance the stability of the
solution is to apply more robust least-squares solvers, such
as those designed for ill-posed problems. Moreover, the so-
called regularization method can be implemented, which can
prevent the overfitting phenomenon and produce solutions
with improved smoothness.

In this article, recent advances in the numerical solutions
of the MS-CG equations are presented. These include
algorithms for reading the all-atom MD trajectories and
generating the matrix equation, as well as strategies for
solving the least-squares problem. Data structure is closely
related to the algorithms, and therefore it will also be
discussed. Before these new algorithms were employed, our
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original MS-CG program could perform calculations for CG
models with only around 10 to 15 types of CG sites due to
the limitations of storage space and computation speed. By
contrast, the new algorithms in this paper extend the
application scope of the MS-CG approach to complex
biological systems such as proteins and membranes. All new
algorithmic features described here are implemented in the
MSCGFM program that has been recently developed for MS-
CG calculations.

The structure of this paper is as follows: Section 2 briefly
introduces the MS-CG methodology and discusses basis
functions in the MS-CG least-squares problem. The choices
for dense/sparse matrix data structures are then given in
section 3, accompanied by a description of the neighbor list
algorithm for generating the matrix equation. In section 4,
different algorithms for solving the least-squares problem
are discussed, and miscellaneous algorithms are described
in section 5. Finally, the last two sections, 6 and 7, contain
benchmark calculations and conclusions, respectively.

2. Multiscale Coarse-Graining Methodology

2.1. Summary of the MS-CG Calculations. The most
recent state-of-the-art discussion of the MS-CG approach
along with its theoretical background can be found else-
where.22,23 Here, we will discuss only enough to provide
the background for the numerical considerations.

The goal of the MS-CG method is to develop a coarse-
grained model for an atomistic system. The atomistic system
is in general a molecular system whose configuration can
be represented by rn, which is the collection of position
vectors of the n atoms in the sytem. The total number of
CG sites on all the molecules is N. The position of site I,
denoted RI, is defined as RI ) MRI(rn), where MRI(rn) is a
mapping operator, which is a part of the definition of the
CG model.

The CG potential U(RN;φ) is a linear combination of ND

basis functions of an appropriate type, where φ is a one-
dimensional column vector of D parameters, φ1, ..., φND

,
which are the coefficients of the basis functions. In the CG
system, this potential determines the force on each site I

Both FI(RN;φ) and U(RN;φ) are linear functions of the
coefficients in φ. Obtaining a representation of those func-
tions that can be used in a computer simulation of the CG
system is the goal of the MS-CG calculation.

The MS-CG method provides the following prescription
for determining the φ array and thereby obtaining the CG
potential:

1. Perform molecular dynamics simulations of the atom-
istic system to obtain a large set of nt configurations rn that
are representative of a canonical distribution of configurations
for a specific temperature and volume. For each configura-
tion, also obtain the force acting on each of the n atoms.

2. Calculate the locations of all the sites for each
configuration.

3. Calculate a matrix F that has 3ntN rows and ND columns,
each of whose elements is calculated from the positions of
the N sites in one configuration and from one of the basis
functions.

4. Calculate a column vector f that has 3ntN elements, each
of which is calculated from the forces acting on the atoms
associated with one site in one atomistic configuration.

5. Determine

which is the column vector φ that minimizes the function (f
- Fφ)T(f - Fφ), which is a quadratic function of the entries
of φ. Here, T denotes the transpose. This is equivalent to
finding the φ array that approximately solves the overdeter-
mined set of linear equations

in a least-squares sense. (The symbol = is a reminder that
the least-squares solution of the overdetermined set of
equations is approximate, rather than exact.)

See refs 22 and 23 for further details.
2.2. Basis Functions. The choice of basis functions for

the potential U and force functions FI is made on the basis
of physical intuition about the contributions that are expected
to be important and to be easily representable. Many of them
are expressed as functions of simple collective variables, such
as the scalar distance between two sites. For example, if x
is such a collective variable that is a function of RN, then a
contribution to the potential U(RN;φ) might be of the form

The corresponding contribution to the force FI(RN) would
then contain derivatives of the form dfd(x)/dx. Depending
on the problem, either the basis functions fd(x) or f′d(x), would
be represented in some simple form.

In early MS-CG developments of Izvekov and Voth,21

cubic spline basis functions were implemented for the force
functions. Several other types of basis functions including
linear spline and delta functions were also tested and
compared in the work of Noid et al.23 Generally speaking,
these low-order spline functions are adequate for representing
functions of one collective variable. Another set of basis
functions was introduced by Das and Andersen to ensure
that the force and its spatial derivatives are continuous.31

Low-order spline functions have the flexibility required
for variational calculations of complicated CG interactions.
However, typically, a large number of basis functions are
needed for each type of interaction. Consequently, the
number of unknowns in eq 2a can be very large, which adds
to the computational challenges described in the first section.
A natural solution for the problem is to incorporate higher-
order polynomial basis functions and reduce the total number
of basis functions needed. This has been achieved by
applying B-spline functions as basis sets, introduced in the
work of Lu and Voth.29 It has been shown that both the
computation time and required memory are reduced by using
B-splines in MS-CG calculations, while at the same time

FI(R
N;φ) ) - ∂

∂RI
U(RN;φ) (1)

arg min
φ

(f - Fφ)T(f - Fφ) (2a)

Fφ = f (2b)

∑
d

φdfd(x) (3)
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good accuracy can be retained.29 Another advantage of
B-spline basis functions is that the smoothness of the force
function and some of its derivatives can be guaranteed, a
desirable feature for filtering statistical noise in force data.
However, in practice even with B-spline basis functions, the
total number of unknowns in eq 2a can be very large, due
to the complexity of realistic systems. Both linear spline and
B-spline basis functions have therefore been implemented
in the MSCGFM program to deal with different requirements
for accuracy and efficiency.

3. Generating the Matrix Equation in Multi-
scale Coarse-Graining

3.1. Neighbor Search Algorithm. In order to perform
the calculations, the vector f and the matrix F in eq 2a must
be constructed. The vector f is easily calculated from the
atomistic force data that is generated during the original
atomistic simulation. The calculation of F requires identifica-
tion of all sets of sites that are close enough to each other
that one or more terms in U(RN;φ) can generate forces that
act between them. Here, we will discuss only the algorithm
for nonbonded interactions between pairs of sites that are
close enough to interact.

When the system size is large, the direct search for each
nonbonded pair of sites that are within a specific cutoff
becomes very inefficient. For such a simple search algorithm,
the number of interactions to be computed is N(N - 1)/2,
where N is the total number of CG sites in the system.
Fortunately, the cell index method32,33 widely used in MD
simulations can also be implemented here. In this method,
the simulation box is divided into a number of cells of a
three-dimensional lattice. Each cell has a dimension that is
equal to the cutoff distance. When the cell structure is
applied, only 13.5NNc interactions are calculated, where Nc

is the average number of sites per cell. This is because the
neighbor search is only performed for sites within the same
cell and neighboring cells. In practice, the cell information
is stored in a linked-list data structure, which enables a very
efficient neighbor search with the cell index method. Once
all the pairs are found, the matrix elements of F are
calculated. The whole procedure is illustrated in Figure 1 as
pseudocode. Although the approach in Figure 1 is specific
for pairwise interactions, three-body CG interactions can be
treated with a similar procedure. (Interactions that involve
more than three sites are usually not practical in MD

simulations.) In practice, the MS-CG calculation is dramati-
cally slower without implementation of the cell index
method. When the cell index method is used, the computation
time for the generation of the F matrix step is much less
than the time needed for performing the subsequent matrix
calculations. Each atomistic configuration that is analyzed
adds 3N rows to the matrix F. Depending on the method
used to performed the matrix calculations (discussed later),
the partial result for F from one configuration or a small
block of configurations is converted to an intermediate matrix
or a block solution for φ. The partial result for F is
overwritten thereafter.

3.2. Dense and Sparse Matrix Formats. To perform the
calculation associated with eq 2a, memory is required for
both F and f, and some additional work space is needed.
The memory requirement for storing F is by far the largest
of the three. As will be shown in the next section, for most
MD systems, F is a sparse matrix, allowing compact storage
via sparse matrix formats. In the MSCGFM code, both dense
(standard array data structure) and sparse formats are
supported for different least-squares solvers. Although using
the sparse matrix format usually saves space, the implemen-
tation of a dense matrix data structure makes it straightfor-
ward to use a large number of available packages for linear
algebra calculations, such as LAPACK.34 In addition, some
equation solving algorithms require operations in dense
matrix form, as will be discussed later in this article.

If F is very large and sparse, it is more appropriate to
apply a sparse matrix format for storing and solving the
minimization problem. This is the case for most complex
multicomponent systems, especially biomolecular systems
in which the number of interactions is very large. For some
systems like proteins, the storage of the matrix in dense
matrix form becomes impractical, which will be further
demonstrated in the next section. It is natural to adopt the
conventional Compressed Sparse Row (CSR) format35 or
similar formats since these formats are supported by most
sparse linear algebra algorithms and software. In the CSR
format, three arrays are needed for the number of nonzero
elements in each row, the column indexes of the nonzero
elements, and the nonzero element values, respectively. For
both the column index array and element value array, both
the length and the sequence of the array are fixed, and the
memory occupation is continuous, as demonstrated in Figure
2a. These fixed properties of the arrays enable efficient matrix
calculations since in these computations the memory access
is continuous and the memory range is predefined. However,
the CSR format is intrinsically not compatible with the
neighbor search approach in Figure 1. In the neighbor
searching method, the filling of the matrix elements is
random and the total number of nonzero elements is unknown
until the whole search procedure is finished. Because the
array length is not predefined, allocation of memory then
presents a challenge. Although in many programming
languages such as C there are functions to dynamically
allocate memory, this kind of dynamical allocation usually
dramatically lowers computational efficiency in matrix
computations. Besides the array length issue, the random
filling of the matrix means that every element sequentially

Figure 1. Pseudocode for the neighbor search algorithm with
the cell index method.
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after the newly filled one must be moved in order to ensure
the correct position of each element. This element moving
process happens frequently during the neighbor search
procedure and can make the whole neighbor search algorithm
impractical. Therefore, another sparse matrix format, namely,
the linked list format,36 is implemented for the matrix F
during the neighbor search. The discontinuous memory
occupation of the linked list format is demonstrated in Figure
2b. As shown in that figure, there are no arrays needed in
the linked list format, and the matrix elements are stored as
scattered “nodes” in memory. For each node, both the
element information and the address for the next node are
stored. The address information ensures that each node in
the linked list can be found sequentially. In addition, there
is a “head” node that serves as the starting point of the linked
list and stores information like the total number of nonzero
elements. Two advantages exist for this linked list data
structure in the neighbor search. First, the length of the linked
list does not need to be predefined, and it is determined by
the address information of the last node. Memory space for
each node is created when the new node is generated in the
linked list format, which allows efficient usage of computer
memory. Second, random insertion of matrix elements
becomes computationally efficient since only the address
information of the previous node needs to be modified during
the insertion. Once the matrix F is created after the neighbor
search and stored in the linked list format, it can be converted
to the conventional CSR format and then is ready to be
processed by many sparse linear algebra algorithms. In this
equation generation approach with the linked list format, two
copies of matrix F are created in both linked list and CSR
formats. The gain in computation efficiency far outweighs
the memory cost of maintaining two copies.

4. Solving the Least-Squares Problem in
Multiscale Coarse-Graining

There are a number of established ways to perform the
minimization in eq 2a.37 Due to some special numerical
properties of the F matrix, several different strategies are
discussed here.

4.1. Properties of the Least-Squares Problem. Matrix
Dimension. Table 1 shows row/column dimensions of the
matrix F for several simple liquid and biomolecular systems.
It is seen that, for simple liquids like water, F is rather small,
which indicates that eq 2a can be solved rapidly. However,
the size of the matrix increases dramatically with system
complexity. All biomolecular systems in Table 1 require
memory on the order of gigabytes to store the matrix F. Note
that for the numbers in Table 1 only 10 configurations of
the all-atom trajectory are counted. In practice, at least
hundreds to tens of thousands of configurations are needed
to ensure good statistical force sampling, depending on the
complexity of the system. Since the size of F is proportional
to the number of configurations, in real MS-CG calculations
the memory requirement for F is usually beyond the
hardware limit, even considering sparsity.

Sparsity. Table 1 also shows the percentage of nonzero
elements in the matrix F for different systems. Traditionally,
a matrix is considered to be sparse when the fraction of
nonzero elements is less than 5%. For simple liquid systems
like water, the matrix is typically not sparse. By contrast,
matrices for complicated systems are usually very sparse.
This phenomenon is understandable since the number of
nonzero interactions is limited for each CG site due to the
short range of most of the interactions. For complex systems,
the total number of force functions, which corresponds to
the column dimension of F, is a very large number. Each
basis function is typically nonzero only for a small range of
its arguments. Therefore, many elements of the F matrix are
zero. This sparse nature of F points to the need to implement
sparse linear algebra algorithms, to be discussed later.

Ill-Posed Problems. For many inverse problems, the
related least-squares problems are ill-posed. Typically, there
are two categories of ill-posed problems, called rank-deficient
and discrete ill-posed problems, which are distinguished from
one another on the basis of singular value analysis.38

In a singular value decomposition (SVD),39 the matrix F
can be expressed as product of three matrices:

where U and V are orthogonal matrices and S is a diagonal
matrix with diagonal elements that are called the singular
values of the matrix F. Conventionally, the singular values
Si are ordered in a nonincreasing fashion, and the condition
number is defined as Smax/Smin. For a rank-deficient problem,
there exists a cluster of small singular values, and the gap
between small and large singular values is obvious. In this
case, the small singular values are usually set to zero in order
to regularize the least-squares solution, which is the so-called
truncated SVD method.40

In the discrete ill-posed problem case, the singular values
decrease gradually without any obvious gap. Consequently,
various regularization methods need to be implemented in
order to balance the residual norm and solution size. Note
that common regularization methods used for discrete ill-
posed problems can also be applied to rank-deficient cases.

The singular values of a water system and a lipid bilayer
system are plotted in Figure 3. From Figure 3, it is seen that
the MS-CG problem for the water system is rank-deficient

Figure 2. Memory allocations for (a) CSR format and (b)
linked list format. In this example, there are four nonzero
elements in the sparse matrix.

F ) USVT (4)
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since the smallest singular value 2.9 × 10-16 is by far smaller
than any of the other singular values. It is also seen from
Figure 3 that the one for the lipid bilayer is a discrete ill-
posed problem.

The singular value analysis results can guide one to choose
an appropriate least-squares solver and regularization method.
Noid et al.23 point out that, by removing basis functions that
are related to unsampled interaction distances, the condition
number of F can be reduced. Appropriate column rescaling
may also reduce the condition number.23 However, due to
statistical noise and redundant information from all-atom
configurations,41 the MS-CG least-squares problem is still
typically ill-posed after applying such treatments. In practice,
for systems like simple liquids, the MS-CG least-squares
problem is usually with full-rank or rank-deficient. For
complex systems, rank-deficient and discrete ill-posed prob-
lems are often encountered.

4.2. Least Squares Algorithms. From the previous
discussion about the matrix size of F, it is clear that it is
impractical to store the whole F in memory, even with sparse
matrix formats. Because a large number of all-atom con-
figurations are usually needed, even various out-of-core least-
squares algorithms are not able to handle the resultant huge
matrix due to hard disk limitations. As a result, two categories
of least-squares algorithms have been developed for solving
the least-squares problem. The first type of method is based
on the “block average” approximation, which is the one used
by Izvekov and Voth in the early MS-CG applications.21 In
the second type, the huge size matrix eq 2a is first converted
to a smaller equation that is numerically equivalent to eq
2a. Then, the smaller equation is solved by various standard
methods. For this category, there are two major algorithms
called the normal equation method39 and the sequential
accumulation method,37 which will be discussed later.

Block AVerage Algorithm. The basic idea of the block
average algorithm is to divide the all-atom trajectory into
small blocks of configurations, minimize eq 2a for each
block, and obtain the φ vector for each block. The last step
of the block average algorithm is to calculate the average of

the φ vectors for the individual block as the final approximate
MS-CG solution. Noid et al.23 pointed out that, if there are
significant structural transitions that take place on a time scale
that is longer than the block size, there might be systematic
error from the block average approach. More theoretical
investigation is therefore needed on the applicability of the
block average method. However, numerical results from the
MS-CG applications to date show that the method is a
reasonable approximation for many systems and a discussion
can be found in the literature.23 The block average method
is also the only method in which it is possible to use sparse
solvers since in this method small problems in the form of
eq 2a are directly solved and the sparsity of F can be utilized
by least-squares solvers. The other algorithms involve matrix
transformations that may destroy the sparsity of the relevant
matrices.

Normal Equation Algorithm. It is straightforward to show
that any solution φ of the minimization problem in eq 2a is
also a solution of the following equation:

Moreover, the solution of eq 5 is unique if and only if the
solution of eq 2a is unique. FTF is an ND × ND matrix (much
smaller than F, which is 3nN × ND), and so algorithms based
on solving eq 5 require less memory than those that deal
with eq 2a. The matrix FTF can be constructed directly from
the atomistic configuration data without first constructing F.

Equation 5 is a set of linear equations that in principle
can be solved exactly. Direct methods of solution as well as
least-squares methods can be applied. Since the least-squares
solver needs to be applied only once to solve eq 5, for small
to medium sized systems (i.e., those with up to around 10
types of CG sites), the normal equation algorithm is faster
than the block average method. Unlike the case of the block
average algorithm, the normal equation algorithm in principle
gives the exact solution of the variational problem in eq 2a.
However, in matrix computations, the machine error and
statistical noise from data need to be considered. The
condition number of FTF is the square of the condition
number of F. Therefore, it is usually not recommended to
work with eq 5 for the high condition number problems37,38

that are often seen in MS-CG applications. Another disad-
vantage of the normal equation algorithm is that the
information of the residual of eq 2a is lost during the normal
equation transformation. Although this information is not
necessary for a CG force field, it is an important quantity
when a regularization method needs to be implemented. The
details of regularization will be discussed later in this article.

Sequential Accumulation Algorithm. In the sequential
accumulation algorithm introduced by Lawson and Hanson,37

the precision and condition number issues in the normal

Table 1. Matrix Dimension and Non-Zero Element Ratio for the MS-CG Calculations for Selected Molecular Systemsa

system CG type nrow ncol nrow × ncol memory nonzero element ratio (%)

1000 water 1 30 000 161 4 830 000 4.6 MB 23
128 lipid (DOPC/DPPC 1:1) + 4000 water 15 173 760 35 031 6 086 986 560 5.7 GB 0.24
A polypeptide + 6256 water 19 199 530 35 058 6 995 122 740 6.5 GB 0.17
T4 Lysozyme + 9739 water 22 297 150 49 292 14 647 117 800 13.6 GB 0.13

a For each system, 10 frames of all-atom trajectory are included in the calculation.

Figure 3. Singular value distributions for (left) a 1000 water
system and (right) a 64 DPPC + 3846 water system.

FTFφ ) FTf (5)
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equation algorithm do not exist. The key idea of this
algorithm is to convert eq 2a to a smaller least-squares
problem as37

where R is a upper triangular matrix with dimension ND ×
ND, d is a vector of ND length, and e is a real number. This
transformation is achieved through a number of QR decom-
positions in which F needs to be divided into blocks. Besides
obtaining the same set of solutions, eq 6 has some desirable
numerical properties. First, it has the same residual as that
in the original least-squares problem eq 2a, and the residual
is simply the value of e in eq 6. Second, the matrix R has
the same set of singular values as F, and there is no precision
loss as in the normal equation algorithm. Due to the above
properties, the sequential accumulation algorithm is usually
the first choice for very ill-posed problems since the condition
number will not increase during the transformation from eq
2a to 6, and various regularization methods can be easily
implemented. The memory requirement and computational
efficiency of this algorithm highly depend on the block size
during the transformation. Generally speaking, the smaller
the block size, the smaller the memory space required and
the more computation time needed. During the transforma-
tion, memory is required for both R and the block of F.
Typically, the sequential accumulation algorithm is slower
than the normal equation algorithm.

4.3. Least Squares Solvers. There are a number of
standard solvers for solving the least-squares problems, and
the choice of solvers largely depends on the availability of
optimized software. Many dense solvers such as Gaussian
elimination are not robust for problems whose matrix does
not have full rank. Thus, they cannot be chosen to solve the
MS-CG problem. Two common dense solvers for rank-
deficient problems are SVD and QR decomposition with
pivoting.39 For dense matrix algorithms like the normal
equation algorithm and sequential accumulation algorithm,
the solver is used only once during the whole MS-CG
calculation, and the speed of the solver is not very important.
Therefore, the SVD method is implemented in this case,
although it is slower than the method of QR decomposition
with pivoting. On one hand, SVD is a good choice for high
condition number problems that are often encountered in MS-
CG applications. On the other hand, the results of singular
value analysis identify problems of an ill-posed nature.
Sparse solvers can be used with the block average algorithm
in MS-CG calculations. In this case, the least-squares QR
(LSQR) algorithm42 is usually implemented since it is known
to be a robust solver for ill-posed problems.

Various algorithm/solver strategies in the MSCGFM
program are listed in Figure 4. For very complicated systems
such as proteins with around 20 CG site types, the block
average algorithm with sparse matrix format and LSQR
solver is usually the only computationally affordable choice
due to the very large memory requirement. The sequential
accumulation algorithm is good at very ill-posed problems.
When the matrix F is not very large and ill-conditioned, the
normal equation algorithm is often a good choice since it is

usually faster than the sequential accumulation algorithm.
Both the normal equation and sequential accumulation
algorithms involve intermediate dense matrices. Therefore,
only dense solvers can be implemented in these cases, and
the SVD solver is usually chosen.

4.4. Parallelization. If an efficient neighbor search algo-
rithm is used in the construction of the F matrix, the most
time-consuming part of the MS-CG calculation is the solution
of the least-squares problem in eq 2a. Thus, parallel
algorithms are applied only to the equation solving process.
Since there are different equation solving algorithms for
different types of MS-CG applications, separate paralleliza-
tion strategies have to be developed for each case.

In the block average algorithm, the computation for each
block is intrinsically independent. This makes the parallel-
ization strategy quite straightforward. To parallelize the MS-
CG calculation in this case, a number of independent
processes are created, and each single process is responsible
for the computation of a certain number of blocks. The
average block solution from each process is then stored on
hard disk, and the final average can be calculated from these
solutions. No communication is necessary between any of
the processes, so the parallel efficiency can be considered
to be 100%. One disadvantage of this parallel strategy is
that each process needs the same amount of memory as that
for the serial computation. However, the block average
algorithm is usually used for very large systems, and from
Table 1 it can be seen that the matrix F is always very sparse
in this case. As a result, the MS-CG calculation with sparse
matrix format is not extremely demanding for memory, and
the above strategy works in most applications. In principle,
MPI-based sparse solvers may be implemented for problems
with extremely large memory requirements that cannot be
handled by the above strategy. However, the upper bound
for the number of CG site types is around 20 to 30 for protein
systems studied to date, and in practice these applications
are tractable by the above parallelization strategy. In addition,
the MPI-based sparse solver may reduce the parallel ef-
ficiency due to communication requirements. In the MSCG-
FM program, the parallelization for sparse algorithms is
realized by the above strategy of independent processes,
while the MPI-based algorithm is still under development.

[R
0 ]φ = [d

e ] (6)

Figure 4. Various choices of MS-CG data structures, algo-
rithms, and least-squares solvers.
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The normal equation algorithm is parallelized by the same
approach with independent processes. The MS-CG computa-
tion is divided into a number of processes for blocks of all-
atom trajectory frames. The intermediate information that
must be saved is block results for FTF and FTf. The final
results of FTF and FTf are then calculated on the basis of
the block results from individual processes. Compared to the
block average algorithm, the required hard disk space for
intermediate results is much larger since both the left- and
right-hand side information must be stored. This hard disk
requirement is usually not a serious problem because the
normal equation algorithm is used mostly for small systems.

In the sequential accumulation algorithm, the all-atom
trajectory must be treated sequentially. Hence, it is not
possible to divide the MS-CG calculation into independent
processes and apply the above parallelization strategy.
However, since the dense QR decomposition involved in the
algorithm is included in MPI-based linear algebra software,
such as SCALAPACK,43 it is possible to implement MPI-
based solvers in this case. Because of the need for interpro-
cess communication, the parallel efficiency in this case may
be much less than 100%, depending on the matrix structure
and hardware/software configurations. However, since the
sequential algorithm is usually used for small systems, in
most applications no internode parallelization is necessary.

So far, the discussed parallelization strategies can be
applied for both distributed and shared memory hardware.
Presently, computer clusters with multi-CPU/multicore nodes
and high speed internode connections are the standard in high
performance scientific computing. Multicore CPUs have also
become popular in workstations. In these cases, the comput-
ing node or CPU can be considered a computing unit with
shared memory. Thus, it is desirable to implement parallel-
ization for shared memory systems that benefits from the
hardware structure. These parallelization approaches, such
as the widely used OpenMP library,44 can be used with the
distributed memory parallelization discussed above or used
alone for small- to medium-size problems. Fortunately, the
Intel Math Kernel Library (MKL)45 supports threaded
LAPACK functions for linear algebra computations through
the OpenMP environment. This is utilized for dense matrix
algorithms in MS-CG calculations, and both the normal
equation algorithm and the sequential accumulation algorithm
are threaded.

4.5. Regularization. Since eq 2a is ill-possed in most
medium- to large-size MS-CG applications, it is necessary
to consider numerical regularization methods. For rank-
deficient problems, simple regularization methods like the
truncated SVD method that is implemented with the SVD
solver in MS-CG calculations can generate reasonable results.
However, more sophisticated regularization must be imple-
mented for discrete ill-posed problems in MS-CG applica-
tions. For example, Liu et al.46 successfully implemented a
Bayesian regularization approach for the MS-CG problem.
The results from Liu et al. show that the CG force curve in
badly sampled interaction distances can be dramatically
improved through the Bayesian treatment. However, the
regularization method introduced here is different compared
to that from Liu et al. in the following ways: First, the

regularization from Liu et al. is designed for square equa-
tions; i.e., it is designed for the normal eq 5, whose matrix
has a larger condition number than the matrix in eq 2a. The
residual information that is important for regularization is
also lost during the conversion to the normal equation.
Second, the algorithm of Liu et al. involves a matrix
inversion of FTF. This makes the computation very expensive
for large systems since the matrix inversion calculation is
well-known to be slow.47 Finally, the iterative scheme
proposed by Liu et al. might converge slowly for complicated
systems. The goal here is therefore to apply a regularization
scheme that acts on the original eq 2a and is computationally
inexpensive.

The Tikhonov regularization with L-curve criteria38 for
choosing regularization parameters is very successful for
many ill-posed problems and is therefore appropriate to
regularize eq 2a. In Tikhonov regularization, instead of
solving eq 2a, one solves a regularized equation

Here, λ is a regularization parameter and I is the identity
matrix. By adding the regularization term λI, the solution
becomes smoother and the residual norm becomes larger.
For the original eq 2a, a direct solution is often dominated
by contributions from noise and round-off errors, and adding
the regularization term can solve this problem at the cost of
a slightly increased residual. Hence, the main objective in
Tikhonov regularization is to choose a reasonable parameter
λ in order to obtain the balance between solution accuracy
and smoothness. This can be achieved by applying the
L-curve criteria in which λ is chosen to give the “corner” of
the residual norm-solution norm curve on a logarithm scale
plot, where the corner is defined as the point with maximum
curvature. In a standard L-curve procedure, a number of
values of λ are chosen, and the corresponding residual norms
and solutions norms are calculated. The results are then
plotted on a log-log scale, and the corner point is found
after numerical interpolation of the curve using splines. There
are a few drawbacks, however, for applying this procedure
in MS-CG calculations. First, the matrix F is not stored
during the MS-CG calculation, and for each λ, it needs to
be rebuilt by scanning the whole all-atom trajectory. Second,
eq 7 must be solved for a number of different values of λ,
which is the most expensive part of the L-curve calculation.
Finally, the result of the corner point strongly depends on
the interpolation scheme. Because calculating one point on
the L-curve is expensive, usually only a few points on the
plot can be obtained, and the interpolation accuracy can be
difficult to guarantee.

Fortunately, if SVD can be performed for F, the curvature
for a point on the L-curve can be expressed analytically as
a function of λ and singular values and vectors.48,49 In this
way, the procedure to find the corner turns out to be a one-
dimensional minimization problem involving λ. Therefore,
the atomistic trajectory needs to be read only once, and only
one SVD needs to be performed for the original matrix F.
This seems to be much more efficient than the above
approach of computing each L-curve point. However, the

[ F
λI ] = [f

0 ] (7)

Algorithms for Multiscale Coarse-Graining J. Chem. Theory Comput., Vol. 6, No. 3, 2010 961



huge size of F makes the direct SVD prohibitive in most
cases. Recall that in the sequential accumulation algorithm
the matrix R in eq 6 has the same singular values as F, and
eq 6 has the same solution and residual as the original eq
2a. Thus, regularization can be applied to eq 6 instead as

in which SVD of R is usually affordable.37 For extremely
large systems that are usually handled by the block average
algorithm with a sparse solver, it is still possible to convert
the L-curve corner-finding procedure to a one-dimensional
minimization problem involving λ. However, a least-squares
equation with a size similar to eq 2a needs to be solved for
each λ, and the whole λ optimization case is much more
expensive than the approach with SVD of eq 6.48

A numerical example of a system with 1000 TIP3P50 water
molecules is shown in Figure 5. In this example, a B-spline
basis function with the order k ) 40 and spacing 0.01 nm is
applied. An unreasonably high order B-spline is used to
demonstrate the possibility of the overfitting phenomenon
in MS-CG calculations. Since the matrix for this application
is small, it is possible to do SVD for the left-hand side matrix
in eq 6. Therefore, the curvature of the L-curve can be
calculated analytically, and the resultant one-dimensional
optimization value for λ is 1.5849. The black line in Figure
5 is the CG force curve after regularization with the λ value.
It is shown in Figure 5 that the original CG force curve has
many unphysical fluctuations corresponding to overfitting.
However, the force curve is smoothed after regularization,
and these artificial fluctuations disappear. Since the statistical
sampling for this CG water system is reasonable, it is hard
to observe the effect of regularization until a very large k is
used, and no regularization is needed for a normal k value.
It is expected that for other more ill-posed MS-CG problems
the difference between the results with and without regu-
larization appears to be more obvious, and regularization
becomes necessary.

5. Miscellaneous Algorithms

In MS-CG calculations, most basis functions in eq 3 are
spline functions. In order to define a spline interpolation,

the minimum and maximum distances for each interaction
need to be determined. A complete search for these distance
ranges is therefore performed before defining spline basis
sets. There are two advantages for doing the distance search
rather than guessing the ranges arbitrarily. On one hand, this
search assures minimal memory spaces are allocated for basis
functions. Spline basis functions are assigned to sampled
distances only after the search. On the other hand, excluding
basis functions corresponding to unsampled distances reduces
the condition number of the matrix F as pointed out by Noid
et al.23 For large systems, the distance searching can be time-
consuming, though it is still much faster than solving the
least-squares equation. Since only minimum and maximum
distances for each interaction are needed, the distance
searching can be divided into independent processes for small
trajectory blocks, which is straightforward to be parallelized
for large systems. Sometimes RDFs or bond/angle/dihedral
distributions are calculated for other purposes. In this case,
distance ranges can be extracted from distribution function
data, and the distance search is no longer necessary.

In the MS-CG application to ionic liquids by Wang et al.,24

the bonded interactions are determined from an inverse
Boltzmann approach because the bonded parameters are
usually more affected by statistical noise. CG parameters not
easily obtained from the MS-CG scheme can typically be
determined by inverting distribution functions or using some
knowledge based approach. The iterative procedure suggested
by Wang et al.24 can be applied to determine those CG
parameters. The MSCGFM code allows an arbitrary set of
the φ coefficients to be chosen in advance, input into the
calculation, and held fixed in the variational calculation. This
makes it possible to have the MS-CG variational principle
determine only a few critical CG interactions for complex
systems, and the computation expense can be reduced. The
variational calculation with some coefficients held fixed is
of the same form as eq 2a, with a new F matrix with fewer
columns than the original matrix, a new φ matrix that
includes the parameters that are to be varied, and a new f
vector with the same length as the original vector.

One advantage of specifying some interaction parameters
in advance and keeping them fixed in the variational
calculation is that it speeds up the MS-CG calculation,
especially when a sparse solver is used. In most biomolecular
all-atom systems, the number of solvent molecules is very
large, and in the corresponding CG system most CG sites
are solvent sites. Consequently, most elements in F are
determined by forces acting on the solvent in the atomistic
simulations. If the solvent-solvent interaction parameters
are not included in the variational calculation, the new F
matrix has many fewer nonzero elements than the original
F, and the MS-CG calculation is much less expensive for a
sparse solver. Usually the solvent-solvent interaction is
obtained from a separate MS-CG calculation for a pure
solvent system. For dense solver cases, removing solvent-
solvent interactions from the variational calculation does not
change the computation time dramatically since the matrix
dimension is only changed slightly.

Figure 5. The CG forces for water-water interactions. The
red line is the original MS-CG force, and the black line is the
force after regularization. Only force values in the range of
0.4 to 0.9 nm are plotted to clearly show the overfitting
phenomenon.

[R
0
λI ] = [d

e
0 ] (8)
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6. Benchmarks

Three systems were chosen to generate benchmarks of the
MSCGFM program. The first system contained 1000 TIP3P
water molecules,50 and a CG mapping was applied to this
system to obtain a one-site CG water model. For this system,
a linear spline of a grid spacing of 0.005 nm was applied.
The second system contained 64 DPPC lipids and 3846
TIP3P water molecules.50 A solvent-free DPPC lipid CG
model was then generated from the all-atom systems, and
the lipid CG mapping was similar to that used by Izvekov
and Voth.26 As a result, there were 960 CG sites and 7 CG
site types in the CG system. Bonds and angles were treated
as 1-2 and 1-3 two-body interactions, respectively, and
the CG potential contains no explicit dihedral terms.26 Two
different types of basis sets were applied to this system. The
first type were linear spline basis functions with a spacing
of 0.01 nm for the nonbonded interactions and 0.005 nm for
the bonded interactions. The second type were B-spline basis
functions with a spacing of 0.04/0.01 nm and B-spline order
k as 6/4 for the nonbonded/bonded interactions. In practice,
these B-spline parameters give a CG force field result that
is very similar to that from linear splines. The normal
equation algorithm and SVD dense solver were applied for
the above two systems to solve the least-squares problem.
The third system contained a bacteriophage T4 lysozyme
and 9733 explicit water molecules. After the all-atom to CG
mapping there were 9771 CG sites and 32 CG site types in
the CG system. All adjacent protein CG sites were connected
by bonds, which made the total number of bonds 29. The
B-spline basis functions for this system had a spacing of
0.03 nm for the nonbonded interactions and 0.01 nm for the
bonded interactions. The B-spline order was 4 for all
interactions. This application was to show the program’s
ability to treat very large systems with the water-water
interaction inputted from a table for computational efficiency.
The MS-CG calculation for this protein system was per-
formed with the block average algorithm and LSQR sparse
solver.

Table 2 shows the computation speed for each MS-CG
calculation for the three tested systems. All computations in
Table 2 were performed on a workstation with Intel dual
core Xeon 2.0 GHz CPUs. Only one core of the CPUs was
used for each calculation, and the Intel MKL package45 was
used for dense matrix computations. The LSQR computation
was performed using a compiled FORTRAN 77 code.
Computational speed is defined by the number of all-atom
configurations (frames) that are processed per hour. It is seen
in Table 2 that MS-CG calculations for systems with less
than 10 CG site types are usually very efficient on a single
processor. Note that for most MS-CG calculations at least

several thousand all-atom configurations are necessary. For
better statistical sampling and smoother output force curves,
tens of thousands of atomistic configurations are desirable
depending on the system complexity. On the basis of the
speed data in Table 2, these requirements can be easily
achieved for small systems. However, the matrix column
dimension ND is proportional to the square of the number of
CG site types, which causes the required computer time to
increase dramatically when the number of CG site types
becomes large. For example, the third benchmark system
has 32 CG site types, and it is extremely hard to solve this
MS-CG problem using dense matrix algorithms considering
the memory and computer time required. For this large
system, the required computer time even prohibits calculation
with a sparse algorithm. Therefore, the water-water interac-
tion is inputted from an external table, which dramatically
speeds up the calculation. The speed results show it is able
to perform the MS-CG calculation for this complex system
using tens of CPUs and a few days. Thus, this application is
a good example to demonstrate MSCGFM’s ability to treat
complex systems.

From Table 2, it is also seen that for small- to medium-
sized MS-CG systems with around 10 CG site types,
applying B-spline basis functions can greatly increase the
computation efficiency. This is because the matrix column
dimension is reduced by using a smaller number of basis
functions. For very large problems with a sparse algorithm,
the computation speed depends on both matrix dimension
and nonzero element percentage. Using higher-order basis
functions usually makes the matrix F less sparse. Therefore,
there is no straightforward relation between the type of basis
functions and the computation efficiency if a sparse algorithm
is used.

Figure 6 shows the scaling for dense normal equation
algorithms with OpenMP support. The system is the DPPC
system described earlier with linear spline basis functions.
These calculations were performed on 16-core computing
nodes on an AMD Opteron cluster with OpenMP supported
Intel MKL software. It is clearly seen that the calculation
scales well up until 8 cores. Considering that computing
nodes on most high performance computing clusters are
comprised of 2 to 16 cores, dense matrix MS-CG calculations
can be well parallelized for these hardware structures.

Table 2. MS-CG Calculation Benchmarks for Selected
Molecular Systemsa

system basis function CG type speed (frames/hour)

Water linear spline 1 4.99 × 104

DPPC linear spline 7 4.32 × 102

DPPC B-spline 7 3.26 × 103

T4 lysozyme B-spline 32 19.5

a Details of each system are described in the main text.

Figure 6. Scaling of an OpenMP parallelized MS-CG calcu-
lation for a DPPC lipid CG system.
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7. Conclusions

A number of algorithms for MS-CG calculations have been
introduced in the recently developed MSCGFM program.
The MS-CG approach has been demonstrated to be a
successful method to generate CG force field parameters from
all-atom trajectories. However, computational efficiency and
stability are critical issues when applying the MS-CG method
to complex systems. In order to speed up the calculation,
various dense and sparse matrix algorithms, which are
appropriate for different types of CG systems, are incorpo-
rated in the MSCGFM code. In particular, the implementation
of sparse algorithms enables the MS-CG program to deal
with complicated biomolecular systems, such as proteins.
Tikhonov regularization is also proposed to regularize ill-
posed MS-CG problems for certain CG systems. Figure 4
shows a flowchart for the implementation of the code for a
given MS-CG calculation.

Future work will involve the development of better
parallelization approaches for the MS-CG calculations on
distributed memory machines, especially for the sparse matrix
algorithms. New basis functions corresponding to various
physical interactions will also be incorporated.

The code of MSCGFM is available on request and will
soon be released under a public license.

Acknowledgment. This research was supported by a
Collaborative Research in Chemistry grant from the National
Science Foundation (CHE-0628257). Computer resources
were provided by the National Science Foundation through
TeraGrid computing resources administered by the Pittsburgh
Supercomputing Center, the San Diego Supercomputer
Center, the National Center for Supercomputing Applications,
the Texas Advanced Computing Center, and Argonne
National Laboratories. The authors gratefully acknowledge
Dr. Edward Lyman, Dr. Ron Hills and Dr. Sven Jakobtor-
weihen for critical reading of the manuscript.

References

(1) Brooks, B. R.; Bruccoleri, R. E.; Olafson, D. J.; States, D. J.;
Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4,
187.

(2) MacKerel, Jr., A. D.; Brooks III, C. L.; Nilsson, L.; Roux,
B.; Won, Y.; Karplus, M. In CHARMM: The Energy
Function and Its Parameterization with an OVerView of
the Program; John Wiley & Sons: Chichester, 1998; Vol. 1;
pp 271.

(3) Case, D. A.; Cheatham, T. E., III; Darden, T.; Gohlke, H.;
Luo, R.; Merz, K. M., Jr.; Onufriev, A.; Simmerling, C.;
Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26, 1668.

(4) Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988,
110, 1657.

(5) Schuler, L. D.; Daura, X.; van Gunsteren, W. F. J. Comput.
Chem. 2001, 22, 1205.

(6) Tozzini, V. Curr. Opin. Struct. Biol. 2005, 15, 144.

(7) Ayton, G. S.; Noid, W. G.; Voth, G. A. Curr. Opin. Struct.
Biol. 2007, 17, 192.

(8) Coarse-Graining of Condensed Phase and Biomolecular
Systems; Voth, G. A., Ed.; CRC Press: Boca Raton, FL, 2008.

(9) Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.;
de Vries, A. H. J. Phys. Chem. B 2007, 111, 7812.

(10) Monticelli, L.; Kandasamy, S. K.; Periole, X.; Larson, R. G.;
Tieleman, D. P.; Marrink, S.-J. J. Chem. Theory Comput.
2008, 4, 819.

(11) Lyubartsev, A. P.; Laaksonen, A. Phys. ReV. E 1995, 52,
3730.

(12) Reith, D.; Putz, M.; Muller-Plathe, F. J. Comput. Chem. 2003,
24, 1624.

(13) Murtola, T.; Bunker, A.; Vattulainen, I.; Deserno, M.; Kart-
tunen, M. Phys. Chem. Chem. Phys. 2009, 11, 1869.

(14) Henderson, R. L. Phys. Lett. A 1974, 49, 197.

(15) Chayes, J. T.; Chayes, L.; Lieb, E. H. Commum. Math. Phys.
1984, 93, 57.

(16) Chayes, J. T.; Chayes, L. J. Stat. Phys. 1984, 36, 471.

(17) Lyubartsev, A. P.; Laaksonen, A. Phys. ReV. E 1997, 55,
5689.

(18) Shell, M. S. J. Chem. Phys. 2008, 129, 144108.

(19) Johnson, M. E.; Head-Gordon, T.; Louis, A. A. J. Chem.
Phys. 2007, 126, 144509.

(20) Izvekov, S.; Voth, G. A. J. Phys. Chem. B 2005, 109, 2469.

(21) Izvekov, S.; Voth, G. A. J. Chem. Phys. 2005, 123, 134105.

(22) Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Krishna, V.; Izvekov,
S.; Voth, G. A.; Das, A.; Andersen, H. C. J. Chem. Phys.
2008, 128, 244114.

(23) Noid, W. G.; Liu, P.; Wang, Y.; Chu, J.-W.; Ayton, G. S.;
Izvekov, S.; Andersen, H. C.; Voth, G. A. J. Chem. Phys.
2008, 128, 244115.

(24) Wang, Y. T.; Izvekov, S.; Yan, T. Y.; Voth, G. A. J. Phys.
Chem. B 2006, 110, 3564.

(25) Liu, P.; Izvekov, S.; Voth, G. A. J. Phys. Chem. B 2007,
111, 11566.

(26) Izvekov, S.; Voth, G. A. J. Chem. Theory Comput. 2006, 2,
637.

(27) Zhou, J.; Thorpe, I. F.; Izvekov, S.; Voth, G. A. Biophys. J.
2007, 92, 4289.

(28) Thorpe, I. F.; Zhou, J.; Voth, G. A. J. Phys. Chem. B 2008,
112, 13079.

(29) Lu, L. Y.; Voth, G. A. J. Phys. Chem. B 2009, 113, 1501.

(30) Izvekov, S.; Voth, G. A. J. Phys. Chem. B 2009, 113, 4443.

(31) Das, A.; Andersen, H. C. J. Chem. Phys. 2009, 131, 034102.

(32) Hockney, R. W.; Eastwood, J. W. Computer simulation using
particles; Taylor & Francis, Inc.: Bristol, PA, USA 1988.

(33) Quentrec, B.; Brot, C. J. Comput. Phys. 1975, 13, 430.

(34) Anderson, E.; Bai, Z.; Bischof, C.; Blackford, L. S.; Demmel,
J.; Dongarra, J. J.; Croz, J. D.; Hammarling, S.; Greenbaum,
A.; McKenney, A.; Sorensen, D. LAPACK Users’ guide
(third ed.); Society for Industrial and Applied Mathematics:
Philadelphia, PA, USA, 1999.

(35) Saad, Y. IteratiVe Methods for Sparse Linear Systems;
Society for Industrial and Applied Mathematics: Philadelphia,
PA, USA, 2003.

(36) Antonakos, J. L.; Mansfield, K. C. Practical Data Structures
Using C/C++ with 3.5 Disk; Prentice Hall PTR: Upper
Saddle River, NJ, USA, 1998.

964 J. Chem. Theory Comput., Vol. 6, No. 3, 2010 Lu et al.



(37) Lawson, C. L.; Hanson, R. J. SolVing Least Squares
Problems; Prentice-Hall, Englewood Cliffs, NJ, 1974.

(38) Hansen, P. C. Rank-deficient and discrete ill-posed prob-
lems: numerical aspects of linear inVersion; Society for
Industrial and Applied Mathematics: Philadelphia, PA, USA,
1998.

(39) Golub, G. H.; Van Loan, C. F. Matrix computations (3rd
ed.); Johns Hopkins University Press: Baltimore, MD, USA
1996.

(40) Hansen, P. C. BIT 1987, 27, 534.

(41) Savelyev, A.; Papoian, G. A. J. Phys. Chem. B 2009, 113,
7785.

(42) Paige, C. C.; Saunders, M. A. ACM Trans. Math. Softw.
1982, 8, 195.

(43) Blackford, L. S.; Choi, J.; Cleary, A.; D’Azeuedo, E.; Demmel,
J.; Dhillon, I.; Hammarling, S.; Henry, G.; Petitet, A.; Stanley,
K.; Walker, D.; Whaley, R. C. ScaLAPACK user’s guide;
Society for Industrial and Applied Mathematics: Philadelphia,
PA, USA, 1997.

(44) Chandra, R.; Dagum, L.; Kohr, D.; Maydan, D.; McDonald,
J.; Menon, R. Parallel programming in OpenMP; Morgan
Kaufmann Publishers Inc.: San Francisco, CA, USA, 2001.

(45) Intel Math Kernel Library for Linux OS User’s Guide. http://
www.intel.com/software/products/ (accessed Jan 11, 2010).

(46) Liu, P.; Shi, Q.; Hal Daumé, H., III; Voth, G. A. J. Chem.
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Abstract: Computing free energies of complex biomolecular systems via atomistic (AT)
molecular dynamics (MD) simulations remains a challenge due to the need for adequate sampling
and convergence. Recent coarse-grained (CG) methodology allows simulations of significantly
larger systems (∼106 to 108 atoms) over longer (µs/ms) time scales. Such CG models appear
to be capable of making semiquantitative predictions. However, their ability to reproduce accurate
thermodynamic quantities remains uncertain. We have recently used CG MD simulations to
compute the potential of mean force (PMF) or free energy profile of a small peptide toxin
interacting with a lipid bilayer along a 1D reaction coordinate. The toxin studied was VSTx1
(Voltage Sensor Toxin 1) from spider venom which inhibits the archeabacterial voltage-gated
potassium (Kv) channel KvAP by binding to the voltage-sensor (VS) domains. Here, we re-
estimate this PMF profile using (i) AT MD simulations with explicit membrane and solvent and
(ii) an implicit membrane and solvent (generalized Born; GBIM) model where only the peptide
was explicit. We used the CG MD free energy simulations to guide the setup of the corresponding
AT MD simulations. The aim was to avoid local minima in the AT simulations which would be
difficult over shorter AT time scales. A cross-comparison of the PMF profiles revealed a
conserved topology, although there were differences in the magnitude of the free energies. The
CG and AT simulations predicted a membrane/water interface free energy well of -27 and
-23 kcal/mol, respectively (with respect to water). The GBIM model, however, gave a reduced
interfacial free energy well (-12 kcal/mol). In addition, the CG and GBIM models predicted a
free energy barrier of +61 and +96 kcal/mol, respectively, for positioning the toxin at the center
of the bilayer, which was considerably smaller in the AT simulations (+26 kcal/mol). Thus, we
present a framework for serially combining CG and AT simulations to estimate the free energy
of peptide/membrane interactions. Such approaches for combining simulations at different levels
of granularity will become increasingly important in future studies of complex membrane/protein
systems.

Introduction

Accurate determination of free energies is crucial for the
understanding of various biophysical systems. Molecular

dynamics (MD) simulations have been used to estimate free
energies, e.g., by counting the number of events along the
reaction coordinate(s) of interest.1 In the context of mem-
brane proteins and channels, for example, MD simulations
have been used to calculate the free energy of ion conduction
through ion channels2,3 and related pores,4,5 and the free
energy of partitioning of amino acid side chain analogues
into lipid bilayers.6 These calculations are founded on the
basis that well sampled distributions can be obtained from
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finite-time simulations. Atomistic (AT) MD simulations can
routinely address systems of ∼105 to 106 atoms over ∼102

to 103 ns. This is likely to be insufficient for sampling all
but the simplest systems.1 For example, many biophysical
processes of interest (e.g., ion channel gating) occur over
longer (e.g., >1 µs) time scales. Thus, achieving adequate
sampling in free energy simulations of membrane/protein
systems remains challenging.

Recent coarse-grained (CG) simulation methodology has
generated considerable interest as it permits simulations of
larger systems over longer time scales.7-15 In the context
of membrane/protein systems, CG simulations have been
used to predict the orientation of proteins in lipid bilayers,16-20

the effect of hydrophobic mismatch on membrane/protein
dynamics,20-23 protein conformational changes,24,25 and
protein/protein interactions.15,26 Thus, for certain applica-
tions, CG simulations can provide insights into systems and
events that are out of reach of AT simulations.8,27 CG
simulations have also been used to perform more rigorous
calculations such as, e.g., estimation of free energies of
peptide/membrane interactions.20,28-30 Although CG simula-
tions can result in well sampled distributions, their ability
to reproduce thermodynamic properties needs to be better
evaluated.31,32

More recently, there has been interest in combining
simulations performed at different levels of granularity.33-36

One approach is to do this serially34 where simulations at
one level of granularity can be used to generate starting
coordinates for simulations at a different level of granular-
ity.19,37 Simulations at one level of granularity can also be
used to parametrize simulations at a different level of
granularity.33 Alternatively, one could do this in parallel
where, e.g., a region of interest is described atomistically
with the remainder of the system described with a CG model,
with special treatments at the AT/CG boundary.14,35,38

We have recently used CG MD simulations to calculate
the 1D potential of mean force (PMF) or free energy profile
of a small peptide toxin interacting with a lipid bilayer via
an umbrella sampling protocol.20 The reaction coordinate
corresponds to the position, projected along the bilayer
normal (z axis), of the center of mass (com) of the toxin
with respect to the com of the membrane. The toxin studied
was VSTx1 (Voltage Sensor Toxin 1) from spider venom
which inhibits the archeabacterial voltage-gated potassium
(Kv) channel KvAP by interacting with the voltage-sen-
sors.39-42 Thus, VSTx1 inhibits KvAP by altering the
energetics of voltage-dependent gating.41,42 VSTx1 is a small
globular protein (34 residues) with a distinct amphipathic
molecular surface,41-45 with one half of the toxin predomi-
nantly hydrophobic and the other half predominantly polar
(Figure 1A). VSTx1 is positively charged (+3) at pH 7. It
is structurally stable due to presence of 3 internal disulfide
bridges.46 Gating-modifier toxins such as VSTx1 gain access
to the VS by first binding to the membrane/water inter-
face.41,42,44,47,48 Membrane partitioning is consistent with our
CG free energy profiles which revealed a location at the
membrane/water interface when VSTx1 interacted with lipid
bilayers.20 From a biophysical perspective, gating-modifier
toxins such as VSTx1 have proved to be valuable characteriza-

tion tools for studying voltage-gated ion channels.41,42 From a
computational point of view, the interaction of VSTx1 with lipid
bilayers has been studied via CG20 MD and via AT49 MD
simulations and is a tractable and well understood problem. It
is therefore an ideal test system for a multiscale approach for
computing the free energy of peptide/membrane interactions.

Here, we re-estimated the 1D PMF profile of VSTx1
interacting with a pure palmitoyl-oleoyl-phosphatidyl-
choline (POPC) bilayer with AT simulations. An umbrella
sampling protocol was used, and the reaction coordinate
corresponds to the position, projected along the bilayer
normal, of the com of the toxin with respect to the com of
the membrane. The availability of considerable CG simula-
tion data on this system (>30 µs20) permits a multiscale
approach. We used the CG simulations to guide the setup
of the AT simulations. Our motivation was to avoid local
minima in the AT simulations, important for meaningful free
energy estimates (see Theory and Methods), which is difficult
to achieve over shorter AT time scales. As a further test, we
used an implicit membrane/implicit solvent model50 based
on the generalized Born framework51,52 (GBIM) to derive
an estimate of a PMF profile where only the toxin was
explicit. Cross-comparisons of the PMF profiles (AT, CG,
and GBIM) revealed differences in the magnitude of the free
energies although the overall topology of the landscapes was
preserved. The PMF profiles reinforce the view whereby
VSTx1 partitions from water into the membrane/water
interface, with a considerable free energy barrier for posi-
tioning the toxin at the center of the membrane. By using

Figure 1. (A) VSTx1 has an amphipathic molecular surface
with a hydrophilic (left) and a hydrophobic (right) side. Basic,
acidic, polar, and hydrophobic residues of VSTx1 are colored
blue, red, white, and green, respectively. (B) Atomistic (AT)
umbrella sampling simulations were used to compute a 1D
PMF profile where the reaction coordinate corresponds to the
position, projected along the bilayer normal (z axis), of the
center of mass (com) of the toxin with respect to the com of
the membrane (the bilayer center is at z ∼ 0 Å). A total of 82
umbrella sampling simulations or “windows” spaced 1 Å apart
were used to sample from the extracellular (EC) solvent,
across the bilayer, and into the intracellular (IC) solvent (z )
-41 to +41 Å). Snapshots were taken at 20 ns for toxin
locations at the free energy well at the bilayer/water interface
(z ) -17 to -16 Å; left) and in the hydrophobic core of the
bilayer (z ) -2 to -1 Å; right). POPC carbon, oxygen,
nitrogen, and phosphorus atoms are colored cyan, red, blue,
and gold, respectively, in a lines representation. Waters are
colored yellow.
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serial multiscale MD simulations, we have obtained a unified
view of how VSTx1 interacts with a membrane.

Theory and Methods

Umbrella Sampling MD Simulations to Derive a
Potential of Mean Force Profile. The PMF W(ε) along a
reaction coordinate ε is the constrained free energy and can
be defined from the average distribution 〈F(ε)〉

where ε* and W(ε*) are arbitrary constants.53 The average
distribution function along the coordinate ε is obtained from
a Boltzmann weighted average

where U(R) represents the total energy of the system as a
function of the coordinates R, and ε′[R] is a function
depending on one or more degrees of freedom in the
system.53

MD simulations can be used to sample 〈F(ε)〉. However,
the presence of energy barriers along ε, together with
simulations of finite duration, are likely to prevent adequate
sampling of 〈F(ε)〉. With umbrella sampling MD simulations,
one performs an ensemble of N biased simulations or
“windows” where an external biasing potential ω(ε) is
applied to force the system to sample over the range of
interest along ε. Each window samples the neighborhood of
a chosen value of ε, and one obtains N biased distributions
which need to be unbiased and combined to obtain a single
unbiased distribution.53,54 In the current study, we used the
weighted histogram analysis method (WHAM).55 We em-
phasize that the integral in the average distribution function
implies that all nonsampled degrees of freedom “perpen-
dicular” to the reaction coordinate ε must equilibrate in all
windows before collecting distributions along ε for the PMF
to be meaningful.

Serial Multiscale CG and AT Simulations. MD simula-
tions18,20,49 and experiments41,56 suggest VSTx1 and related
gating-modifier toxins have a distinct orientation when bound
to the lipid bilayer. At its optimal location of interaction at
the membrane/water interface, the polar residues of VSTx1
are directed toward solvent where they interact with the lipid
headgroups, with the hydrophobic residues exposed to the
lipid tails (Figure 1B; left panel).20 To obtain a meaningful
PMF profile, it is crucial that the orientation of VSTx1
equilibrates at each point along the reaction coordinate z (the
z axis corresponds to the bilayer normal). This was achieved
in our recent CG free energy simulations.20 We had used
104 independent CG windows (each of duration 40 ns)
spaced 1 Å apart along z to sample configurations of VSTx1
from the extracellular (EC) solvent, across a POPC bilayer,
and into the intracellular (IC) solvent. An identical initial
orientation of the toxin relative to the bilayer was used in
all windows (as shown in Figure 2A; 0 ns). We quantified
the orientation of VSTx1 by the angle of its hydrophobic

moment (defined as the vector sum of the hydrophobicity
of each constituent residue of a peptide57) relative to the
bilayer normal (θ; Figure 2A; note that θ ranges from 0° to
180°). θ equilibrated by 20 ns for CG windows where VSTx1
interacted with the bilayer to effectively minimize the
hydrophobic mismatch between the toxin and its environment
(Figure 2B). Thus, a distinct toxin orientation as a function
of z exists. The only exceptions were windows where the
toxin was located in water, away from the bilayer. Here,
VSTx1 tumbled randomly in water.

To set up the AT umbrella sampling simulations, we
clustered each CG window on the backbone of VSTx1 and
over the final 10 ns (i.e., 30 to 40 ns/window; after toxin
orientation had equilibrated) using the full linkage algo-
rithm.58 The median of the cluster, which corresponds to
the system with the most frequently observed equilibrated
orientation of VSTx1, was selected. The NMR structure of
VSTx144 was least-squared-fitted on the CG toxin coordi-
nates, and the AT toxin was subsequently modeled into an
AT POPC bilayer (Figure 2C; see Umbrella Sampling MD
Simulation Setup).

Thus, unlike the CG free energy simulations where an
arbitrary initial orientation of VSTx1 was used in each
window,20 knowledge gained from the CG simulations was
used to initiate the orientation of the toxin in the AT free
energy simulations. We therefore assumed (i) the orientation
of VSTx1 relative to the bilayer was the overwhelming factor

W(ε) ) W(ε*) - kBT ln[ 〈F(ε)〉
〈F(ε*)〉]

〈F(ε)〉 )
∫ δ(ε′[R] - ε)e-U(R)/kBT dR

∫ e-U(R)/kBT dR
Figure 2. Serial multiscale CG20 and AT umbrella sampling
simulations. (A, B) An identical initial orientation of VSTx1
(relative to the membrane) was previously used for all CG
windows (window z ) 16 to 17 Å shown; each CG window
was simulated for 40 ns).20 The orientation of VSTx1 (as
defined by the angle of the hydrophobic moment of the toxin57

θ) relative to the bilayer normal equilibrated by 20 ns in all
windows. (C) Each CG window was clustered on the back-
bone of VSTx1 and over the final 10 ns (i.e., 30 to 40 ns/
window; after toxin orientation had equilibrated). The median
of the cluster, which corresponds to the system with the most
frequently observed equilibrated orientation of VSTx1, was
used to guide the setup of the corresponding AT window.
POPC phosphates and cholines are colored blue and cyan,
respectively, in the CG snapshots. All other CG particles were
not shown for clarity.
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that would have influenced the accuracy of a 1D PMF along
z, and (ii) the CG model59 was able to predict θ accurately.
The latter is reasonable as, e.g., the CG model has success-
fully predicted the insertion and orientation of a range of
membrane/membrane-associated proteins in lipid bilayers16-18

including VSTx1.20

Umbrella Sampling MD Simulation Setup. To perform
AT umbrella sampling, we used 82 windows along z spaced
1 Å apart (z ) -41 to 41 Å; the bilayer center is at z ∼ 0
Å; Figure 1B) to sample from the EC solvent, across the
bilayer, and into the IC solvent. For each window, 20 ns
AT MD simulation was employed. In total, we accumulated
>1.6 µs of AT MD simulation data. The z coordinate of the
com of VSTx1 was restrained relative to the z coordinate of
the com of the entire bilayer with a harmonic biasing
potential (e.g., in window z ) -41 to -40 Å, the com of
VSTx1 was restrained at -40.5 Å relative to the com of the
bilayer). We used a pre-equilibrated POPC bilayer containing
128 lipids (courtesy of Peter Tieleman; moose.bio.ucalgary.
ca). To generate initial coordinates for VSTx1 in the bilayer,
we used a protocol similar to that employed in previous
simulations of VSTx120,49 and related toxins.18 Briefly, we
modeled VSTx1 in the bilayer by gradually scaling the
coordinates of the toxin to its full size in 10 steps, with 100
steps of steepest-descent energy minimization at each step
to allow the lipids to adjust their conformations to host the
toxin. The intramolecular interactions (i.e., interactions
between the atoms of VSTx1) were switched off; however,
interactions between VSTx1 and the lipids remained. The
lipid coordinates from each previous step were kept while
the original toxin coordinates were rescaled. At each step,
any lipid whose phosphorus atom was within 2.5 Å of any
toxin atom was removed. A cutoff of 2.5 Å was found to be
optimal for removing steric clashes between VSTx1 and the
lipids, while ensuring the lipids were adequately packed
around the toxin. Across all windows, no more than 7 lipids/
window were removed.

We had previously constrained our CG free energy
simulations of VSTx1 interacting with a membrane by
limiting excessive membrane deformation, to study the
effects of membrane deformability on free energies.20 We
used a similar setup in our AT free energy simulations. Thus,
positional restraints where applied on the phosphorus atoms
of all lipids along the bilayer normal z.

AT umbrella sampling MD simulations were performed
using GROMACS 3.2.1 (www.gromacs.org)60,61 using the
GROMOS-96 force-field62 and Berger parameters for POPC
lipids.63,64 VSTx1 was kept in the default protonation state
for pH 7. Each system was solvated with SPC waters.65 Cl-

counterions were added to keep each system electrically
neutral. Long-range electrostatic interactions were calculated
using the particle mesh Ewald (PME) method,66 employing
a grid spacing of ∼1 Å-1 and an interpolation order of 4. A
cutoff of 12 Å was used for the real space portion of the
Ewald sum and the Lennard-Jones interactions. The LINCS
algorithm67 was applied to constrain all covalent bonds, and
the SETTLE algorithm68 was used to maintain the geometry
of the water molecules. Each system was temperature
coupled with a Berendsen thermostat69 with a weak coupling

constant of 0.1 ps and a reference temperature of 310 K.
Semi-isotropic pressure coupling with a Berendsen barostat
in x and y at 1 bar with a coupling constant of 1.0 ps and a
compressibility value of 4.6 × 10-5 bar-1 was used. Prior
to production, a short MD simulation of duration 0.5 ns/
window (with positional restraints applied on the toxin, and
on the phosphorus atoms of the lipids in z only) was
performed to allow the lipids to further repack around the
toxin, and to allow the waters and counterions to settle. This
was followed by a production simulation of duration 20 ns/
window. The time step of integration was 2 fs. Positional
restraints and the biasing potential utilized a force constant
of 10 kJ mol-1 Å-2. All simulations utilized a TM voltage
of 0 V. The biased probability distributions were combined
and unbiased with an implementation of WHAM55 (courtesy
of Alan Grossfield; membrane.urmc.rochester.edu), using 100
bins over -41 Å and +41 Å and a tolerance of 0.0001.

The Generalized Born Membrane. The generalized Born
implicit membrane (GBIM) used here has been described in
detail in a previous publication.70 In brief, the membrane is
modeled as a low dielectric zone in a uniform aqueous
implicit solvent (with a dielectric constant εwater ) 80). The
zone has a Gaussian cross-section becoming increasingly
inaccessible to the solvent toward its center. Both the protein
interior and the membrane are assumed to have the same
interior dielectric constant of εmembrane ) 2. The Born radii
were calculated using the fast asymptotic pairwise summa-
tion, using the original OPLS all atom parametrization by
Qiu and Still.71 This yields excellent results in predicting
experimental free energies of solvation as well as hydration
effects on conformational equilibria.72 The membrane was
introduced by modifying the pairwise summation to solute
atoms, the self-solvation terms Γ(zi, L), and the atomic
volumes V(zi), which were made to vary smoothly between
full solvation and a limiting value for burial at the center of
the membrane. A Gaussian shape

was used, where gbulk is the limiting value of Γ at a large
distance from the membrane (i.e., z . L) corresponding to
the self-solvation term of the unmodified generalized Born
method, while gcenter is the value of Γ at the membrane center.
We used a Gaussian with γ )-3.0 and membrane half width
of L ) 15 Å, which corresponds roughly to the hydrophobic
profile of a dipalmitoyl-phosphatidyl-choline (DPPC) lipid
bilayer. A value of gcenter ) -7.67 kcal/mol was used, as
reported previously.73,74 Gaussians were chosen in good
agreement with experimental evidence from lipid distortion75,76

and X-ray and neutron diffraction experiments on fluid
liquid-crystalline bilayers.77 The OPLS-AA force field78 was
used to describe the toxin.

The nonpolar part of the solvation free energy is modeled
using an effective surface tension associated with the solvent
accessible surface area (SA).71 As it is moved toward the
center of the membrane, the surface energy contribution of
each atom is scaled down by an exponential switch at the
membrane interface (z ) ( 15 Å). Thus, for distances far
from the membrane (i.e., z . L), the nonpolar contribution

Γ(zi) ) gbulk + (gcentre - gbulk) eγ(zi
2/L2)
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is included with the positive surface tension of solvation in
water, while in the center of the membrane the surface
tension is negative (i.e., energy is gained by moving into
the membrane from the gas phase), as determined experi-
mentally.79

Calculating the Minimal Energy Conformation to
Derive a Potential of Mean Force Profile. The minimal
energy configuration of VSTx1 in a GBIM membrane was
calculated by exploring the entire translational and rotational
space of VSTx1 in the membrane, treating the toxin as a
rigid body. Previous AT simulations of VSTx1 in water and
lipid bilayers49 revealed the toxin to be conformationally
stable, with little structural drift from the initial toxin
conformation over multinanosecond time scales, and no
unfolding. The principal axis of the toxin was determined
through diagonalization of the inertia tensor using only the
heavy backbone atoms. The tilt angle was defined as the
angle of the principal axis with respect to the membrane
normal, while the rotation angle was defined as the angle of
rotation around the principal axis.

The toxin was translated from z ) -50 Å to +50 Å along
the membrane normal (membrane center ) 0 Å) in 0.5 Å
steps. At each step, the toxin was rotated through all space
to find the orientation of minimum energy by first tilting it
with respect to the membrane normal and subsequent rotation
around its principal axis until all tilt and rotational states
have been sampled with a step size of 1°. The lowest energy
conformation encountered was then subjected to a rigid body
minimization in order to locate the precise location of the
global energy minimum. Because the membrane and solvent
are implicit (i.e., always at equilibrium) and VSTx1 is treated
as a rigid body (which is not unreasonable as the toxin is
conformationally stable), the potential energies approximate
to free energies. Thus, for this system, the GBIM rigid body
scan provides a reasonable approximation of a free energy
surface. We do not expect the GBIM profile to differ
significantly had we used GROMOS-96 instead of the OPLS-
AA force field to describe the toxin in the rigid body scan.

Results

Toxin Structures in the AT MD Free Energy Simula-
tions. We monitored the structural stability of VSTx1 by
calculating the root-mean-squared-deviation (RMSD) of the
CR atoms of the toxin with respect to the initial toxin structure
(after a CR least-squared-fit; Figure S1, Supporting Informa-
tion). For the majority of the windows, the RMSDs did not
exceed 3.5 Å. The only exceptions were toxin locations in
water furthest away from the bilayer (z ) -41 to -39 Å
and z ) 39 to 41 Å) and several toxin locations close to the
center of the hydrophobic core of the bilayer (z ) -8 to -7
Å, z ) 1 to 3 Å and z ) 4 and 5 Å) where the RMSDs
approached 4 to 5 Å. In the water, VSTx1 experienced a
larger conformational drift compared to the ordered lipid
environment. For toxin locations close to the center of the
hydrophobic core of the bilayer, VSTx1 optimized the
interaction of its polar residues with the lipid headgroups
resulting in an increase in RMSDs (discussed further below).
In all windows, the toxin remained globular and did not

unfold. Ignoring the N-terminal residue and the two C-
terminal residues of VSTx1 which are flexible,49 the RMSDs
did not exceed 3.5 Å in any window (Figure S2, Supporting
Information).

We investigated the time-averaged root-mean-squared-
fluctuations (RMSF) of the CR atoms of the toxin with respect
to the initial toxin structure (Figures S3 and S4, Supporting
Information). It can be seen that the residues near the N-
and C-termini (i.e., E1, P33, and F34) had RMSFs approach-
ing and exceeding 3 Å. Consistent with previous AT
simulations,49 four distinct regions with low RMSFs of 0.3
to 1.0 Å were observed between residues 2 and 9, 14 and
16, 19 and 22, and 27 and 30 due to the presence of 3 internal
disulfide bridges (between C2 and C16, C9 and C21, and
C15 and C28) and 2 �-strands. Consistent with the RMSDs,
VSTx1 exhibited greater conformational flexibility in water
compared to when buried in the bilayer. The overall pattern
of flexibility is consistent with the presence of secondary
structure elements and disulfide bridges in the toxin.

Comparison of CG and AT Umbrella Sampling Simu-
lations. We compared the orientation of VSTx1 θ of each
AT window vs the corresponding CG window.20 Figure
3A-C show the distribution of the angle of the hydrophobic
moment of the toxin (relative to the bilayer normal; θ) of
the AT windows (over 17 to 20 ns; discarding the initial 17
ns as equilibration time) compared with the distributions
obtained from the corresponding CG windows (over the final
10 ns, i.e., 30 to 40 ns; after the orientation of VSTx1 had
equilibrated).20 We show this for three windows: (i) with
VSTx1 located in water (z ) -41 to -40 Å; where the com
of VSTx1 was restrained at -40.5 Å relative to the com of
the bilayer), (ii) with VSTx1 located at the free energy well
at the membrane/water interface (z ) -17 to -16 Å;
discussed below), and (iii) with VSTx1 buried close to the
center of the hydrophobic core of the bilayer (z ) -2 to
-1 Å).

In water, θ distributions were broad in both CG and AT
windows compared to toxin locations in the bilayer, between
40° and 155°. Thus, VSTx1 exhibited greater orientational
freedom in water as it tumbled randomly under the influence
of the solvent molecules. At the membrane/water interface
(z ) -17 to -16 Å), θ fluctuated over a smaller range of
30° (i.e., between 150° and 180°) in both CG and AT
windows. A good overlap can be seen between CG and AT
distributions, and θ had an average ((1 SD) of 168° ( 6°
(CG; averaged over 30 to 40 ns) and 168° ( 3° (AT;
averaged over 17 to 20 ns), respectively. In this orientation,
the polar and hydrophobic residues of VSTx1 were optimally
located to interact with the lipid headgroup and tails
respectively.

With the toxin buried in the hydrophobic core of the
bilayer (z ) -2 to -1 Å), the CG and AT θ distributions
did not overlap; θ had an average of 142° ( 8° and 89° (
7° in the CG and AT windows, respectively. Inspection of
CG window z ) -2 to -1 Å showed VSTx1 adopted an
orientation such that the polar residues of the toxin were
positioned to interact with the lipid headgroups of the EC
leaflet. Thus, at 0 ns, VSTx1 had a similar orientation in the
corresponding AT window (Figure 3C; see inset). Over 20
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ns of AT MD, VSTx1 reorientated such that its polar residues
were positioned to interact with the lipid headgroups of both
EC and IC leaflets, accompanied by penetrating water
molecules “shielding” the polar residues from the hydro-
phobic lipid tails. Thus, the hydrophobic surface of VSTx1
was directed perpendicular to the bilayer normal (Figure 1B;
right panel). This toxin orientation is possible as VSTx1 was
approximately equidistant from the lipid headgroups of both
leaflets. Encouragingly, this suggests that 20 ns is sufficient
to allow for optimization of the orientation of the toxin in
the lipid bilayer in the AT simulations. Thus, the AT
simulations showed another mode of interaction of VSTx1
with a POPC bilayer which was not observed in the CG
simulations.

In Figure 3D, we plot the average of θ (θj) as a function
of z in the CG and AT windows. Averages were calculated

over 30 to 40 ns and 17 to 20 ns per CG and AT window,
respectively. Two distinct values of θj are observed from z
∼ -35 to 35 Å in the CG simulations: ∼155° from z ∼
-35 to -3 Å and ∼25° from z ) 0 to 35 Å. Thus, VSTx1
underwent a ∼180° “flip” as it crossed the bilayer center to
minimize the hydrophobic/hydrophilic mismatch between
itself and the environment.20 The “flip-flop” transition in θj
between z ∼ -3 and 0 Å was because chance dictated
whether the polar residues of VSTx1 would interact with
the headgroups of the EC or IC leaflet. With the toxin located
in water in the CG simulations (i.e., z ∼ -41 to -35 Å and
z ∼ 35 to 41 Å), the SD of θ approached 37° corresponding
to VSTx1 tumbling freely in water, compared to SD values
of <14° between z )-35 and 35 Å when the toxin interacted
with the membrane.

In the AT simulations toward water, a somewhat earlier
(at z ∼ (25 Å) and more gradual drift in θj away from the
plateau can be seen because of the finer resolution (i.e., more
rugged energy landscape) afforded by the AT simulations.
We anticipate directionality offered by H-bonding interac-
tions (between VSTx1 and the membrane) in the AT
simulations to fine-tune the orientation of the toxin. Between
z ∼ -7 and +7 Å with VSTx1 buried in the bilayer, there
are clear deviations in the orientation of the toxin over 20
ns, and the difference in θj between the AT and corresponding
CG windows was >50°. Thus, between z ) -7 and +7 Å,
VSTx1 reorientated such that its polar residues interacted
with the lipid headgroups of both EC and IC leaflets.
Interaction of the polar residues of Hanatoxin (HATx), a
related gating-modifier toxin with an amphipathic molecular
surface, with the lipid headgroups of both leaflets, has been
reported in recent AT simulations of HATx interacting with
a DPPC bilayer.80 Although our free energy profiles (dis-
cussed below) suggest such a mode of interaction is unlikely
given the interfacial free energy wells, at least when VSTx1
interacts solely with the bilayer, this may not be physiologi-
cally irrelevant when VSTx1 (and other gating-modifier
toxins) interacts with both the membrane and the VS of Kv
channels.41,42,47 Overall, θj in the AT simulations correlates
with the CG simulations. Taken together, this suggests the
CG simulations can be used to guide the setup of the AT
simulations, and deviations from the initial AT setup are still
permissible (as observed in a few windows with the toxin
near the bilayer center) over the time-course of the AT
simulations (20 ns).

Free Energy Profiles from Umbrella Sampling MD
Simulations. The AT and CG20 PMF profiles in Figure 4
depict the free energy cost of positioning VSTx1 at different
depths in a POPC bilayer. Block analyses (the distributions
are split into nonoverlapping blocks to derive multiple PMF
profiles in order to evaluate convergence) suggest the AT
profile had sufficiently converged (Figure S5, Supporting
Information). The AT profile had free energy wells at the
membrane/water interface at ∼(13 to 18 Å, which was
somewhat closer to the bilayer center than the CG profile
(∼(22 Å).20 The shift in the location of the interfacial
minima by ∼5 Å between the CG and AT profiles can be
accounted for by differences in the equilibrium thickness of
the CG and AT membranes and is not due to differences in

Figure 3. Toxin orientation in the CG and AT simulations.
The distributions of the angle of the hydrophobic moment of
VSTx1 (relative to the bilayer normal; θ) are shown for CG20

(black) and AT (red) umbrella sampling windows: (A) z ) -41
to -40 Å, (B) z ) -17 to -16 Å, and (C) z ) -2 to -1 Å.
The inset figure in C shows the AT system at 0 ns. (D)
Average of θ (θj) as a function z for the CG and AT simulations.
Averages and distributions are over 30 to 40 ns and 17 to 20
ns per CG and AT window, respectively. The gray regions in
D indicate the approximate location of the lipid phosphates.
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the way VSTx1 interacted with the bilayer. The AT well
was -23 kcal/mol (with respect to water), while the central
barrier at ∼0 Å was +26 kcal/mol (with respect to the
interfacial well). We note the AT profile was not symmetrical
about the bilayer center (i.e., z ) 0 Å). When modeling
VSTx1 in the bilayer, we had to remove a few lipids to
accommodate the toxin, and this had resulted in asymmetric
bilayers (i.e., a bilayer with different numbers of lipids in
each leaflet; Figure S6, Supporting Information) and could
have contributed to the asymmetry in the free energy profile.
Overall, the AT profile suggests it is energetically favorable
for VSTx1 to partition into the headgroup/tail interface of a
POPC bilayer than to remain in water, and we do not expect
the toxin to be able to cross the width of the membrane,
consistent with experimental data.41,42

Although the topology of the AT and CG profiles was
conserved, there were differences in the magnitude of the
free energies. The AT and CG free energy wells at the
interface were somewhat comparable and differed by ∼4
kcal/mol (-23 vs -27 kcal/mol for AT and CG, respec-
tively). However, the central barrier differed by 36 kcal/mol
(+26 vs +61 kcal/mol for AT and CG, respectively, with
respect to the well). With VSTx1 buried in the bilayer, water
molecules penetrated into the hydrophobic membrane core
to provide a micropolar environment for the polar residues
of the toxin (Figure 1B, right panel). Water penetration was
observed to a more limited extent in the CG simulations.20

Furthermore, as the polar residues of VSTx1 interacted with
the lipid headgroups of both EC and IC leaflets with the toxin
buried in the bilayer, this would further stabilize the toxin
at the center of the membrane. Taken together, these could
account for the increased CG central barrier.

An Approximation of a Free Energy Profile from the
Generalized Born Implicit Membrane Model. Although
approximate, an implicit membrane and solvent approach
allows one to quickly ascertain the topology of the energy
landscape and provides a further test of the predicted AT
and CG MD PMF profiles. The GBIM rigid body scan

provides a reasonable approximation of a free energy profile
because membrane and solvent are implicit and VSTx1 is
assumed to be rigid. In Figure 4, a free energy well of 9
kcal/mol (with respect to water) was present at (20 Å, and
we observed a central barrier of 97 kcal/mol (with respect
to the interfacial well). Thus, the GBIM free energy well
was reduced compared to the AT and CG profiles (i.e., -9
vs -23 vs -27 kcal/mol for GBIM, AT, and CG, respec-
tively). The membrane/water interface provides a unique and
complex hydrogen bonding (H-bonding) environment that
is not sufficiently modeled by an implicit membrane/solvent
approach. Enthalpic contributions from H-bonds (i.e., rela-
tively strong electrostatic interactions) between VSTx1, and
the lipid phosphate and glycerol moieties (ref 49, and
discussed below) at the interface could be significant.
Possible water defects in the membrane are modeled to a
different extent in the three approaches (i.e., AT, significant;
CG, limited; and GBIM, absent), which may explain the
differences in the magnitude of the central barrier (i.e., 97
vs 26 vs 61 kcal/mol for GBIM, AT, and CG, respectively).
We do not expect the GBIM-derived PMF profile to be very
different had we accounted for the internal dynamics of
VSTx1 as the toxin has a stable fold.

Toxin-Environment Interaction Energies and Hydro-
gen Bonding Interactions. To gain a better insight into the
nature of the interactions that stabilize VSTx1 in a lipid
bilayer environment, we investigated the average interaction
(i.e., potential) energies (IE) between the toxin and its
environment in the AT simulations. In Figure 5A, we plot

Figure 5. VSTx1/environment interactions in the AT simula-
tions. (A) Toxin-environment interaction (i.e., potential) ener-
gies (IE). Average toxin-lipid, toxin-solvent, and total
toxin-environment (i.e., toxin-lipid + toxin-solvent) IE. The
toxin-lipid IE was decomposed into electrostatic (ES) and
VDW components. (B) Hydrogen bonding (H-bonding) inter-
actions. Average number of H bonds between VSTx1 and
waters, POPC carbonyls, and POPC phosphates. Averages
were taken over 17 to 20 ns/window. Bars represent (1 SD.

Figure 4. PMF profiles for positioning VSTx1 at different
depths in a POPC bilayer. A snapshot of a POPC bilayer is
shown in the background for reference. The PMFs shown are
derived from AT umbrella sampling simulations (black line),
from CG umbrella sampling simulations (red line),20 and from
a rigid body scan of VSTx1 with an implicit solvent and
membrane model (GBIM; green line). Because membrane
and solvent are implicit and VSTx1 is assumed to be rigid,
the GBIM rigid body scan provides a reasonable approxima-
tion of a free energy profile. The bilayer center is at z ∼ 0 Å.
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the average toxin-lipid and toxin-solvent IE (averaged over
17 to 20 ns/window) as a function of z, together with the
average total toxin-environment IE (i.e., toxin-lipid IE +
toxin-solvent IE). The toxin-lipid IE was decomposed into
electrostatic (ES) and van der Waals (VDW) components.
Only the real space component of PME is reported for the
toxin-lipid ES component. The VDW component of the
toxin-lipid IE increased (i.e., became more negative) with
increased VSTx1 exposure to the membrane towards 0 Å.
The ES component of the toxin-lipid IE dictated the
topology of the total toxin-environment IE profile. This is
consistent with previous AT simulations of VSTx1 with lipid
bilayers where ES interactions between the basic residues
of the toxin (K4, K8, K10, K17, R24, and K26) and the
negatively charged lipid phosphates were important for
stabilizing the toxin in the membrane.49 The toxin-solvent
IE is not zero with VSTx1 located at the bilayer center (i.e.,
at z ) 0 Å). As discussed earlier, a combination of toxin
reorientation, toxin structural drift (as shown by the RMSDs),
and penetration of waters ensured continued interaction
between VSTx1 and solvent even when the toxin was
completely buried in the membrane (Figure 1B, right panel).

In Figure 5B, we investigate H-bonding interactions
between VSTx1 and its environment (i.e., waters, lipid
carbonyls, and lipid phosphates) in the AT simulations. We
plot the average number of H bonds over 17 to 20
ns/window. The toxin-phosphate H bonds had a maximum
of 11 at z ∼ (20 Å, and the toxin-carbonyl H bonds had
a maximum of 12 at z ∼ (15 Å, consistent with the location
of the different lipid moieties along the bilayer normal.
VSTx1 formed up to 17 hydrogen bonds with waters between
z ) -5 and 5 Å (i.e., when the toxin was located close to
the bilayer center). In going from water to the membrane,
the loss of H bonds with waters (from, e.g., ∼34 H bonds at
(40 Å) is compensated for by the formation of H bonds
with lipids. Indeed, the maximum total (i.e., with waters and
lipids) number of H bonds is formed when VSTx1 is located
at the membrane/water interface at ∼20 Å where, addition-
ally, the hydrophobic residues of the toxin can find a
favorable environment as they were directed at the lipid tails.
This is consistent with the location of the free energy wells
in the PMF profiles. Thus, the free energy of desolvation of
the hydrophobic residues of VSTx1 is likely to be a major
contributor to the interfacial free energy wells.

Discussion and Conclusion

We have combined CG and AT simulations serially to
compute a 1D PMF (i.e., free energy) profile for the
interaction of a small protein with a lipid bilayer. We used
information gained from CG free energy simulations20 to
guide the setup of corresponding AT simulations. We
calculated the 1D free energy profile of VSTx1 interacting
with a POPC bilayer, where the reaction coordinate corre-
sponds to the position, projected along the bilayer normal,
of the com of the toxin with respect to the com of the
membrane. The VSTx1/bilayer system was chosen as a test
system for multiscale analysis of protein/membrane interac-
tions as it is reasonably simple and well characterized.20,41,42,49

How VSTx1 interacts with membranes is also of interest in

the context of the biophysics of voltage sensing by potassium
channels.41,42,47,81-83 The interaction of VSTx1 with a
bilayer will also provide insights into how small amphipathic
proteins and peptides interact with lipid bilayers. From a
theoretical point of view, in a 1D PMF of VSTx1 along the
membrane normal z, there is an important nonsampled degree
of freedom that had to equilibrate in order to yield meaning-
ful PMFs. The important nonsampled degree of freedom is
due to the amphipathic surface of VSTx1, giving the toxin
a distinct orientation as a function of position in the bilayer.
The longer time scales accessible to CG simulations allowed
the toxin orientation to equilibrate. The initial AT configura-
tions were based on the equilibrated CG configurations, and
the AT simulations provided a finer view of how VSTx1
interacted with the membrane.

The CG and AT PMF profiles had a conserved topology
(i.e., interfacial wells and a central barrier), but there were
differences in the magnitude of the free energies. The
interfacial free energy wells are comparable (i.e., -27 vs
-23 kcal/mol for CG and AT, respectively), which remains
considerably larger than that derived experimentally for
VSTx1 (-7 kcal/mol48) and related gating-modifier toxins
that target the VS of Kv channels (-3.5 to -8.5 kcal/mol84).
With VSTx1 located close to the interfacial well, e.g., in
AT window z ) -17 to -16 Å, the com of L30 of the toxin,
centered on the hydrophobic patch, was positioned at a
distance of ∼10 Å from the bilayer center, which is in
agreement with depth-dependent fluorescence quenching data
on HATx (W30 of HATx1 was reported to be positioned at
a distance of 9 Å from the membrane center).47 The largest
difference between the CG and AT profiles was the central
barrier (61 vs 26 kcal/mol for CG and AT, respectively).
This difference may be accounted for by phenomena
observed in the AT simulations which were absent or
observed to a limited extent in the CG simulations: (1) water
defects in the membrane (which were more limited in the
CG simulations because of the lack of dipoles in CG waters7)
and (2) when displaced toward the membrane center, VSTx1
reorientated such that its polar residues interacted with the
lipid headgroups of both leaflets, consistent with simulations
of a related toxin80 (this was not observed in the CG
simulations20). We emphasize that this 1D PMF profile
would be difficult to compute using AT simulations in
isolation, without guidance from CG simulations, because
of likely problems with sampling and convergence.

To illustrate this, we performed additional simulations of
VSTx1 located at the interfacial free energy well but in a
nonoptimal initial orientation (i.e., “upside-down” relative
to the bilayer; Figure S9, Supporting Information). The toxin
would require well in excess of 20 ns to locate its optimal
orientation in the bilayer. It would therefore be difficult to
compute this PMF, using an AT force-field, without a priori
knowledge of toxin orientation as a function of reaction
coordinate z.

Despite the CG bias, for a few toxin locations close to
the bilayer center that we observed, VSTx1 was able to
deviate substantially from its initial orientation in the AT
simulations to adopt configurations which were not observed
in the CG simulations. Thus, the AT simulations could
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sample new configurations of toxin orientation. Taken
together, it is clear a serial multiscale approach has allowed
for better estimates of this PMF profile. One could also
combine the multiscale procedure presented here with other
enhanced sampling methods (e.g., hybrid Monte Carlo85 or
replica exchange86) to achieve further exploration of the AT
energy landscape.

The AT simulations provided insights into how lipids
might interact with gating-modifier toxins such as VSTx1
when they are located at their optimal binding depth in lipid
bilayers. The lipids were seen to “wrap” their acyl chains
around the hydrophobic face of VSTx1 (Figure S8, Sup-
porting Information).

Returning to a more biological perspective, it is of interest
that recent experimental studies of the action of VSTx1 on
Kv channels have been interpreted in terms of perturbation
of membrane/channel forces by the toxin.82 Thus, a detailed
understanding of the nature and location of the toxin/bilayer
interaction becomes crucial to our understanding of the mode
of action of the toxin. The multiscale procedure presented
here provides a valuable tool for such studies.
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Erratum

Rigorous Extraction of the Anisotropic Multispin
Hamiltonian in Bimetallic Complexes from the
Exact Electronic Hamiltonian. [J. Chem. Theory
Comput. 6, 55–65 (2010)]. By Rémi Maurice,* Nathalie
Guihéry, Roland Bastardis, and Coen de Graaf.

Table 4. Two typographical errors are worth noting:
• The matrix elements 〈2, -2|Hmod|0, 0〉, 〈2, 2|Hmod|0, 0〉,

〈0, 0|Hmod|2, -2〉, and 〈0, 0|Hmod|2, 2〉, that were reported as

[2/(�3)](Ea - Eab) in the published version, are equal to
[1/(�3)](2Ea -Eab).

• The matrix elements 〈1, -1|Hmod|1, 1〉 and 〈1, 1|Hmod|1,
-1〉, that were reported as -Ea - Eab in the published
version, are equal to -Ea + Eab.

The entire corrected version of the matrix is presented.
All results and exploitations reported in the article used the
correct expressions.

CT100053G

10.1021/ct100053g
Published on Web 02/16/2010

Table 4. Matrix Elements of the Model Hamiltonian for Bimetallic Ni(II) Complexes with Magnetic Anisotropy in the Coupled
|S, MS〉 Basis

|S, MS〉 |2, -2〉 |2, -1〉 |2, 0〉 |2, 1〉 |2, 2〉

〈2, -2| J + (2/3)(Da + Dab) 0 [�(2/3)](Ea + Eab) 0 0
〈2, -1| 0 J - (1/3)(Da + Dab) 0 Ea + Eab 0
〈2, 0| [�(2/3)](Ea + Eab) 0 J - (2/3)(Da + Dab) 0 [�(2/3)](Ea + Eab)
〈2, 1| 0 Ea + Eab 0 J - (1/3)(Da + Dab) 0
〈2, 2| 0 0 [�(2/3)](Ea + Eab) 0 J + (2/3)(Da + Dab)
〈1, -1| 0 0 0 0 0
〈1, 0| 0 0 0 0 0
〈1, 1| 0 0 0 0 0
〈0, 0| [1/(�3)](2Ea - Eab) 0 [(�2)/3](2Da - Dab) 0 [1/(�3)](2Ea - Eab)

|1, -1〉 |1, 0〉 |1, 1〉 |0, 0〉
〈2, -2| 0 0 0 [1/(�3)](2Ea - Eab)
〈2, -1| 0 0 0 0
〈2, 0| 0 0 0 [(�2)/3](2Da - Dab)
〈2, 1| 0 0 0 0
〈2, 2| 0 0 0 [1/(�3)](2Ea - Eab)
〈1, -1| - J - (1/3)(Da - Dab) 0 - Ea + Eab 0
〈1, 0| 0 - J + (2/3)(Da - Dab) 0 0
〈1, 1| - Ea + Eab 0 - J - (1/3)(Da - Dab) 0
〈0, 0| 0 0 0 -2J
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